Problem 1

(5 points each) In the following statements the domain is the set of all nonzero integers. Determine the truth value of each statement.

(a) \(\exists x \exists y [xy = 1] \)

(b) \(\exists x \forall y [xy = 1] \)

(c) \(\forall x \exists y [xy = 1] \)

Problem 2

(20 points) Prove the conclusion below by using a Proof by Contradiction.

Premises:
- \(p \rightarrow q \)
- \(\neg r \lor s \)
- \(p \lor r \)

Conclusion:
- \(\neg q \rightarrow s \)

Problem 3

(20 points) Give a direct proof for the following.

Premises:
- \(\neg p \leftrightarrow q \)
- \(q \rightarrow r \)
- \(\neg r \)

Conclusion to show:
- \(p \)
Problem 4

(15 points) Prove the conclusion follows logically from the premises using Rules of Inference. Be sure to show every step.

Premises:

- $p \rightarrow q$
- $q \rightarrow (r \land s)$
- $\neg r \lor (\neg t \lor u)$
- $p \land t$

Conclusion to show:

- u

Problem 5

(30 points) Use an informal proof to prove that $\sqrt[3]{2}$ is irrational.

Tip 1: Use a Proof by Contradiction.

Tip 2: First prove that if k^3 is even, then k is even. Then use this theorem in your proof.*