
Survey and Taxonomy of Grid Resource Management Systems

Chaitanya Kandagatla
University of Texas, Austin

Abstract

The resource management system is the central component of a grid system. This
paper describes a taxonomy for classifying resource management architectures and
presents the survey of resource management architectures of popular contemporary grid
systems.

1. Introduction
Grid systems are inter connected collections of heterogeneous and geographically

distributed resource harnessed together to satisfy various needs of the users. Resource
Management is central component of a grid system. It involves managing resources in the
system. Its basic responsibility is to accept requests from users, match user requests to
available resources for which the user has access and schedule the matched resources.
This paper presents a taxonomy to classify the resource management systems. The
taxonomy is based on the architecture of the resource management system.

Rest of the paper is organized as follows section 2 discusses various issues about
resource management in grid systems; section 3 describes the taxonomy of architecture of
grid resource management systems; section 4 presents the survey of resource
management in popular grid systems and classifies them according the developed
taxonomy, this is followed by the conclusions.

2. Resource Management Systems
Resource management is a complex task involving security, fault tolerance along

with scheduling. It is the manner in which resources are allocation, assigned,
authenticated, authorized, assured, accounted, and audited. Resources include traditional
resources like compute cycles, network bandwidth, space or a storage system and also
services like data transfer, simulation etc.

2.1 Issues in Grid Resource Management Systems (GRMS)
Resource Management in Grid systems is made complex due to various factors

like site autonomy, resource heterogeneity etc. Various factors contributing to this
complexity are discussed below.

Grid resource management system should preserve site autonomy. Traditional
resource management systems work under the assumption that they have complete
control on the resource and thus can implement the mechanisms and policies needed for
effective use of that resource. But in Grid systems resources are distributed across
separate administrative domains this results in resource heterogeneity, differences in
usage, scheduling policies, security mechanisms. Another resource management issue
made complex due to the site autonomy is Co-allocation of the resources. Co-allocation is
the problem of allocating resources in different sites to an application simultaneously.

Different administrative domains employ different local resource managements
systems like NQE, LSF etc. A grid resource management system should be able to
interface and interoperate with these local resource managements.

A resource management system for the grid should support such negotiation. In a
grid system resources are added and removed dynamically. Different types of
applications with different resource requirements are executed. Resource owners set there
own resource usage policies and costs. This necessitates a need for negotiation between
resource users and resource providers.

In a grid different type of applications from a wide range of domains are executed
each with different resource management requirements. While some type of applications
require to be scheduled as soon as possible even if it means reduced performance, some
class of application need high performance. The resource management framework should
allow new policies to be incorporated into it without requiring substantial changes to the
existing code.

In addition to the above a resource management system for the grid should
address the other issues like flexibility and extensibility, global name space, security,
fault tolerance and Quality of service.

2.2. Context and Functions of GRMS
In a grid system, an end user submits to the management system the job to be

executed along with some constraints like job execution deadline, the maximum cost of
execution. The function of the resource management is to take the job specification and
from it estimate the resource requirements like the number of processors required, the
execution time, and memory required. After estimating the resource requirements RMS is
responsible for discovering available resources and selecting appropriate resources for
job execution. Finally schedule the jobs on these resources by interacting with the local
resource management system.

A RMS is also responsible for naming the resources in the system, monitoring and
reporting the job, resource status and accounting for resource usage. The RMS interacts
with the security system to validate user requests, the information service to obtain
information about resource availability, the local system to schedule jobs on the local
resource management system

 GRMSSecurity

Application level
services

Resource specific
services

Information
services

3. Taxonomy

Taxonomy based on the architecture of the resource management system is discussed
below. It is divided into the following categories grid type, resource namespace, resource
information (discovery, dissemination), scheduling model, scheduling policy.

3.1 Grid type
Most contemporary grids do not provide uniform support for all types of

resources. Grid systems are classified as compute, data and service grids. In compute
grids the main resource that is being managed by the RMS is compute cycles (i.e.
processors), while in data grids the focus is to manage data distributed over geographical
locations. The architecture and the services provided by the resource management system
are affected by the type of grid system it is deployed in. Resources could be hardware
(computation cycle, network bandwidth and data stores) or software resources
(applications and databases).

3.2 Resource namespace Organization
The Grid RMS is responsible for naming the resources in the grid system.

Resource naming affects other resource management functions like resource discovery
and dissemination and also affects the structure of the database storing resource
information. Three approaches to name space organization are flat, hierarchical and
graph based.

A flat namespace is not very scalable in a grid system. In a hierarchical
organization resource naming follows a system of systems approach, a name is
constructed by traversing down a hierarchy. In graph based naming resources are linked
together and a resource name is constructed by following the links from one object to
another.

3.3. Resource Dissemination Protocol
Resource dissemination involves advertising the resources in the grid system.

Dissemination protocols effect the amount of data transferred between systems and the
also the status of the resource information database. Dissemination protocols can be
classified as periodic or on demand.

Periodic dissemination involves batching resource status change information and
updating the information database periodically. This can be further categorized as push or
pull dissemination. In push dissemination resource information data is pushed to the
information store periodically while in pull dissemination the information store collects
status information the resources periodically.

On Demand dissemination protocols update resource information when a specific
event is triggered or status change occurs.

3.4. Resource Discovery
Resource discovery is a very important function of the resource management. Discovery
services are used by the scheduling system to obtain information about resource

available. Approaches to resource discovery can be classified as query based or agent
based.

In a query based discovery the resource information store is queried for resource
availability. Most contemporary grid systems follow this approach. In agent based
discovery agents traverse the grid system to gather information about resource
availability.

3.5. Scheduling model

Scheduler structure determines the structure of the resource management system
and scalability of the system. Most contemporary grid resource management systems can
be classified as having centralized, hierarchical or decentralized structure.

In a centralized organization all jobs are submitted to a single scheduler which is
responsible for scheduling them on the available resources. Since all the scheduling
information is available at one single position the scheduling decision are optimal but this
approach is not very scalable in a grid system.

In a decentralized model there is no central scheduler, scheduling is done by the
resource requestors and owners independently. This approach is scalable and suits grid
systems. But individual schedulers should cooperate with each other in making
scheduling decisions and the schedule generated may not be the optimal schedule. Based
on whether or not schedulers cooperate they can be further classified as cooperative or
non-cooperative schedulers.

In a hierarchical model the schedulers are organized in a hierarchy. High level
resource entities are scheduled at higher levels and lower level smaller sub-entities are
scheduled at lower levels of the scheduler hierarchy. This model is a combination of
above two models.

3.6. State Estimation

Users submit the application and input data along with some QoS requirements
like deadline to the management system. The management system should estimate the
specific resource requirements for running the application. There are three approaches to
this problem theoretical prediction, history-based prediction, and testcase-based
prediction.

In theoretical prediction, application requirements are estimated based on an
analysis of the application’s programming model and problem domain. The efficiency of
this approach depends on how well the computing model for the application is
understood.

In history-based approach prediction is made based on previous runs of the
applications. This approach is suitable for applications that are not likely to change over
time or are typically executed on a given set of resources where past performance is a
strong indicator of future performance of the application on those same resources.

In testcase-based prediction the application is tested for a limited set of cases on
representative machines. This is suitable for applications that have unknown
characteristics or applications that change over time.

3.7. Scheduling Policy

The intention here is not on classifying the various scheduling mechanisms but is on
whether the scheduling system (broker) employs a fixed policy or an extensible
scheduling policy.

Scheduling policy governs how resources are scheduled on the matched resources. In a
grid environment there can be no single global scheduling policy, different administrative
domains may set different resource usage policies so the RMS should allow for the
policies to added or changed with minimal overhead.

4. Survey

Grid systems today are broadly classified as compute, data or service based grids.
Resource Management in Condor, Globus, Legion (Compute Grids), European Data grid,
PUNCH (On-demand Service grid), Nimrod-G (Economy driven meta-scheduler) have
been surveyed. The motivation for choosing these systems was to study how the resource
management architecture is affected by the type of the grid system.

4.1 Condor

Condor is a resource management system designed to support high-throughput
computations by discovering idle resources on a network and allocating those resources
to application tasks. The main function of condor is to allow utilization of machines that
otherwise would be idle thus solving the wait-while-idle problem.
A cluster of workstations managed by condor is called a Condor pool. Jobs submitted by
the users are queued by Condor and scheduled on available machines in the pool
transparently to the user. Condor resource requests are specified in Classified Ads
resource specification language. Condor selects a machine from the pool to run a user’s
job, it can also migrate a running job from one machine to another until it is completed.

Condor has a centralized scheduling model. A machine is the condor system
(Central Manager) is dedicated to scheduling. Each condor work station submits the jobs
in its local queue to the central scheduler which is responsible for finding suitable
resources for the job execution. The information about suitable available resources to run
the job (execution machine information) is returned to the job submission machine. A
shadow process is forked on the submission machine for each job, which is responsible
for contacting and staging the job on the execution machine and monitoring its progress.
Condor supports pre-emption of running jobs, if the execution machine decides to
withdraw the resources Condor can preempt the job and schedule it on another machine
thus providing for resource owner autonomy.

The resource information needed for making scheduling decisions is also stored
on the central Manager. Central Manager queries the data store for information resource
availability. Resource dissemination is through periodic push mechanism. Each machine

in the Condor system advertises its resources and reports resource status to the central
manager.

Negotiation is done through machine and job context .The resource owner i.e. the
machine in Condor specifies the usage conditions or policy in the machine context
submitted to CM. The resource requirements of the job are specified in the job context.
The scheduler matches the requirements in job context to the usage conditions in the
machine context.

Condor preserves job’s submission machines environment at the execution
machine through a remote execution mechanism. The system calls from User process can
be redirected to the submission machine where they are handled by the shadow. The
Shadow executes the system call locally and returns the result to the User Process.

Condor flocking is an enhancement to condor which enables different condor
pools to be connected such that jobs submitted in one pool can run in other pools. This
allows jobs to run on machines owned by different organizations.

In Condor a checkpointing mechanism is implemented which stores the current
state of the job, checkpoint is saved in a checkpoint file on disk space accessible from the
submission machine. This checkpointing mechanism offers fault tolerance and recovery,
if a job executing on machine fails or if the resource is claimed back by the owner then
the job can be restarted on another machine by reconstructing the state of the job from the
checkpoint file.

4.2 Resource Management in Globus

Globus toolkit is a collection of tools that provides the basic services and
capabilities like security, resource management, information services etc required for grid
computing. Resource Management System of Globus consists of resource brokers,
resource co-allocators and resource manager or GRAM. The resource requests are
specified in extensible resource specification language (RSL).

Globus has a decentralized scheduling model. Scheduling is done by application
level schedulers (like AppleS) and resource brokers. Application specific brokers
translate the application requirements into more specific resource specification. Resource
Brokers are responsible for taking high-level RSL specification and transforming them
into more concrete specification (this process is called specialization).Requests can be
passed to multiple Brokers. Transformations done by the brokers’ results in a request in
which the locations of the resources are completely specified.

The Resource Brokers discover resources by querying the information service
(MDS) for resource availability. MDS is a LDAP based network directory
(Metacomputing Directory Services). MDS consists of two components Grid Index
Information service (GIIS) and Grid resource information service (GRIS). GRIS provides
resource discovery services. GIIS provides a global view of the resources by pulling
information from the GIIS’s. Resource information on the GIIS’s is updated by push
dissemination. Globus has a hierarchical name space organization.

The transformed resource requests from resource brokers are passed to the co-
allocator. Co-allocator takes care of multi-requests, multi request is a request involving
resources at multiple sites which need to be used simultaneously, and passes each
component of the request to appropriate resource manager and then provides a means for

manipulating each resultant set of managers as a whole. The Co-allocation of resources is
done by the DUROC component Globus.

The resource manager interacts with local resource management systems to
actually schedule and execute the jobs. The implementation of the resource manager in
Globus is called GRAM. GRAM authenticates the resource requests and schedules them
on the local resource manager. Each user is associated with a UHE (user hosting
environment) on the execution machine. All the jobs from a user are directed to the user’s
UHE, which starts up a new Managed Job Factory service (MJFS) instance for every job.
The MJFS communicated with the clients by starting up two instances of File Stream
Factory Service (FSFS) for standard input and output. MJFS and FSFS are persistent
services.

When a system starts up after a fault all the UHE which were running before
crash are started up. There is also a Sweeper task which runs every two hours and
recovers any crashed UHE. The information about the UHE is obtained from gridMapfile
which stores the status (Active, Inactive) of the UHE’s in the system, if a nonexistent
UHE is marked active in the gridMapfile it indicated that the UHE crashed. After a UHE
is restarted all the persistent services in it (MJFS and FSFS) are recovered.

Globus’ GARA component provides QoS guarantees through advanced resource
reservation. Nexus provides the communication system between resources. Globus
toolkit provides the middleware services for resource management while the scheduling
tasks are done by individual resource broker like AppleS and Nimrod-G etc.

4.3 Resource Management in Legion

Legion is a reflective, object-based operating system for the Grid. It offers the
infrastructure for grid computing. Legion provides a framework for scheduling which can
accommodate different placement strategies for different classes of applications.

Scheduler in Legion has a hierarchical structure. Users or active objects in the
system invoke scheduling to run jobs, higher level scheduler schedules the job on cluster
or resource group while the local resource manger for that domain schedules the job on
local resources. Scheduling in Legion is placing objects on the processors. The resource
namespace is graph based.

Scheduling framework acts as mediator to find a match between the placement
requests and processors. When a job request is submitted, appropriate scheduler for the
job is selected from the framework. Selection of the scheduler can be made by the user
explicitly or attributes of the Class Object of the application can be used to specify the
scheduler for the objects of that class. Object specific placement constraints are also
specifies as attributes on the class object. Resource owners also specify security and
resource usage policies using class Object attributes. Scheduler Object uses this
information in making scheduling decision. Co-allocation of resources is not supported.

The enactor object is responsible for enforcing the schedule generated by the
scheduler object; more than one schedule is generated, if a schedule fails another one is
tried until all the schedules are exhausted.

Information about resources in the grid is stored in database object called a
collection. For Scalability there could be more than collection object and collections can

send and receive data from each other. Information is obtained from resources either by
pull or push mechanism. Users or Schedulers query the collection to obtain resource
information.

Legion supports resource reservation and object persistence. When the scheduler
object contacts a host object (processor or local resource management system), the host
returns a reservation token to the scheduler if the job can be executed on its resources.
Every object is associated with vault object. Vault object holds associated object’s Object
Persistent Representation (OPR). This ensures that even if the object fails, it can later be
re-constructed from the OPR.

Communication between any two objects goes through the Legion Protocol stack
which involves constructing program graphs, making method invocations, checking
authorization, assembling or disassembling messages, encrypting, re-transmitting
messages etc. This frameworks allows for implicit security and fault-tolerance

Fig

Legion objects are fault tolerant since they can be reconstructed consistently using OPR
stored in vault object. Some objects are also replicated for performance or availability.

4.4. PUNCH

Punch is a demand-based grid computing system that allows end users to transparently
access and use globally distributed hardware and software resources. The resource
management system in PUNCH has a pipelined architecture. With individual components
in the pipeline replicated and geographical distributed for scalability and reliability.
PUNCH employs a non-preemptive, decentralized, sender-initiated resource management
framework.

Graph layer

Remote
method Invoke

Access Control

Message
Assembly

Encryption

Transport
Layer
Network
Transmit

Graph layer

Remote
method Invoke

Access Control

Message
Assembly

Encryption

Transport
Layer
Network
Transmit

Interface discovery

Authentication

Dataflow

Integrity, Privacy

Retransmission,
fault tolerance

Resource discovery

The global namespace organization is hierarchical. Users specify the application
and input data files to the management system through a web-based interface. The
application unit on the client side estimates the resource requirements for executing the
application using machine learning based prediction techniques and submits the resource
requirements to a query manager of the resource management pipeline.

The resource management pipeline consists of the query manager, resource
managers, and pool managers. Pools are dynamic aggregation of resources based on some
criteria (e.g. processor architecture). Pools are created on the fly if a request can not be
mapped to any of the pool managers.

Scheduling is performed in a decentralized manner by resource and pool
managers. A query manager parses the resource request, transforms it into an internal
representation and forwards it to a resource manager based on some criteria. Individual
Resource managers try to map the requests to a pool manager from the list of pool
managers stored its local database. If a request cannot be mapped to any of the pools, a
new pool is created. When a new pool manager is created, it queries a resource
information database for information of all the resources which satisfy the pool’s criteria.

Scheduling policy is extensible. Each pool manager has one or more scheduling
processes associated with it; the function of these processes is to sort the machines in its
pool cache according to some specified criteria (average load, available memory) and to
process queries sent by resource managers. Pool managers can be configured to utilize
different scheduling policies.

The resource information is initially pushed to the information database and a
monitoring service monitors the status of the resources and updates the information
database (data pull).

PUNCH supports QoS negotiation by passing the request to multiple resource
managers and utilizing the best response. It doesn’t support advanced reservations or co-
allocation of resources. PUNCH is intending for large number of short jobs or bursty
submissions. PUNCH employs a non-preemptive, decentralized, sender-initiated resource
management framework.

4.5. European Data Grid

EU datagrid was designed to provide distributed scientific communities access to
large sets of distributed computational and data resources. The three main application
areas of EU datagrid are the High Energy Physics (HEP) where geographical distributed
researcher analyze the same data generated by single source but replicated distributed
data stores, Earth Observation data are collected at distributed stations and also
maintained in distributed databases, while in Molecular Biology research large number of
independent datasets are used which need to be integrated into one logical system.

The main architecture of the datagrid is layered. The datagrid project develops
datagrid services and depends on the Globus toolkit for core middleware services like
security. The datagrid services layer consists of workload management services which
contain components for distributed scheduling and resource management, Data
Management services contains middleware infrastructure for coherently managing

information stores and monitoring services provided end-user and administrator access to
status information on the grid.

The workload management package consists of a user interface, resource broker,
job submission service, book keeping and logging service. A job request from user is
expressed in a Job Description Language based on the Classified Ads of Condor. The
resource broker (RB) given a job description tries to find the best match between the job
requirements and available resources on the grid, considering also the current distribution
of load on the grid. RB interacts with data replication and meta-data information services
to obtain information about data location.

The information service a LDAP based network directory. Resource discovery is
by queries and employ periodic push for dissemination. Global namespace hierarchical
and scheduling is decentralized but instead of having a resource broker for each end-user,
each virtual organization is provided resource broker.

It does not support advanced reservation or co-allocation of resources. It does not
address failures originated by jobs which it simply reports to end user. But the state of the
resource broker queues and job submission service queues is persistent and can be
recovered fully after a crash.

4.6. Nimrod-G and GRACE

Nimrod-G is grid-enabled resource management and scheduling system based on
the concept of computational economy. It was designed to run parametric applications on
computational grid. It uses the middleware services provided by Globus Toolkit but can
also be extended to other middleware services.

Nimrod-G uses the MDS services for resource discovery and GRAM APIs to
dispatch jobs over grid resources. The users can specify deadline by which the results of
there experiments are needed. Nimrod-G broker tries to find the cheapest resources
available that can do the job and meet the deadline. Nimrod uses both static cost model
(stored in a file in the information database) and dynamic cost model (negotiates cost
with the resource owner) for resource access cost trade-off with the deadline.

GRACE provides middleware services needed by the resource brokers in
dynamically trading resources access costs with the resource owners. It co-exists with
other middle-ware systems like Globus. The main components of the GRACE
infrastructure are a Trade Manager (TS), trading protocols and Trade Server (TS). TM is
the GRACE client in the Nimrod-G resource broker that uses the trading protocols to
interact with trade servers and negotiate for access to resources at low cost. Trade Server
is the resource owner agent that negotiates with resource users and sells access to
resources. TS uses pricing algorithms as defined by the resource owner that may be
driven by the demand and supply. It also interacts with the accounting system for
recording resource usage.

It has an extensible application-oriented scheduling policy and scheduler uses
theoretical and history based predictive techniques for state estimation. Scheduler
organization is decentralized and the namespace is hierarchical.

5. Summary

Most common resource management architecture among the surveyed grid
systems was a hierarchical namespace with decentralized scheduler structure, query
based resource discovery, push or pull dissemination. Object based architecture like
Legion adopted graph based namespace.

The resource management systems varied in there support co-allocation of
resources, for QoS which is achieved in most through advanced reservations, support for
fault tolerance which was mostly through replication of the components or recovering
using persistent state.

6. Conclusions

In this paper various issues in resource management in grid systems have been
discussed. A taxonomy based on architecture for classifying grid resource management
systems has been described. The results of the survey of resource management systems in
various contemporary grid systems have been presented.

7. References

[1]. I. Foster and C. Kesselman (editors), The Grid: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann Publishers, USA, 1999.

[2]. Jarek Nabrzyski, Jennifer M. Schopf, and Jan Weglarz (co-editors), Grid Resource
Management State of art and Trends, Kluwer Publishers, fall 2003.

[3]. I. Foster, C. Kesselman, S. Tuecke, The anatomy of grid enabling scalable virtual
organization, lecture notes (2001).

[4]. I. Ekmecic, I. Tartalja, and V. Milutinovic, A survey of heterogeneous computing:
Concepts and Systems,Proceedings of the IEEE, Vol 84, No 8, Aug 1996, pp. 1127-1144.

[5] H.G. Rotithor, Taxonomy of dynamic task scheduling schemes in distributed
computing systems, Proceedings of Computer Digital Technology, Vol 141, No 1,
January 1994, pp. 1-10

[6]. T.L. Casavant and J. G. Kuhl, A taxonomy of scheduling in general-purpose
distributed computing systems,

[7]. T. Braun, J. Siegel, et al, A Taxonomy for describing Matching and Scheduling
Heuristics for Mixed-Machine Heterogeneous Computing Systems, IEEE Workshop on
Advances in Parallel and Distributed Systems, in Proceedings of the 17th IEEE
Symposium on Reliable Distributed Systems 1998, pp. 330-335

[8]. K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, S. Tuecke,
A Resource Management Architecture for Metacomputing Systems, Proceedings of the
4th Workshop on Job Scheduling Strategies for Parallel Processing, 1998.

[9]. R.J.M. Boer, Resource Management in the Condor System, Master Thesis, 1996.

[10]. S. Chapin, J. Karpovich, A. Grimshaw, The Legion Resource Management System,
Proceedings of the 5th Workshop on Job Scheduling Strategies for Parallel Processing,
April 1999.

[11]. A. Natrajan, M. HumphreyN. Kapadia and J. Fortes, PUNCH: An Architecture for
Web-Enabled Wide-Area Network-Computing,

[12]. D Royo, N. Kapadia, J. Fortes, and L. Cerio, Active Yellow Pages: A Pipelined
Resource Management.

 [13]. W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, and K. Stockinger, Data
Management in an International Data Grid Project.

 [14]. R. Buyya, D. Abramson, J. Giddy, Nimrod/G: An Architecture for a Resource
Management and Scheduling System in a Global Computational Grid, International
Conference on High Performance Computing in Asia-Pacific Region (HPC Asia 2000),
Beijing, China. IEEE Computer Society Press, USA, 2000.

[15]. R. Buyya, J. Giddy, D. Abramson, An Evaluation of Economy-based Resource
Trading and Scheduling on Computational Power Grids for Parameter Sweep
Applications, Proceedings of the 2nd International Workshop on Active Middleware
Services (AMS 2000), Kluwer Academic Press, August 1, 2000, Pittsburgh, USA.

