Predicate Logic
Predicate Logic

\textbf{Definition}: Let x be a variable with domain D. A \textit{predicate} $P(x)$ is a statement that has a truth value (True or False) for each value of x in D.

\textbf{Definition}: the \textit{universal quantification} of $P(x)$ is the proposition: "$P(x)$ for all values of x in the domain of x."]

This is denoted by the notation $\forall x \ P(x)$, which is read “for all x, P of x” (or “for every x, P of x”).

\textbf{Definition}: \textit{the existential quantification} of $P(x)$ is the proposition: "There exists an element in the domain of x such that $P(x)$."

This is denoted by the notation $\exists x \ P(x)$, which is read “there exists an x such that P of x.”
Statements Using Quantifiers

Universal quantifiers typically tie with implications.

- All P(x) is Q(x) \[\forall x \ P(x) \rightarrow Q(x)\]
- No P(x) is Q(x) \[\forall x \ P(x) \rightarrow \neg Q(x)\]

Existential quantifiers typically tie with conjunctions.

- Some P(x) are Q(x) \[\exists x \ P(x) \land Q(x)\]
- Some P(x) are not Q(x) \[\exists x \ P(x) \land \neg Q(x)\]
DeMorgan's Laws for Quantifiers

\nalways
\neg \exists x \, P(x) \equiv \forall x \, \neg P(x)

\neg \forall x \, P(x) \equiv \exists x \, \neg P(x)