Predicate Logic
Predicate Logic

Definition: Let x be a variable with domain D. A *predicate* $P(x)$ is a statement that has a truth value (True or False) for each value of x in D.

Definition: the *universal quantification of $P(x)$* is the proposition:

$P(x)$ is True for all values of x in the domain of x. This is denoted by the notation $\forall x \ P(x)$, which is read “for all x, P of x” (or “for every x, P of x).

Definition: the *existential quantification of $P(x)$* is the proposition:

There exists an element in the domain of x such that $P(x)$ is true. This is denoted by the notation $\exists x \ P(x)$, which is read “there exists an x such that $P(x)$ is true.”
DeMorgan's Laws for Quantifiers

\[\neg \exists x \, P(x) \equiv \forall x \, \neg P(x) \]

\[\neg \forall x \, P(x) \equiv \exists x \, \neg P(x) \]