Functions
Definition: Let A and B be sets. A function from A to B, denoted $f : A \to B$, is an assignment of exactly one element of B to each element of A. We write $f(a) = b$ to denote the assignment of b to a by the function f, where $a \in A$ and $b \in B$.
Important Sets Associated with Functions

Definitions: Let f be a function from A to B. Let $f(a) = b$ for $a \in A$ and $b \in B$.

- A is the *domain* of f and B is the *codomain* of f. (Why not "range"?)
- b is the *image* of a, and a is a *pre-image* of b. (Why not "the"?)
- The *range* of f is the set of all images of elements of A. That is, the range of $f = \{ b \in B \mid \forall a \in A, \ f(a) = b \}$.
- We also say f maps A to B.

Definition: Let f be a function from A to B. Let S be a subset of A. The *image* of S is a subset of B that consists of the images of the elements of S. We denote the image of S by $f(S)$, so that $f(S) = \{ f(s) \mid s \in S \}$.

Note that the first definition of “image” defines the image of a single element, and the second definition defines the image of a set.
Important Properties of Functions

Definition: A function \(f \) is said to be **one-to-one**, or **injective**, if and only if \(f(x) = f(y) \) implies \(x = y \) for all \(x, y \) in the domain of \(f \). A function is said to be an **injection** if it is one-to-one.

Alternate definition: A function is one-to-one if and only if \(f(x) \neq f(y) \) whenever \(x \neq y \). (Note that this is the contrapositive of the other definition.)

Definition: A function \(f \) is said to be **onto**, or **surjective**, if and only if for every \(b \in B \) there is an element \(a \in A \) such that \(f(a) = b \). It is also said that set \(B \) is **covered** by \(f \).

Definition: A function if said to be **bijective** (or called a **bijection**) if it is both one-to-one and onto.
Theorem: Let f be a function $f: A \to A$ from a finite set A to itself. Then f is one-to-one if and only if f is onto.
Functions on Real Numbers

Definition: Let f_1 and f_2 be functions from A to \mathbb{R} (real numbers). Then $f_1 + f_2$ and $f_1 f_2$ are also functions from A to \mathbb{R}, defined by:

- $(f_1 + f_2)(x) = f_1(x) + f_2(x)$
- $(f_1 f_2)(x) = f_1(x) * f_2(x)$

Definition: A function f whose domain and codomain are subsets of \mathbb{R} is *strictly increasing* if, for a and b in the domain of f, $f(a) > f(b)$ whenever $a > b$. Similarly, f is *strictly decreasing* if $f(a) < f(b)$ whenever $a > b$.

Definition: Let A be a set. The *identity function* on A is the function $i_A : A \rightarrow A$ where $i_A(x) = x$.
Definition: Let f be a bijection from set A to set B. The inverse function of f is the function that assigns to an element $b \in B$ the unique element $a \in A$ such that $f(a) = b$. The inverse function of f is denoted by f^{-1}. Hence, $f^{-1}(b) = a$, when $f(a) = b$. If the inverse function of f exists, f is called invertible.
Composition of Functions

Definition: Let f be a function from set A to set B, and let g be a function from set B to set C. The *composition* of the functions g and f, denoted for all $a \in A$ by $(g \circ f)$, is defined by $(g \circ f)(a) = g(f(a))$.