Matrices
Basic Definitions

Definition: A *matrix* is a rectangular array of numbers.

Definition: A matrix with m rows and n columns is called an $m \times n$ *matrix*.

Definition: A matrix with the same number of rows as columns is called a *square matrix*.

Definition: Two matrices are *equal* if they have the same number of rows, the same number of columns, and the corresponding entries in every position are equal.
Definition: Let $A = [a_{ij}]$ and $B = [b_{ij}]$ be $m \times n$ matrices. The sum of A and B, denoted by $A + B$, is the $m \times n$ matrix that has $a_{ij} + b_{ij}$ as its (i,j)th element. In other words, $A + B = [a_{ij} + b_{ij}]$.

The sum is not defined if the two matrices are of different size.
Matrix Multiplication

Definition: Let A be an $m \times k$ matrix and B a $k \times n$ matrix. The *product* of A and B, denoted by AB, is the $m \times n$ matrix that has its (i,j)th element equal to the sum of the products of the corresponding elements from the ith row of A and the jth column of B. In other words, if $AB = [c_{ij}]$, then

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \ldots + a_{ik}b_{kj}.$$

The product is not defined when the number of columns in the first matrix is not equal to the number of rows in the second matrix.
Identity Matrix

Definition: The *identity matrix of order* n is the $n \times n$ matrix $I_n = [\delta_{ij}]$, where $\delta_{ij} = 1$ for $i = j$, and $\delta_{ij} = 0$ for $i \neq j$.

$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$
Powers of Square Matrices

Definition: When A is an $n \times n$ matrix, we define:

\[
A^0 = I_n
\]

\[
A^r =AAAA\ldots AA
\quad (r \text{ times})
\]
Transpose of a Matrix

Definition: Let $A = [a_{ij}]$ be an $m \times n$ matrix. The *transpose* of A, denoted by A^T, is the $n \times m$ matrix obtained by interchanging the rows and columns of A.

If $A^T = [b_{ij}]$, then $b_{ij} = a_{ji}$ for $i = 1, 2, \ldots n$ and $j = 1, 2, \ldots m$.
Inverse of a Matrix

Definition: Let $A = [a_{ij}]$ be an $n \times n$ matrix. The *inverse* of A, denoted by A^{-1}, is the $n \times n$ matrix such that $AA^{-1} = A^{-1}A = I_n$

Note: a matrix may not have an inverse.
Symmetric Matrices

Definition: A square matrix A is called *symmetric* if $A = A^T$.

$A = [A_{ij}]$ is symmetric if $a_{ij} = b_{ij}$ for $i = 1, 2, \ldots n$ and $j = 1, 2, \ldots m$.
Zero-one Matrices

Definition: A matrix with entries that are all either 0 or 1 is called a *zero-one matrix*.

Definition: Let A and B be two zero-one matrices.

The *join* of A and B is the zero-one matrix with (i,j)th entry $a_{ij} \lor b_{ij}$. The join of A and B is denoted by $A \lor B$.

The *meet* of A and B is the zero-one matrix with (i,j)th entry $a_{ij} \land b_{ij}$. The join of A and B is denoted by $A \land B$.

Boolean Product

Definition: Let $A = [a_{ij}]$ be an $m \times k$ zero-one matrix, and $B = [b_{ij}]$ be a $k \times n$ zero-one matrix. Then the *Boolean product* of A and B, denoted by $A \odot B$, is the $m \times n$ matrix with (i,j)th entry c_{ij}, where

$$c_{ij} = (a_{i1} \land b_{1j}) \lor (a_{i2} \land b_{2j}) \lor \ldots \lor (a_{ik} \land b_{kj}).$$

The Boolean product is not defined when the number of columns in the first matrix is not equal to the number of rows in the second matrix.