

A Unified Approach to Verification and Validation of Software Systems

CS395T – Fall 2008
Unique Number 55925

TTH 9:30AM-11AM RLM 6.126
http://www.cs.utexas.edu/~browne/uvv395f2008/

J.C Browne and W. Hunt

browne@cs.utexas.edu – hunt@cs.utexas.edu

1. Goal and Purpose

Correctness is the most critical concern of the software industry. Yet there does not exist
a unified approach to verification and validation which integrates the several methods and
tools for verification and validation. This course is part of an effort to provide such a
unified and integrated approach. The lectures will cover the principles and methods. The
395T class will meet with and share lectures with the 378 class. The readings, analyses
and projects will be quite different. Enrollees in the 395T will be expected to make some
contribution to the realization of the unified approach to verification and validation which
is illustrated in Figure 1. The class for the 395T is described in more detail in Section 4,
“Course Work and Grading.” Participants will come away from this course with a unique
perspective on verification and validation.

The vision for a unified approach to verification and validation is sketched in the
schematic diagram following.

Property
Specifications

Verified Components

Abstraction and
Translation

Program

Testing

Model Checking

Theorem Proving

Runtime Monitors

Static Analysis

Environment
Specifications

Composer

Figure 1 – Schematic of a Unified Approach to Verification and Validation of Software

mailto:browne@cs.utexas.edu
mailto:hunt@cs.utexas.edu

This course is part of an ongoing project to create a comprehensive approach to
verification and validation which is language independent, to formulate this approach as a
framework for tools for specific languages, and to develop undergraduate and graduate
courses that teach this unified approach to V&V. The unified framework will be used to
select methods and tools for validating and verifying programs in any programming
paradigm or language.

1.1 Background

The range of methods and tools which are available for validating and verifying
software include static analysis of program code, conventional and systematic testing,
model checking for temporal properties, runtime monitoring, and formal proofs of
correctness. Each of these methods has been studied extensively in isolation, but there
does not seem to be any comprehensive analysis of the synergisms and overlaps of these
methods, nor have these methods and tools been integrated into a comprehensive
framework for verification and validation. There are many properties such as type
properties which can be verified by static analysis. If a system has not been thoroughly
tested then model checking is intractable. Static analysis and model checking are both
state space analysis methods which are applied to different representations of a program.
Static analysis is a critical enabling technology for effective model checking. The
representation of the system in the model checkable representation need span only those
states and behaviors of the system that impact the property being checked. Therefore, the
property and the software system are translated/abstracted together and, to the extent
possible, states and behaviors not necessary for model checking of the property are
projected out of the system. This projection is based on static analysis techniques.
Sometimes there are properties that cannot be model checked. These properties can be
compiled to monitors that validate properties at runtime. Generation of runtime monitors
is based on static analysis to determine how and where to add monitoring code. Model
checking, where a formally specified property is verified over all paths and states, can be
viewed as exhaustive testing based on formal specifications. Proof methods are often
applied to pre-condition/post-condition pairs. There is a set of pre-condition/post-
condition pairs which can be expressed in temporal logic and verified by model checking.
Pre-condition/post-condition pairs can also be validated by runtime monitors.

One unifying conceptual element is a “universal” property specification language
from which properties can be verified by static analysis, testing, model checking, proof
methods or compiled to runtime monitors as appropriate or required. The prototype for
this unified property specification language is the Property Specification Language
[Acellera,2004] developed by the Acellera Consortium for simulation-based testing and
model checking-based verification of hardware systems. A second unifying conceptual
element is the common set of component-oriented set of design principles which enable
effective and scalable application of both formal and informal validation and verification.
A third unifying concept is a consistent formalism for generating models through
abstraction and static analysis.

1.2 Course Content

Students enrolled in the 395T will not only learn about the several methods for
verification and validation. They will be a part of the development of a unified approach
through the analyses and projects which are a part of the course.

The principles and mechanisms for validation and verification are language independent
but the tools implementing the mechanisms are language specific. The lectures will be
largely language independent. A substantial portion of the lectures will be devoted to
design for verification and validation and an integrated and comprehensive approach to
specification of properties to be verified and evaluated.

The content for the course will include:

a. Design for test and verification.
b. Unified Property Specification
c. Introduction to program analysis (static analysis methods).
d. Formal and complete approaches to testing:

Specification of properties, behaviors and assertion
 Test coverage algorithms based on static analysis processes

Testing as a continuous process integrating runtime monitoring with
conventional testing, model checking and proof-based verification.

e. Applied model checking:
Model checking as the endpoint of testing
Property formulation
Compositional reasoning

f. Classical Dijkstra/Hoare and other proof-based verification.
This material is already covered in other courses and will not be repeated
but the role of this material in a comprehensive approach to verification
and validation will be covered.

 g. Run-Time Monitoring
 Methods and Tools
 Automated compilation of property monitors.
 h. Integration of all the methods in a coherent, complete structure for validation and

verification.
 i. Extension of verification and validation to security policy issues such as information

flow.
 j. Failure analysis, fault-tolerance, practical self-stabilization, etc.

2. Student Prerequisites

Graduate standing in Computer Sciences. Students are advised to consult with the
instructor before registering for this course.

3. Texts and Course Materials

There are many monographs and texts focusing on each topic concerning validation and
verification (particularly testing). The text for the CS378 section is “Software Testing

and Analysis” by Pezze and Young. The text most nearly matching the coverage of this
course from the graduate perspective is “Software Reliability Methods” by Doron A.
Peled which is listed as an optional text for this class. There are survey and tutorial
articles and a large amount of web-based material is available on each topic. Each topic
will be covered through assignment of a set of papers to be read with reports on key
papers.

4. Course Work and Grading

The responsibilities for those enrolled in the 395T will include reading and presenting
one or more key papers dealing with some aspect of unification of verification and
validation methods and execution of a project which contributes to the realization of the
unified approach sketched in Figure 1. The project may be an analysis or an
implementation of some aspect of the process represented in Figure 1. The projects will
include a presentation of the project and a report which should in the fashion of a
conference paper defining and describing the project.

Grades will be assigned on the basis of the content of the project, the presentation and the
report.

5. Approximate Lecture Schedule

An approximate lecture schedule follows. There will be several guest lectures by experts
on some of the topics.

Lecture
Date

Lecture Topic Reference Material

8/28/2008 Unified Approach to
Verification and
Validation

Lecture Notes

9/2/2008 Designing for
Verification and
Validation

Lecture Notes and web references

9/4/2008 Property Specification :
Temporal Logics,
Floyd/Hoare Logics,
JML Pre-conditions,
Post-conditions,
invariants, etc

Lecture Notes and Web references:
http://cnx.org/content/m12317/latest/
http://ieeexplore.ieee.org/iel5/6783/18169/00841031.pdf
ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf

9/9/2008 Property Specification :
Temporal Logics,
Floyd/Hoare Logics,
JML Pre-conditions,
Post-conditions,
invariants, etc

 Lecture Notes and Web references:
http://cnx.org/content/m12317/latest/
http://ieeexplore.ieee.org/iel5/6783/18169/00841031.pdf
ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf

9/11/2008 Models, Abstractions
and Compositionality

PY – Chapters 2, 3 and 5, lecture notes

9/16/2008 Static Analysis – Type
checking, data flow

Lecture Notes, PY – Chapters 5, 6 and 13. and web
references

http://cnx.org/content/m12317/latest/
http://cnx.org/content/m12317/latest/

analysis, control flow
analysis

9/18/2008 Testing – Transition
from informal to
structured testing

PY Chapters 5 and 6, lecture notes and web references

9/23/2008 Fundamentals of
Model Checking

Lecture Notes, PY – Chapters 5 and 8, web references.

9/25/2008 Symbolic Execution
and its applications

Lecture Notes , PY – Chapter 7 and web references

9/30/2008 Translation/Abstraction
based Unification of
Static Analysis,
Testing, Model
Checking and Runtime
Monitoring

Lecture Notes and web references
Lecture Notes, PY –Chapter 19 and web references:
http://portal.acm.org/citation.cfm?id=760066

10/02/2008 Testing in Depth PY – Chapters 10,11,12,13,14,15
10/07/2008 Fundamentals of Proof

Methods
Lecture Notes, PY – Chapters 5 and 8, web references.

10/9/2008 Automated Proof
Systems -
Demonstrations

(Systems to be chosen) Key, etc.

10/14/2008 Proof Systems –
Software Case Study

Lecture Notes and web references

10/16/2008 Mid-Term Exam –
CS378 Section

10/22/2008 Proof Methods
Revisited

Lecture Notes and web references

10/24/2008 Automated Formal
Proof Methods

Guest Lecture

10/29/2008 Runtime Monitoring
10/31/2008 Specification and

Verification of Non-
functional Properties –
Performance and
Security

Lecture notes and web materials

11/04/2008 Process Algebras and
Process Calculi

Lecture Notes and web references

11/06/2008 Guest Lecture
11/11/2008 Guest Lecture
11/13/2008 Project Presentations
11/18/2008 Project Presentations
11/20/2008 Project Presentations
11/25/2008 Project Presentations
12/2/2008 Project Presentations
12/4/2008 Project Presentations

	1.2 Course Content

