Practice Problems 2 ANWERS
CS 311: Discrete Math for CS (Bulko)

Problem 1

a) Let \(X \in \mathcal{P}(A \cap B) \). Then \(X \subset A \cap B \). So, \(X \subset A \) and \(X \subset B \). Therefore, \(X \in \mathcal{P}(A) \) and \(X \in \mathcal{P}(B) \) which implies \(X \in \mathcal{P}(A) \cap \mathcal{P}(B) \). This gives \(\mathcal{P}(A \cap B) \subset \mathcal{P}(A) \cap \mathcal{P}(B) \). Let \(Y \in \mathcal{P}(A) \cap \mathcal{P}(B) \). Then \(Y \in \mathcal{P}(A) \) and \(Y \in \mathcal{P}(B) \). So, \(Y \subset A \) and \(Y \subset B \). Therefore, \(Y \subset A \cap B \), which implies \(Y \in \mathcal{P}(A \cap B) \). This gives \(\mathcal{P}(A) \cap \mathcal{P}(B) \subset \mathcal{P}(A \cap B) \). Hence \(\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B) \).

b) Let \(a \) be an element of \(A \oplus B \). By the definition of symmetric difference, this means \(a \) is in \(A \) or \(a \) is in \(B \), but not in both \(A \) and \(B \). On the right hand side, if \(a \) is in \((A \cup B) \), this means \(a \) is in \(A \) or \(a \) is in \(B \), and “subtracting” off the set \((A \cap B) \) means that \(a \) is not in both \(A \) and \(B \). Thus, \(A \oplus B \) is a subset of \((A \cup B) - (A \cap B) \). We can use a similar argument to prove that \((A \cup B) - (A \cap B) \) is a subset of \(A \oplus B \). Thus, because the two sets are subsets of one another, they must be equal.

c. Let \(a \) be an element of \(A \oplus B \). By the definition of symmetric difference, this means \(a \) is in \(A \) or \(a \) is in \(B \), but not in both \(A \) and \(B \). On the right hand side, if \(a \) is in \((A - B) \cup (B - A) \), this means \(a \) is in \(A \) but \(a \) is NOT in \(B \), or that \(a \) is in \(B \) but \(a \) is NOT in \(A \). This is exactly the definition of the symmetric difference, so \(A \oplus B \) is a subset of \((A - B) \cup (B - A) \). We can use a similar argument to prove that \((A - B) \cup (B - A) \) is a subset of \(A \oplus B \). Because the two sets are subsets of one another, they must be equal.

Problem 2

a) Suppose \(g \circ f(x) = g \circ f(y) = g(f(x)) = g(f(y)) = f(x) = f(y) \) as \(g \) is one-one. Thus, \(x = y \) as \(f \) is one-one. Hence, \(g \circ f \) is one-one.

b) Given an arbitrary element \(z \in C \), there exists a pre-image \(y \) of \(z \) under \(g \) such that \(g(y) = z \), since \(g \) is onto. Further, for \(y \in B \), there exists an element \(x \) in \(A \) with \(f(x) = y \), since \(f \) is onto. Therefore, \(g \circ f(x) = g(f(x)) = g(y) = z \), showing that \(g \circ f \) is onto.

c) Consider \(f : \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4\} \) and \(g : \{1, 2, 3, 4\} \rightarrow \{1, 2, 3\} \) defined as \(f(1) = 1, f(2) = 2, f(3) = f(4) = 3, g(1) = 1, g(2) = 2 \). Hence \((g \circ f)(3) = g(4) = 3 \). It can be seen that \(g \circ f \) is onto but \(f \) is not onto.

Problem 3

Prove the following using mathematical induction:

a) Let \(P(n) \) be the given statement, i.e., \(P(n) : (1 + x)^n \geq (1 + nx) \), for \(x > -1 \). We note that \(P(n) \) is true when \(n = 1 \), since \((1 + x)(1 + x)\) for \(x > -1 \). Assume that \(P(k) : (1 + x)^k \geq (1 + kx) \), for \(x > -1 \) is true. We want to prove that \(P(k + 1) \) is true for \(x > -1 \). whenever \(P(k) \) is true.....

*\((2) \) * Consider the identity \((1 + x)^{k+1} = (1 + x)^k (1 + x) \). Given that \(x > -1 \), so \((1 + x) > 0 \). Therefore, by using \((1 + x)^k \geq (1 + kx) \), we have \((1 + x)^{k+1} \geq (1 + kx)(1 + x) \) i.e. \((1 + x)^{k+1} \geq (1 + x + kx + kx^2) \). Here \(k \) is a natural number and \(x^2 \geq 0 \) so that \(kx^2 \geq 0 \). Therefore \((1 + x + kx + kx^2) \geq (1 + x + kx) \), and so we obtain \((1 + x)^{k+1} \geq (1 + x + kx) \). i.e.
d) We will use strong induction to prove this result. Let $P(n)$ be formed using 5-cent and 6-cent stamps, for n greater than or equal to 20.

\[(1 + x)^{k+1} \geq [1 + (1 + k)x].\] Thus the statement *(2)* is established. Hence by the principal of mathematical induction, $P(n)$ is true for all natural numbers.

b) Let the statement $P(n)$ be defined as $P(n) : 2(7^n) + 3(5^n) - 5$ is divisible by 24. We note that $P(n)$ is true for $n = 1$, since $2(7) + 3(5) - 5 = 24$, which is divisible by 24. Assume that $P(k)$ is true i.e. $2(7^k) + 3(5^k) - 5 = 24q$, when $k \in N$. Now, we wish to prove that $P(k + 1)$ is true whenever $P(k)$ is true. We have $2(7^{k+1}) + 3(5^{k+1}) - 5 = 2(7^k)(7) + 3(5^k)(5) - 5 = 7[2(7)^k + 3(5)^k - 5 - 3(5)^k + 5] + 3(5)^k(5) - 5 = 7[24q - 3(5)^k + 5] + 15(5)^k - 5 = 7(24q - 21(5)^k) + 35 + 15(5)^k - 5 = 7q + 24q - 6(5)^k + 30 = 724q - 6(5^k - 5) = 7q + 24q - 6(4p)[(5k - 5) is a multiple of 4]. = 7q + 24q - 24q = 24(7q - p) = 24 \times r; r = 7q - p$, is some natural number. Thus, divisible by 24. Hence, by principle of mathematical induction, $P(n)$ is true for all $n \in N$.

c) Let $P(n)$ be the given statement. i.e., $P(n) : 1^2 + 2^2 + ... + n^2 > n^3/3, n \in N$. We note that $P(n)$ is true for $n = 1$ since $1^2 > 1^2/3$. Assume that $P(k)$ is true i.e. $P(k) : 1^2 + 2^2 + ... + k^2 > k^3/3$. We shall now prove that $P(k + 1)$ is true whenever $P(k)$ is true. We have $1^2 + 2^2 + 3^2 + ... + k^2 + (k + 1)^2 = (1^2 + 2^2 + 3^2 + ... + k^2) + (k + 1)^2 > k^3/3 + (k + 1)^2 = 1/3[k^3 + 3k^2 + 6k + 3] = 1/3[(k + 1)^3 + 3k + 2] > 1/3(k + 1)^3$. Therefore, $P(k + 1)$ is also true whenever $P(k)$ is true. Hence, by mathematical induction $P(n)$ is true for all $n \in N$.

d) We will use strong induction to prove this result. Let $P(n)$ be the statement that postage of n cents can be formed using 5-cent and 6-cent stamps, for n greater than or equal to 20.

- Base case: The propositions $P(20), P(21), P(22), P(23)$ and $P(24)$ are true because $20 = 5 + 5 + 5 + 5$, $21 = 5 + 5 + 5 + 6$, $22 = 5 + 5 + 6 + 6$, $23 = 5 + 6 + 6 + 6$, and $24 = 6 + 6 + 6 + 6$.
- Inductive hypothesis: The inductive hypothesis is the statement that $P(j)$ is true for $20 \leq j \leq k$ where k is an integer with $k \geq 24$.
- Inductive step: we need to show that $P(k + 1)$ is true. Using the inductive hypothesis we can assume that $P(k - 4)$ is true because $k - 4$ must be at least 20. Hence we can form postage of $k - 4$ cents using 5-cent and 6-cent stamps. Just add one extra 5-cent stamp to the solution for $k - 4$ cents and get postage for $k + 1$ cents. Hence $P(k + 1)$ is true.

Problem 4

a) We need to sort the functions in decreasing order of growth rate. The order is as follows:

\[(n!)^2, 10^n, n^{100}, n^{99} + n^{99}, \sqrt{n} \log n, (\log n)^3\]

b)

1. $O(n^3 \log n)$
2. $O((2^n)(3^n))$