Big-O Notation
Definition: Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that $f(x)$ is $O(g(x))$ if there are constants C and k such that

$$|f(x)| \leq C|g(x)|$$

whenever $x > k$. This is read as “$f(x)$ is big-oh of $g(x)$” or “$f(x)$ is order $g(x)$”.

- The constants C and k in the definition above are called *witnesses* to the relationship “$f(x)$ is $O(g(x))$”.
- To establish that $f(x)$ is $O(g(x))$, we need to find one pair of constants C and k such that $|f(x)| \leq C|g(x)|$ whenever $x > k$.

Big-O Notation
Theorem: Let \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \), where \(a_0, a_1, \ldots, a_n \in \mathbb{R} \).

Then \(f(x) \) is \(O(x^n) \).
Theorem: Suppose that \(f_1(x) \) is \(O(g_1(x)) \) and \(f_2(x) \) is \(O(g_2(x)) \). Then \((f_1 + f_2)(x) = O(\max(|g_1(x)|, |g_2(x)|))\).

Corollary: Suppose that \(f_1(x) \) and \(f_2(x) \) are both \(O(g(x)) \). Then \((f_1 + f_2)(x) = O(g(x))\).

Theorem: Suppose that \(f_1(x) \) is \(O(g_1(x)) \) and \(f_2(x) \) is \(O(g_2(x)) \). Then \((f_1f_2)(x) = O(g_1(x)g_2(x))\).