Sequences and Summations
Sequences

Definition: A *sequence* is a function from a subset of the set of integers (most commonly the whole numbers or positive integers) to a set S.

- We use the notation a_n to denote the image of the integer n.
- We call a_n a *term* of the sequence.
- We use the notation $\{a_n\}$ to describe the sequence.
Definition: An arithmetic progression is a sequence of the form

$$a, a+d, a+2d, \ldots, a+nd$$

where a (called the initial term) and d (called the common difference) are real numbers.

Definition: A geometric progression is a sequence of the form

$$a, ar, ar^2, \ldots, ar^k$$

where a (called the initial term) and r (called the common ratio) are real numbers.
Recurrence Relations

Definition: A *recurrence relation* for the sequence \(\{a_n\} \) is an equation that expresses \(a_n \) in terms of one or more of the previous terms of the sequence \(a_0, a_1, a_2, \ldots, a_{n-1} \) for all \(n \geq n_0 \), where \(n_0 \) is a nonnegative integer.

- A sequence is called a *solution* of a recurrence relation if its terms satisfy the recurrence relation.
- A recurrence relation is said to *recursively define* a sequence.
- The *initial conditions* for a recursively defined sequence specify the terms that precede the first term where the recurrence relation takes effect.

Definition: When a recurrence relation can be described with an explicit formula, we say that we have *solved* the recurrence relation by finding a *closed* formula.
Some useful sequences

n^2	1, 4, 9, 16, 25, 36, 49, 64, 81, 100. . .
n^3	1, 8, 27, 64, 125, 216, 343, 512, 729, 1000. . .
n^4	1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000. . .
2^n	2, 4, 8, 16, 32, 64, 128, 256, 512, 1024. . .
3^n	3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049. . .
n!	1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800. . .
fib_n	1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89. . .
Summations

Summation of the terms of a sequence

\[\sum_{j=m}^{n} a_j = a_m + a_{m+1} + \ldots + a_n \]

- The variable j is referred to as the *index of summation*.
- m is the *lower limit*.
- n is the *upper limit*.
Arithmetic Series

Definition: The sum of the terms of the arithmetic progression \(a, a+d, a+2d, \ldots, a+nd \) is called an arithmetic series.

Theorem: The sum of the terms of the arithmetic progression \(a, a+d, a+2d, \ldots, a+nd \) is:

\[
S = \sum_{j=0}^{n} (a + jd) = a(n+1) + d \frac{n(n+1)}{2}
\]
Geometric Series

Definition: The sum of the terms of the geometric progression a, ar, ar^2, ..., ar^n is called a geometric series.

Theorem: The sum of the terms of the geometric progression a, ar, ar^2, ..., ar^n is:

$$S = \sum_{j=0}^{n} (ar^j) = a \sum_{j=0}^{n} r^j = a \left[\frac{r^{n+1} - 1}{r - 1} \right]$$