Graphs
Definition: A graph $G = (V,E)$ consists of a nonempty set V of vertices (or nodes) and a set E of edges. Each edge has either one or two vertices associated with it, called its endpoints. An edge is said to connect its endpoints.

Definition: A directed graph or digraph $G = (V,E)$ consists of a nonempty set V of vertices (or nodes) together with a set E of directed edges (or arcs). Each edge is associated with an ordered pair of vertices.

- The directed edge associated with the ordered pair (u,v) is said to start at u and end at v. The vertex u is called the initial vertex of the edge (a,b) and vertex v is the terminal vertex of this edge.

Definition: Graphs where the endpoints of an edge are not ordered are said to be undirected graphs.
Types of graphs

Definition: In a *simple graph*, each edge connects two different vertices, and no two edges connect the same pair of vertices.

Definition: *Multigraphs* may have multiple edges connecting the same two vertices. When \(m \) different edges connect the vertices \(u \) and \(v \), we say that \((u,v)\) is an edge of *multiplicity* \(m \).

Definition: A *pseudograph* may include loops, as well as multiple edges connecting the same pair of vertices.
Definitions

Definition: Two vertices in an undirected graph G are called *adjacent* or *neighbors* in G if there is an edge e between u and v. Such an edge e is called *incident with* the vertices u and v.

Definition: The set of all neighbors of a vertex v of $G = (V,E)$, denoted by $N(v)$, is called the *neighborhood* of v. If $A \subseteq V$, we denote by $N(A)$ the set of all vertices in G that are adjacent to at least one vertex in A.

Definition: The *degree* of a vertex in an undirected graph is the number of edges that are incident with it, except that a loop of a vertex contributes two to the degree of that vertex. The degree of the vertex v is denoted by $\deg(v)$. The maximum degree of all of the vertices in a graph is designated by $\max\deg(G)$.
Handshaking Theorem

Theorem (the Handshaking Theorem): If \(G = (V, E) \) is an undirected graph, then

\[
2 |E| = \sum_{v \in V} \deg(v)
\]
Definition: The *in-degree* of a vertex \(v \), denoted \(\text{deg}^{-}(v) \), is the number of edges which terminate at \(v \). The *out-degree* of \(v \), denoted \(\text{deg}^{+}(v) \), is the number of edges with \(v \) as their initial vertex.

Note that a loop at a vertex contributes 1 to both the in-degree and the out-degree of the vertex.
Definition: The *in-degree* of a vertex v, denoted $\text{deg}^-(v)$, is the number of edges which terminate at v. The *out-degree* of v, denoted $\text{deg}^+(v)$, is the number of edges with v as their initial vertex.

Note that a loop at a vertex contributes 1 to both the in-degree and the out-degree of the vertex.

Theorem: Let $G = (V,E)$ be a graph with directed edges. Then:

$$|E| = \sum_{v \in V} \text{deg}^-(v) = \sum_{v \in V} \text{deg}^+(v).$$
Definition: A *complete* graph on n vertices, denoted by K_n, is the simple graph that contains exactly one edge between each pair of distinct vertices.
Definition: A complete graph on n vertices, denoted by K_n, is the simple graph that contains exactly one edge between each pair of distinct vertices.

Theorem: The number of edges in K_n is $\frac{n(n-1)}{2}$.
Definition: A cycle C_n for $n \geq 3$ consists of n vertices $v_1, v_2, v_3, \ldots, v_n$, and edges $(v_1, v_2), (v_2, v_3), \ldots, (v_{n-1}, v_n), (v_n, v_1)$.

Cycles

A cycle C_n for $n \geq 3$ consists of n vertices $v_1, v_2, v_3, \ldots, v_n$, and edges $(v_1, v_2), (v_2, v_3), \ldots, (v_{n-1}, v_n), (v_n, v_1)$.

C_3 - Triangle

C_4 - Square

C_5 - Pentagon

C_6 - Hexagon
n-dimensional Hypercubes

Definition: An *n-dimensional hypercube*, or *n-cube*, \(Q_n\), is a graph with \(2^n\) vertices representing all bit strings of length \(n\), where there is an edge between two vertices that differ in exactly one bit position.
Bipartite Graphs

Definition: A simple graph G is *bipartite* if V can be partitioned into two nonempty disjoint subsets V_1 and V_2 such that every edge connects a vertex in V_1 and a vertex in V_2. In other words, there are no edges which connect two vertices in V_1 or in V_2.

Theorem: A simple graph is bipartite if and only if it is possible to assign one of two colors to each vertex of the graph so that no two adjacent vertices are assigned the same color.
Definition: A *complete bipartite graph* $K_{m,n}$ is a graph that has its vertex set partitioned into two subsets V_1 of size m and V_2 of size n such that there is an edge from every vertex in V_1 to every vertex in V_2.

Bipartite Graphs
Subgraphs

Definition: A *subgraph* of a graph $G = (V,E)$ is a graph (W,F), where $W \subseteq V$ and $F \subseteq E$. A subgraph H of G is a *proper* subgraph of G if $H \neq G$.

Definition: Let $G = (V,E)$ be a simple graph. The *subgraph induced by* $W \subseteq V$ is the graph (W,F), where the edge set F contains an edge in E if and only if both endpoints are in W.
Definition: The *union* of two simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is the simple graph with vertex set $V_1 \cup V_2$ and edge set $E_1 \cup E_2$. The union of G_1 and G_2 is denoted by $G_1 \cup G_2$.

Union of Graphs
Definition: Suppose that $G = (V,E)$ is a simple graph where $|V| = n$. Arbitrarily list the vertices of G as v_1, v_2, \ldots, v_n. The adjacency matrix A_G of G, with respect to the listing of vertices, is the $n \times n$ zero-one matrix with 1 as its (i,j)th entry when v_i and v_j are adjacent, and 0 as its (i,j)th entry when they are not adjacent.

In other words, the adjacency matrix $A_G = [a_{ij}] = 1$ if (v_i,v_j) is an edge of G, 0 otherwise.
Isomers

Butane (C_4H_{10})

Isobutane (C_4H_{10})
Definition: The simple graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are \textit{isomorphic} if there exists a one-to-one and onto function f from V_1 to V_2 with the property that a and b are adjacent in G_1 if and only if $f(a)$ and $f(b)$ are adjacent in G_2, for all a and b in V_1.

Such a function f is called an \textit{isomorphism}.

Two simple graphs that are not isomorphic are called \textit{nonisomorphic}.

In other words, when two simple graphs are isomorphic, there is a one-to-one correspondence between vertices of the two graphs that preserves the adjacency relationship.
Definition: Let \(n \) be a nonnegative integer and \(G \) an undirected graph. A \textit{path of length} \(n \) \textit{from} \(u \) \textit{to} \(v \) in \(G \) is a sequence of \(n \) edges \(e_1, e_2, \ldots, e_n \) of \(G \) for which there exists a sequence \(x_0 = u, x_1, x_2, \ldots, x_n = v \) of vertices such that \(e_i \) has, for \(i = 1..n \), the endpoints \(x_{i-1} \) and \(x_i \).
Definition: A path is a *circuit* if it begins and ends in the same vertex; that is, if \(u = v \), and has length greater than zero.

Definition: A path or circuit is said to *pass through* the vertices \(x_1 \ldots x_{n-1} \), or *traverse* the edges \(e_1 \ldots e_n \).

Definition: A path or circuit is *simple* if it does not contain the same edge more than once.
Paths in Directed Graphs

Definition: Let n be a nonnegative integer and G a directed graph. A *path of length n from u to v* in G is a sequence of edges e_1, e_2, \ldots, e_n of G such that e_1 is associated with (x_0, x_1), e_2 is associated with (x_1, x_2), and so on, with e_n associated with (x_{n-1}, x_n), where $x_0 = u$ and $x_n = v$. When there are no multiple edges in the directed graph, this path is denoted by its vertex sequence $x_0, x_1, x_2, \ldots, x_n$.

Definition: A path of length greater than zero that begins and ends in the same vertex is called a *circuit* or *cycle*.

Definition: A path or circuit is called *simple* if it does not contain the same edge more than once.
Definition: An undirected graph is called *connected* if there is a path between every pair of distinct vertices of the graph.

An undirected graph that is not connected is called *disconnected*.

We say that we *disconnect* a graph when we remove vertices or edges, or both, to produce a disconnected subgraph.

Theorem: There is a simple path between every pair of distinct vertices of a connected undirected graph.
Definition: A *connected component* of a graph G is a connected subgraph of G that is not a proper subgraph of another connected subgraph of G.

- A graph G that is not connected has two or more connected components that are disjoint and have G as their union. In other words, the connected components make up a partition of G.
Cut Vertices and Edges

For a graph G, if the removal of a vertex and all of its incident edges produces a subgraph consisting of more connected components, then the vertex is called a cut vertex.

For a graph G, if the removal of an edge produces a subgraph consisting of more connected components, then the edge is called a cut edge.

A graph may have zero, one, or many cut vertices and/or cut edges. A graph with no cut vertices is called a nonseparable graph.
Vertex Cuts and Edge Cuts

Definition: For a connected graph $G = (V,E)$, $V' \subseteq V$ is a *vertex cut* if $G - V'$ is disconnected. In other words, if a set of vertices taken out together causes the disconnect.

Definition: For a connected graph $G = (V,E)$, $E' \subseteq E$ is an *edge cut* if $G - E'$ is disconnected. In other words, if a set of edges taken out together causes the disconnect.

Theorem: Every graph except a complete graph has a vertex cut.
Vertex and Edge Connectivity

Definition: The vertex connectivity of a noncomplete graph G, denoted by $\kappa(G)$, is the minimum number of vertices in a vertex cut of G.

The vertex connectivity of a complete graph G is defined to be $n-1$, where $n = |V|$; in other words, $\kappa(K_n) = n-1$.

In general, the vertex connectivity $\kappa(G)$ of a graph is the minimum number of vertices that can be removed from G to either disconnect G or produce a graph with a single vertex.

Definition: The edge connectivity of a graph G, denoted by $\lambda(G)$, is the minimum number of edges in an edge cut of G. If G consists of a single vertex, we define the edge connectivity of G to be 0.
Definition: A directed graph is *strongly connected* if, for every pair of vertices \(a \) and \(b \) in the graph, there is a path from \(a \) to \(b \) and from \(b \) to \(a \).

A directed graph is *weakly connected* if there is a path between every two vertices in the underlying undirected graph.
Theorem: Let G be a graph with adjacency matrix A with respect to the ordering v_1, v_2, \ldots, v_n of the vertices of the graph (with directed or undirected edges, with multiple edges and loops allowed). The number of different paths of length r from v_i to v_j, where r is a positive integer, equals the (i,j)th entry of A^r.
The Bridges of Königsberg
The Bridges of Königsberg
The Bridges of Königsberg
Euler Circuits and Paths

Definition: In a graph G, an *Euler circuit* is a simple circuit containing every edge of G.

An *Euler path* in G is a simple path containing every edge of G.

Theorem: A connected multigraph with at least two vertices has an Euler circuit if and only if each of its vertices has even degree.

Theorem: A connected multigraph has an Euler path but not an Euler circuit if and only if it has exactly two vertices of odd degree.
Hamilton Circuits and Paths

Definition: In a graph G, a Hamilton circuit is a simple circuit that passes through every vertex exactly once.

A *Hamilton* path is a simple path that passes through every vertex exactly once.

Some observations about Hamilton circuits:

- A graph with a vertex of degree 1 cannot have a Hamilton circuit, because in a Hamilton circuit, each vertex must be incident with two edges in the circuit.
- If a vertex in the graph has degree two, then both edges that are incident with this vertex must be part of any Hamilton circuit.
Shortest-Path Problems: Airline Example (mileage)
Shortest-Path Problems: Airline Example (flight times)
Shortest-Path Problems: Airline Example (fares)
Definition: A graph that has a number assigned to each edge is called a *weighted graph*.

The *length* of a path in a weighted graph is defined as the sum of the weights of the edges of the graph (instead of just the number of edges).
Greedy Algorithms

Definition: A *greedy algorithm* is any algorithm that attempts to solve an optimization problem by making the locally optimal choice at each step, with the hope of finding a global optimum.

In other words, it’s simply an algorithm that makes what seems to be the best choice at each step.

Greedy algorithms are usually fairly simple to implement, but they are NOT guaranteed to find the best answer.
Greedy Algorithms: Maze Example
Dijkstra's Algorithm

label the start vertex with \(L(\text{start}) = 0 \)
label all other vertices with cost \(L(\text{vertex}) = \infty \)
mark all vertices "not visited"
set all vertices' path history to ()

while end vertex has not been marked "visited":
 find \(u \), the vertex with the cheapest path
 mark \(u \) visited
 for each \(v \), a neighbor of \(u \):
 if weight\((u,v)\) + \(L(u) \) < \(L(v) \):
 \(L(v) = \text{weight}(u,v) + L(u) \)
 set \(v \)'s history to \(u \)'s path history + \(u \)

Theorem: Dijkstra's Algorithm finds the length of a shorter path between two vertices in a connected simple undirected weighted graph.
The Traveling Salesman Problem
The Traveling Salesman Problem (cont.)

<table>
<thead>
<tr>
<th>Route</th>
<th>Total Distance (miles)</th>
</tr>
</thead>
</table>
Water, Gas, and Electricity
Water, Gas, and Electricity
Circuit Board
Planar Graphs

Definition: A graph is called *planar* if it can be drawn in the plane without any edges crossing, where a crossing of edges is the intersection of the lines or arcs representing them at a point other than their common endpoint.

Such a drawing is called a *planar representation* of the graph.
Euler's Formula

Theorem (Euler’s Formula): Let G be a connected planar simple graph with e edges and v vertices. Let r be the number of regions in a planar representation of G. Then

$$r = e - v + 2.$$
Corollaries of Euler's Formula

Definition: The *degree* of a region is the number of edges on the boundary of the region.

Corollary 1: If G is a connected planar simple graph with e edges and v vertices, where $v \geq 3$, then $e \leq 3v - 6$.

Corollary 2: If G is a connected planar simple graph, then G has a vertex of degree not exceeding five.

Corollary 3: If G is a connected planar simple graph with e edges and v vertices, where $v \geq 3$, and has no circuits of length 3, then $e \leq 2v - 4$.
Kuratowski's Theorem

Definition: An *elementary subdivision* is an operation on a graph in which an edge \{u,v\} is removed, a new vertex w is added, and the edges \{u,w\} and \{w,v\} are added.

Definition: Two graphs are said to be *homeomorphic* if they can be obtained from the same graph by a sequence of elementary subdivisions.

Kuratowski's Theorem: A graph is nonplanar if and only if it contains a subgraph homeomorphic to \(K_{3,3}\) or \(K_5\).
Definition: A *coloring* of a graph G is an assignment that assigns a color to each vertex in G such that no two adjacent vertices are assigned the same color.

Definition: A graph G is said to be *k-colorable* if and only if G can be colored using k or fewer colors. The smallest value of k for the graph G is called the *chromatic number* of G and is denoted by $\chi(G)$.
Graph Coloring: Theorems

Theorem: Any coloring of a graph with \(n \) vertices uses at most \(n \) colors.

Theorem: Any coloring of a complete graph \(K_n \) uses at least \(n \) colors.

Corollary: The chromatic number of a complete graph \(\chi(K_n) \) is \(n \).

Theorem: Any planar graph \(G \) can be colored using \(\max-deg(G) + 1 \) colors.

Theorem: The chromatic number of a planar graph is no greater than 6.
The Four-Color Theorem

The Four-Color Theorem: The chromatic number of a planar graph is no greater than 4.