
CS 388H Introduction to Cryptography 26-Aug-2009

Lecture 1: Class Introduction

Instructor: Brent Waters TA: Sara Krehbiel

1 Class Overview

This course reviews the foundations of Cryptography and will cover topics such as formal
notions of security, encryption, signatures, complexity assumptions, zero knowledge, and
multi-party computation.

Most of the material will be based on ”Introduction to Modern Cryptography” by Katz
and Lindell. ”Foundations of Cryptography: Volume I” is optional and more theoretical.

See course syllabus for grading policies and course schedule.

2 Foundations of Cryptography

1. Crypto concepts: public key crypto, zero knowledge, signatures

2. Foundation approach: this course will emphasize precision and rigor

For example: What does it mean if someone says they use a cryptographic hash
function? Does it imply the system is secure?

Two notions of what makes a hash function cryptographic:

(a) Hard to invert: Given y, hard to find an x st f(x) = y.

(b) Hard to find collisions: Given f , hard to find x1 6= x2 st f(x1) = f(x2).

Are these different?

How would you show that hardness of invertability doesn’t imply hardness of finding
collisions?

By counterexample: Create a function that is hard to invert but easy to find col-
lisions. A good start is to consider a compressing function like f : {0, 1}2n → {0, 1}n,
which will necessarily have collisions.

Now suppose some f̃ : {0, 1}2n−1 → {0, 1}n is hard to invert (by some unstated defi-
nition of ”hard to invert”). We don’t need assumptions about whether it is collision-
resistant.
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For x ∈ {0, 1}2n, let x′ be the last 2n − 1 bits. Now define f : {0, 1}2n → {0, 1}n
where f(x) = f̃(x′).

f is a counterexample to the claim that for any function that is hard to invert, it
is hard to find collisions because:

• f easy to invert would contradict the assumption that f̃ is hard to invert, and

• it is easy to find collisions with f : for any t ∈ {0, 1}2n−1, t0 = 0|t collides with
t1 = 1|t.

3. Foundational underpinnings: number theory, general assumptions

Why do we generally prove statements that are implications rather than absolutes?
(eg If factorization is hard, then this system exhibits some property.) Proofs of abso-
lute statements often reduce to a proof of P 6= NP .

3 Perfect Secrecy: Too good to be true?

Let C be the cipher text space, let K be the key space, and letM be the message space. A
basic encryption system has three algorithms (may be randomized):

1. Gen → k ∈ K

2. Enc(m, k)→ c ∈ C

3. Dec(c, k)→ m ∈M

What is perfect secrecy? Let C =Enc(m, k) for some m ∈ M and k ∈ K. A system
exhibits perfect secrecy if Pr[C = c|m = m0] = Pr[C = c|m = m1] for all m0, m1 ∈M, c ∈
C over the distribution of K specified by Gen (actual value of k is unknown to attacker).

3.1 One-Time Pad Encryption

Let M, C,K = {0, 1}l. The one-time pad is as follows:

1. Gen → k chosen uniformly at random from {0, 1}l

2. Enc(m, k) = m⊕ k = c

3. Dec(c, k) = c⊕ k = m

Correctness is established by verifying that (m⊕ k)⊕ k = m.

Perfect secrecy is established by showing that Pr[C = c|m] = (1
2)l for all m ∈M, c ∈ C.
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3.2 Limitations

The one-time pad strategy is limited in that even if Adam and Brent get a chance to agree
on some k ∈ K = {0, 1}l, the message that can be sent can be length at most l.

This limitation that messages cannot be longer than keys generalizes to any perfectly secret
system. Suppose |M| > |K|. (Note that there are more unique messages than unique keys
if and only if the messages are longer than the keys.)

1. Let c be a cipher text that occurs with non-zero probability.

2. Then ∃m̃, k̃ st Enc(m̃, k̃) = c with non-zero probability.

3. If the decryption algorithm is correct, then at most |K| messages m are such that
Enc(m, k) = c. (Otherwise, there would not be enough keys to uniquely decrypt the
cipher text.)

4. Then (because |M| > |K|) ∃m′ st ∀k ∈ K Enc(m′, k) 6= c.

In the definition for perfect secrecy, use m0 = m̃ and m1 = m′. Pr[C = c|m̃] > 0 6= Pr[C =
c|m′] = 0, which violates perfect secrecy. Therefore, no system in which keys are shorter
than messages can be perfectly secret.

4 Handouts

Three handouts were given in class:

1. CS 388H Course syllabus (2 pages)

2. Very basic number theory fact sheet, Part I (4 pages)

3. Basic number theory fact sheet, Part II (4 pages)
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CS 388H Introduction to Cryptography 31-Aug-2009

Lecture 2: Introduction to Number Theory

Instructor: Brent Waters TA: Sara Krehbiel

Recall the major limitation of perfect secrecy that messages can be no longer than keys.
Instead, we verify the security of more practical encryption systems with complexity asser-
tions, often substantiated by number theory. To do that, we want to be able to make sense
of a description like: ”Group G of prime order p with generator g”.

Note: Most of the material from this lecture can be found in the ”Very basic number
theory fact sheet (Part I)” handout passed out at the first lecture. Sections 7.1-7.3 of Katz
and Lindell is another reference.

1 Announcements

1. Professor office hours: M 12-1, ACES 3.438

2. TA office hours: W 2-3, ENS basement, desk 1; F 11-12, ENS basement, desk 4

3. Number theory review: Instead of regular OH this Friday (9/4), Sara will hold a
number theory review in ACES 3.116. We will cover the main points from this week’s
lectures and the number theory handouts, and we’ll spend the bulk of the time going
over points of confusion. Please come with questions.

4. Labor day: No class or OH next Monday (9/7)

2 Basic Number Theory Facts

• Z denotes the set of integers

• Fundamental theorem of arithmetic: Any integer a can be uniquely expressed as a
product of primes. Ie a =

∏

i

pei
i with pi a prime and ei a positive integer for all i.

• a|b means a divides b (∃c ∈ Z st c · a = b).

• For any positive integers a and b, a can be uniquely written as a = q · b + r with
q, r ∈ Z and 0 ≤ r < b.

• Greatest common divisors: Define gcd(a, b) to be the largest integer d st d|a and d|b.
Note that gcd(a, b) ≥ 1 ∀a, b ∈ Z.
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3 Modular Arithmetic

Let a =p b denote that a = b mod p. In the equations below, let q ∈ Z and 0 ≤ r < p.

• Zp = {0, 1, ..., p− 1} for some prime p.
Note: Small primes are used as instructive examples, but the prime numbers typically
used in cryptography are on the order of 300 digits (1024 bits).

• Addition: m+ g =p r for r st m+ g = qp+ r. Eg 5 + 6 mod 7 = 4.

• Multiplication: m · g =p r for r st m · g = qp+ r. Eg 5 · 6 mod 7 = 2.

• Exponentiation: mg =p r for r st mg = qp+ r. Eg 56 mod 7 = 1.

Why can that particular last problem be determined without actually computing 56?

4 Fermat’s Little Theorem

Theorem 4.1 For all g 6= 0 in Zp, g is such that gp−1 =p 1.

Proof. Consider the set S = {g, 2g, ..., (p − 1)g}. Assume that the S contains fewer than
p− 1 distinct elements. In other words, there exist some r, s ∈ Z∗p with r 6= s and rg =p sg.
Then (r − s)g =p 0. Even in modular arithmetic, ab = 0 iff a = 0 or b = 0. g 6= 0 by
definition, so it must be that r − s =p 0. But this contradicts r 6= s, establishing that all
p− 1 elements of S are distinct.

g 6= 0 means each element of S is in Z∗p = {1, 2, ..., p − 1}, which is just Zp\{0}, so S
constitutes a reordering of Z∗p. The product of the elements of S should equal the product
of the elements of Z∗p:

p−1∏

i=1

ig =p
∏p−1

i=1 i

(p− 1)!gp−1 =p (p− 1)!
gp−1 = 1

2

This theorem allows you to more quickly compute exponents: 512 = 56 · 56 = 1 mod 7.

5 Inverses, Generators, and Orders

• Definition: The inverse of x ∈ Zp is a ∈ Zp st a · x =p 1 and is denoted x−1.

• Inversion algorithm: x−1 =p x
p−2 by Fermat’s little theorem (xp−1 = xp−2 · x =p 1).

The Euclidean algorithm also provides inverses and will be discussed later.

• Z∗p = {1, 2, ..., p− 1} is the set of invertible elements in Zp.
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• Z∗p is a cyclic group. In general, group G is cyclic iff there exists a generator g ∈ G st
G = {1, g, g2, g3, ..., g|G|−1}.

• Not every element of Z∗p is a generator. (Note that g is a generator in a different
sense here than in the proof of Fermat’s little theorem – multiplicative vs additive.)
Observe that 3 generates Z∗7 because < 3 >= {1, 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5} but
2 does not because < 2 >= {1, 2, 4, 1, 2, 4}. Instead, < 2 > is called a subgroup of Z∗p.

• Define the order of g ∈ Z∗p, denoted ordp(g), to be the smallest a ∈ Z∗p st ga =p 1.

• g generates Z∗p iff ordp(g) = p− 1.

• Lagrange’s theorem: ordp(g)|p− 1 for all g ∈ Z∗p. (Try to prove this on your own.)

Later we will see that when encrypting, it is desirable to have primes where p − 1 = 2q,
where q is a large prime. Such p are called strong primes because it is more secure to have
at least one large factor of p− 1.

6 Quadratic Residues

• y ∈ Zp is a square root of x ∈ Zp iff y2 =p x.

• An element has either 0 or 2 square roots in Zp. If a is a square root of x, so is −a.

• x ∈ Z∗p is called a quadratic residue (QR) iff if has a square root in Zp.

• The Legendre symbol for x ∈ Zp is denoted (
x

p
) and is 1 if x is a QR in Z∗p, -1 if x is

not a QR in Z∗p, and 0 if x =p 0.

• Euler’s theorem: x ∈ Zp is a QR iff x(p−1)/2 =p 1. Consequences:

1. (
x

p
) =p x

(p−1)/2

2. About half the elements of Zp are QRs.

7 Arithmetic Computing in Zp

How many unit operations are needed for each of the following computations? Note that
the binary length of p is log p. Recall that log p is typically around 1024.

• Addition is one bit operation per digit: O(log p)

• Multiplication is one long addition per digit: O((log p)2)

• Exponentiation (the naive approach) is p long multiplications: O(p(log p)2).

How can we exponentiate more efficiently?
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7.1 Repeated squaring algorithm for computing exponents

Consider y as the concatenation of its bits: y = ydlog ye|ydlog ye−1|...|y2|y1. Take the following
steps to compute xy mod p:

1. Compute O(log y) multiplications of complexity O((log x)2): x, x2, x4, x8, ..., x2dlog ye
.

2. Compute O(log y) multiplications of complexity O((log x)2) (exponentiation is trivial):
xy = xy1 · (x2)y2 · ... · (x2dlog ye

)ydlog ye .

This algorithm is O(log y(log x)2) = O((log p)3) compared to the naive approach giving
O(p(log p)2).

8 Discrete Log Problem

Problem: Given a security parameter λ, choose a prime p of length λ and a generator
g ∈ Z∗p. Choose a random a ∈ Z∗p and compute h =p g

a. Keep a secret, but reveal p, g, and
h. The attacker’s goal is to determine a.

Assumption 8.1 The discrete log problem cannot be solved by any algorithm that satisfies
both of the following conditions:

1. Algorithm runs in polynomial time.

2. Algorithm is correct with non-negligable probability.
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CS 388H Introduction to Cryptography 2-Sept-2009

Lecture 3: More Number Theory

Instructor: Brent Waters TA: Sara Krehbiel

Note: Most of the new material from this lecture can be found in the second of two
number theory handouts passed out at the first lecture. Not everything in the handouts
was covered in lecture. Sections 7.1-7.3 of the text is another number theory reference.

1 Previous Lecture: Review, Clarifications, Extensions

1.1 Complexity of arithmetic mod p

• Addition: log p

• Multiplication: (log p)2

• Exponentiation: (log p)3

The following is a (perhaps clearer) restatement of the fast exponentiation algorithm and
its correctness for integers of approximate size p = 2n:

Let y = 20y0 + 21y1 + ... + 2nyn where y is n binary digits (y < 2n+1) with y0 the least
significant and yn the most significant digit.

Then xy = x20y0+21y1+...+2nyn = (x20
)y0 · ... · (x2n

)yn .

Computing the x2i
requires n multiplications, computing (x2i

)yi is free since yi is 0 or
1, and taking the final product is another n multiplications. The total complexity is
O(n(log 2n)2) = O((log p)3).

1.2 Applying Fermat’s little theorem to exponentiation

We can reduce the size of the xy computation before applying the above algorithm if y >> p.
In particular, if r =p−1 y, then xy =p xr. Recall Fermat’s little theorem: xp−1 =p 1 for any
x ∈ Z∗

p. Then we see that xy = xk(p−1)+r = (xp−1)k · xr =p 1kxr = xr.

Later this lecture, we will generalize Fermat’s little theorem for composite moduli.

1.3 Orders

Recall the definition of the order of some element g ∈ Z∗
p and Lagrange’s related theorem:

• Definition 1.1 ordp(g) is the smallest q such that gq =p 1.

• Theorem 1.2 ordp(g)|p− 1.
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Note that conceptualizing groups as integers and multiplication modulo some prime is con-
venient and concrete, but the concepts of groups, generators, and orders are more general.
In fact, there exist attacks for some cryptographic systems based on Zp subgroups that fail
with elliptic curve groups in which there exist analogous concepts of generators and orders.

1.4 Hard problems in Zp

1. (Review) Discrete log problem: Given g and h =p ga, compute a. The assumption
is that no poly-time algorithm can correctly output a with better than negligible
probability.

2. (New) Computational Diffie-Helman problem: Given g, ga, and gb, compute gab. A
solution to the discrete log problem could be used to solve this problem.

2 Inverses Modulo Composite N

• The inverse of x ∈ ZN is the element a ∈ ZN st ax =N 1.

• a and b are said to be relatively prime iff gcd(a, b) = 1.

• x has an inverse in ZN iff x and N are relatively prime.

• Let Z∗
N = {a| gcd(a, n) = 1}, the set of invertible elements in ZN .

• Euclid’s algorithm (will be covered at Friday number theory review) computes x−1

for x ∈ Z∗
N . It is more efficient than computing xp−2 in the special case of prime N .

3 Euler’s Totient Function

Definition 3.1 ϕ(N) = |Z∗
N |, the number of invertible elements in ZN .

Fact 3.2 If N ’s prime factorization is given by N = pe1
1 ·...·pen

n , then ϕ(N) = N

n∏

i=1

(1− 1
pi

).

Remark 3.3 ϕ(p) = p− 1 for prime p.

Theorem 3.4 Euler’s theorem: aϕ(N) =N 1 for all a ∈ Z∗
N .

Remark 3.5 Euler’s theorem generalizes Fermat’s little theorem.

4 Chinese Remainder Theorem (CRT)

Theorem 4.1 Let N = pq with p, q relatively prime. Given r1 ∈ Zp and r2 ∈ Zq, there
exists a unique, efficiently computable element s ∈ ZN such that s =p r1 and s =q r2.

Remark 4.2 The CRT establishes the existence and uniqueness of the inverse f−1 of the
function f : ZN → (Zp, Zq) define as f(s) = (r1, r2) where s =p r1 and s =q r2.
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Claim 4.3 f(s · t) = f(s) · f(t).

Proof. Let s = k1p + s1 = k2q + s2, t = c1p + t1 = c2q + t2.
Then s · t = (k1c1p + k1t1 + c1s1)p + s1t1 = (k2c2q + k2t2 + c2s2)q + s2t2.
So f(s · t) = (s1t1, s2t2) = (s1, s2) · (t1, t2) = f(s) · f(t). 2

Remark 4.4 s · t mod N can be computed more efficiently as f−1(f(s) · f(t)). Assume f
and f−1 are free. For p, q of approximately equal size, computing s1 · t1 and s2 · t2 costs
2(log p)2. Directly multiplying s and t costs (log(p2))2 = 4(log p)2. There are more dramatic
efficiency gains when we use CRT to compute exponents.

5 Squares in ZN

Claim 5.1 A element s ∈ ZN is a QR iff it is a QR in Zp and it is a QR in Zq.

Corollary 5.2 For prime p, q, half the elements of Zp and half the elements of Zq are QR,
so the number of QR in ZN is p−1

2 ·
q−1
2 = ϕ(N)

4 .

Definition 5.3 Jacobi symbol: For x ∈ ZN define
( x

N

)
=
(

x

p

)
·
(

x

q

)
, where the RHS is

the product of Legendre symbols.

Remark 5.4 The Jacobi symbol can be computed for x ∈ ZN without knowing N ’s factors.

6 Hard Problems in ZN

Note: That factoring is hard is the weakest assumption; if this assumption fails, so do all
the others.

1. Factoring assumption: Given N = pq, it is hard to output p and q. (A solution would
immediately give ϕ(N).)

2. Strong RSA assumption: Given N = pq, an attacker chooses a public e ≥ 3 and the
system produces some h = ae. Finding a is hard.

3. QR assumption: Given an element x that either is a square in Z∗
N or is not a square in

Z∗
N , determine whether it is a square. Since a random guess is correct with probability

.5, we call an algorithm’s advantage ε such that it answers correctly with probability

.5 + ε. No poly-time algorithm has a non-negligible advantage.
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CS 388H Introduction to Cryptography 4-Sept-2009

Number Theory Review

Instructor: Brent Waters TA: Sara Krehbiel

This review covered most of the topics discussed in lectures 2 and 3. This material can
be found in the class lecture notes, the two number theory handouts, and sections 7.1-7.3
of the text, so it will not be repeated here beyond listing the topics covered. The only new
material that was covered was Euclid’s extended algorithm for finding inverses in Z∗

N , which
is explained here. Points of clarity for questions that were not answered in the review are
also listed here.

1 Topics

• Fundamental theorem of arithmetic

• Fermat’s little theorem

• Modular arithmetic

– Practice

– Complexity results

– Square and multiply algorithm for fast exponentiation

– Using Fermat’s little theorem to further optimize exponentiation

• Inverses, generators, and orders

• Lagrange’s theorem

• Inverstion in Zp using Fermat’s little theorem

• Inverstion in ZN using extended Euclidean algorithm (see section 2)

• Euler’s totient function, its value wrt to N ’s prime factorization, and Euler’s theorem

• Chinese remainder theorem

• Quadratic residues: Legendre symbols in Zp; Jacobi symbols in ZN

• Hard problems:

– In Zp: Discrete log and Diffie-Helman

– In ZN : Factoring, RSA, and QR assumptions
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2 Extended Euclidean Algorithm for Inverses in ZN

The basic Euclidean algorithm computes gcd(x, y) (in O(log x) time) using the fact that
gcd(x, y) = gcd(x mod y, y). Verify this by noting that if d is the largest integer that divides
x and y it also must be the largest integer that divides y and r, where x = qy + r (assume
for simplicity that x ≥ y. The Euclidean algorithm is stated recursively as follows:

Algorithm 1 Euclidean algorithm for computing the GCD of two integers
if y=0 then

return x
else

return GCD(y, r)
end if

Extend Euclid’s algorithm to keep track of integers a and b such that gcd(x, y) = ax+by:

Algorithm 2 Extended Euclidean algorithm, returns {d, a, b} where gcd(x, y) = d = ax+by

if y=0 then
return {x, 1, 0}

else
{d, a, b} := GCD-EXT(y, r)
return {d, b, a-bq}

end if

Proof. Correctness of the extended Euclidean algorithm is established by induction.
Base case: If y = 0, then GCD(x, y) = x and 1x + 0y = x clearly holds.
Inductive hypothesis: For some k, the algorithm is correct for all x, y with y ≤ k. The
recursive call establishes that ay + br = d. Then d = ay − bqy + br + bqy = (a− bq)y + bx.
This establishes the correctness of the final returned value and completes the proof by
induction. 2

2.1 Using the algorithm to compute inverses

Recall that x−1 ∈ ZN exists iff gcd(N, x) = 1. If the extended Euclidean algorithm returns
GCD-EXT(N, x) = {1, a, b}, this means aN + bx = 1, so bx =N 1 and b satisfies the
definition for x−1 ∈ ZN .

3 Points of Clarification

3.1 Lagrange’s theorem

An informal motivation for the proof of Lagrange’s theorem was given in the review session.
I said I would include a more formal explanation in these notes, but this has been reserved
as an exercise for the first homework.
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3.2 Proof of the statement: x is a quadratic residue in Zp iff x(p−1)/2 =p 1

One direction of this proof was given. Namely, if there exists some y such that y2 = x (al-
ternatively, x1/2 = y), we know by Fermat’s little theorem that yp−1 = 1, so (x1/2)p−1 = 1,
establishing that x(p−1)/2 = 1.

The proof of the other direction (x(p−1)/2 =p 1 → x is a QR in Zp) is as follows: Let
g be a generator of Zp. Then any x st x(p−1)/2 =p 1 can be written as gi for some i. Then
gi(p−1)/2 = 1. Because g is a generator, its order is p− 1, so by Fermat’s little theorem, i/2
must be an integer. Then k = gi/2 is a square root of x, so x is a QR.
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CS 388H Introduction to Cryptography 9-Sept-2009

Lecture 4: Collision Resistant Hash Functions

Instructor: Brent Waters TA: Sara Krehbiel

Note: Most of the new material from this lecture can be found in the second of two
number theory handouts passed out at the first lecture. Not everything in the handouts
was covered in lecture. Sections 7.1-7.3 of the text is another number theory reference.

1 Handouts

Homework 1 was passed out today and is due Wednesday, September 23.

2 Terminology

We want to build terminology so we can rigorously talk about things like the hardness of
problems and reason about statements like ”all efficient algorithms have at most a negligible
advantage.”

• λ denotes a security parameter, which determines, for example, the size of messages
accepted by an encryption system.

• Efficient algorithms are algorithms with polynomial run time. The class of polynomials
functions is nice for several reasons, most importantly because it is closed under
addition, multiplication, and function composition.

• Negligible functions are all functions g(x) such that for any polynomial p(x), there
exists a z such that x > z implies g(x) < 1/p(x).

– Negligible functions definitely approach zero as x approaches infinity, but this
condition is not strong enough.

– The condition that negligible functions are of the form 1/poly(x) is also not strong
enough because you could run an attack with this type of success probability a
poly number of times and the result would be an algorithm with non-negligible
probability of success (if you could identify successes from failures).

– It is necessary that a polynomial number of repetitions of a negligible algorithm
also be negligible, but this is also not strong enough.

– It is sufficient that the function be no greater than 1/2poly(x). The definition
as stated is slightly more permissive, but checking that an algorithm’s success
probability is less than 1/2x is a good baseline.

3 Collision Resistant Hash Functions (CRHFs)

The process of studying hash functions will be organized as follows:
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1. Build intuitions

2. Specify definitions

3. Construct function

4. Prove properties

3.1 Intuition

What is collision resistance? No or few collisions? We want it to be hard to find to messages
that produce the same hash value. But then the identity function is perfectly collision resis-
tant, and it doesn’t add any security. For security, we want the function to shrink/compress
the key.

Well-known cryptographic hash functions include MD4, MD5, SHA, and WHIRLPOOL.
They are widely used for their speed, but not theoretically (and eventually not practically)
secure: MD4 can be attached by hand, MD5 can be attacked with a laptop, etc. Part of
this vulnerability is due to the fact that they have no (or few, discrete) security parameters.

In contrast, we will base our hash functions on theoretical problems that are believed to be
hard, such as the discrete log problem. These constructions tend to produce less efficient
functions, but they enable us to prove statements about security like ”if the discrete log
problem is hard to solve, this function is collision resistant.”

3.2 Definitions

Keyed hash function H is a CRHF family if:

• Gen(λ) = K. A key (needn’t be secret) is generated based on the security parameter.

• HK : {0, 1}m → {0, 1}l where m and l are functions of λ with m > l and H is efficient.

• For every efficient attack algorithm A, Pr[A(K) → {m0,m1} : HK(m0) = HK(m1)]
is negligible. (Ie efficient attack algorithms are only successful at producing collisions
with negligible probability.)

3.3 Construction

• Gen(λ) produces a key K = (G, p, g, h) where p is a prime with log p ≈ λ, G is the
set associated with a multiplicative group of order p, and g and h are two (random)
generators of G.

• Define HK : Zp×Zp → G as HK(xa.xb) = gxahxb . Note: We must assume there is an
efficient representation of G’s elements that is smaller than 2 log p to ensure that HK

is compressing.

• To establish security, we next want a proof that if the discrete log problem is hard,
H is collision-resistant.
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3.4 Proof

Theorem 3.1 If there exists an efficient algorithm A that produces collisions in H with
non-neglibile probability ε, then there exists an efficient algorithm B that solves the discrete
log problem with non-negligible probability ε′.

High level motivation for the proof: We show that A’s existence implies B’s existence if
we can construct B from any hypothetical A by converting a DL challenge into a collision-
finding challenge, feeding the challenge to A, and converting A’s result into a solution to
the DL challenge.

Proof. Assume that an efficient and non-negligibly successful attack algorithm A exists.
Construct B as follows:

1. Accept a DL challenge: (G, p, g, h) with h = ga

2. Give A the key: K = (G, p, g, h)

3. A runs; take A’s output: m0 = (xa, xb) and m1 = (ya, yb) that collide in HK

4. If HK(m0) = HK(m1), m0 6= m1 (ie if A was successful), continue; else fail and quit

5. Compute and return a = (xa − ya)(yb − xb)−1 as the solution to the DL challenge

To check whether this algorithm constitutes a B that satisfies the requirements for a DL
problem solver, check for correctness, non-negligible advantage, and polynomial run time.

1. If A is correct, then

• H(m0) = gxahxb = gyahyb = H(m1)

• gxagaxb = gyagayb (we know h = ga for some a, so assume this and solve for a)

• ga(xb−yb) = gya−xa

• a(xb − yb) = ya − xa (because the group is multiplicative and g is a generator)

• a = (xa − ya)(yb − xb)−1

2. A is succeeds with an ε advantage, and we’ve just illustrated that B succeeds if and
only if A succeeds, so B’s advantage is ε, which we’ve specified is non-negligible.

3. Steps 1-2 take constant time. Step 3 is the run time of A, which is give to be polyno-
mial. Step 4 requires two exponentiations, which we’ve seen can be done in polynomial
time. Step 5 is a couple additions, an inverse computation (using Euclid’s inverse al-
gorithm), and a multiplication, all of which can be done in polynomial time. B is
efficient.

This completes the proof that the H is a CRHF if the discrete log problem is hard. 2
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Lecture 5: Signature Schemes

Instructor: Brent Waters TA: Sara Krehbiel

1 Lecture 4 Recap

In the last lecture we gave an example construction and proof of a CRHF family. In
particular, we defined a hash function H(xa, xb) = gxahxb for generators g and h and showed
that any efficient algorithm with a non-negligible advantage that would find collisions for this
function could be used to construct a wrapper algorithm to solve the discrete log problem.
This proved that breaking H is at least as hard as solving the discrete log problem.

1.1 A note on modular arithmetic in exponents

In our CRHF proof, we used the following assertion:

Fact 1.1 For a multiplicative group of prime order p, z =p c(a+ b) implies (gagb)c =p g
z.

2 Motivation for Signature Schemes

2.1 Commonly-used schemes

• DSA (similar to ElGamel signature scheme)

• RSA

Both are number theory-based, but build intuition more generally.

2.2 Desired properties for signatures

1. Unique

2. Not forgeable

3. Verifiable

4. Cheap (to create and to verify)

2.3 Uses

• Sensitive emails

• https/ssl (embedding session keys in protocols)

• Software updates
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2.4 General framework for signature scheme

1. Signer chooses a secret key (SK) and corresponding verification key (VK)

2. Signer publishes VK

3. Signer produces a signature σ using a message m in the message space M and SK

4. Receiver uses m, σ, and VK to verify the identity of the sender

3 Three Algorithms for Digital Signature Schemes

1. Setup(λ) → SK, VK

2. Sign(m, SK) → σ

3. Verify(m, VK, σ) → {true, false}

Notes:

• This constitutes a correctness definition in that Verify should return true if σ was
indeed produced by Sign.

• Each algorithm should be efficient.

• Setup must be a randomized algorithm. Sign may be, as can verify in some cases.

4 Security Definition for Signing Schemes (GMR ’84)

A signature scheme is said to be secure, or more specifically, existentially unforgeable un-
der chosen message attack, if any poly-time attack algorithm A has at most a negligible
advantage (AdvA), where AdvA is the probability of the attacker issuing a message m∗ and
successfully forged signature σ∗. In other words, AdvA = Pr[Verify(m∗, VK, σ∗) = true] in
the following scenario:

1. Challenger runs Setup(λ)→ SK, VK

2. Attacker gets VK and a signing oracle

3. Attacker can submit q messages m to the oracle and receive σ = Sign(m, SK), where
q is a polynomial in λ

4. Attacker outputs m∗, σ∗ (with m∗ not previously submitted to the oracle)

Note that this signing oracle probably provides the attacker with a much greater advan-
tage than he would receive in practice. The signing oracle results in a more conservative or
stronger definition of security than one that may be a more practical model of the informa-
tion available to attackers.
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5 One-Way Functions

Definition 5.1 A function f : {0, 1}n → {0, 1}m (with n a function of security parameter
λ) is called a one-way function if it is easy to compute (P(λ)) and hard to invert (NP(λ)).
Formally, for any efficient A, Prx∈{0,1}n [A(y = f(x))→ z : f(z) = f(x)] = negl(λ).

Note that in the above example, z needn’t be equal to x unless f is injective.

Notice that f(x) = gx for group generator g satisfies the definition of a one-way func-
tion assuming the hardness of the discrete log problem. (But in general one-way functions
needn’t be established by the hardness of number theory problems in particular.)

5.1 Signature scheme using one-way function f with only 1 message in
message space

Let f be a one-way function; let the message spaceM be such that |M| = 1 with m = null
the only element of M. Define a signature scheme with the following algorithms:

1. Setup(λ):

• Choose random x of length λ

• Set SK = x

• Set VK = f(x)

2. Sign(m, SK) = SK

3. Verify(m, VK, σ) = true if and only if f(σ) = VK

Note that the attacker can’t actually make use of the oracle since he must forge on m∗ and
there are no other messages in M that he could use to query the Sign algorithm.

This scheme only works for |M| = 1 since the signing and verifying algorithms don’t use
the message at all. In practice, we want schemes that accommodate larger M, but don’t
want schemes that associated a unique SK, VK pair with each possible message because it
would require keeping track of many keys for a message space consisting of even just short
messages.

5.2 Lamport one-time signature scheme

The Lamport signature scheme signs an n-bit message.

1. Setup(λ):

• Choose SK = x1,0|x1,1|...|xn,0|xn,1 where each xi,{0,1} is a string of length λ chosen
uniformly at random from all such strings
• Choose VK = y1,0 = f(x1,0)|y1,1 = f(x1,1)|...|yn,0 = f(xn,0)|yn,1 = f(xn,1)

2. Sign(m = m1|...|mn, SK) = x1,m1 |...|xn,mn

3. Verify(m, σ, VK) = true iff f(σi) = yi,mi for each i = 1, ..., n

The proof of the security of the Lamport signature scheme will be given next lecture.
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Lecture 6: Lamport One-Time Signature Schemes

Instructor: Brent Waters TA: Sara Krehbiel

Last class introduced the algorithms for the Lamport one-time signature scheme. We
here restate the algorithms and then prove its security from the security of one-way func-
tions.

1 Algorithms

Lamport signs n-bit messages using an SK of length 2nλ and a VK of length 2n times the
length of the elements in the range of some OWF f .

1. Setup(λ):

• Choose SK = x1,0|x1,1|...|xn,0|xn,1 where each xi,{0,1} is a string of length λ chosen
uniformly at random from all such strings

• Choose VK = y1,0 = f(x1,0)|y1,1 = f(x1,1)|...|yn,0 = f(xn,0)|yn,1 = f(xn,1)

2. Sign(m = m1|...|mn, SK) = x1,m1 |...|xn,mn

3. Verify(m, σ, VK) = true iff f(σi) = yi,mi for each i = 1, ..., n

2 Proof of Security

Claim 2.1 If there exists an efficient, one-time attack algorithm A that forges a Lamport
one-time signature with non-negligible probability, then there exists some efficient B that
inverts one-way functions.

Proof. To fit this proof framework, B will receive a function f and some y∗ randomly
selected from the range of f from the OWF challenger. B can use A to produce a z st
f(z) = y∗. A is a black box that takes as input some f and VK from a random-looking
distribution, requests a signature for a single m′, and efficiently produces with non-negligible
probability some forgery σ∗ on m∗ 6= m′. With this in mind, construct B as follows:

1. B receives f and some y∗ = f(x̃) for a random x̃ unknown to B.

2. Since A will request a signature for some m′ and then forge on m′ 6= m∗, there will
be at least one bit j such that m∗j 6= m′j . B guesses this j.

3. B then chooses the VK to publish for A. Generate the SK and VK as in the Lamport
scheme with one exception: Pick b ∈ {0, 1} and set element yj,b in the VK to the y∗

given by the OWF challenger. (The corresponding xj,b generated randomly is now
meaningless.) Give VK to A.
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4. Next, A requests B to sign m′. If m′j = b, B does not have the corresponding SK,
so B quits. Otherwise, return the components of the secret key corresponding to the
bits of m′ as directed by the Lamport signing scheme.

5. With non-negligible probability, A forges a signature σ∗ on m∗. If m∗j 6= b, B gains
no information from the forgery and quits. Otherwise, f(σ∗j ) = yj,b = y∗ if As forgery
is correct.

6. Finally, B outputs σ∗j as the solution to the OWF challenge.

To use this construction to establish the claim, we have to show that B is efficient and
that B beats the OWF challenger with non-negligible probability. Everything B does other
than waiting for A takes constant time. A is efficient, so this shows that B is efficient.
B will beat the OWF challenger if all of the following happens: B picks a j such that
m′j 6= m∗j , A successfully forges, and B picks b such that m′j 6= b and m∗j = b. Given that
A’s advantage is some non-negligible ε, a lower bound on this joint probability is ε/2n,
which is non-negligible. This completes the proof that the Lamport one-time signature
scheme is at least as hard to break as the OWF problem. 2

As an individual exercise, explore why this proof breaks down for q = 2 (ie if the
Lamport attacker can request two signatures before forging).

3 Extending Lamport to Sign Larger Messages

If we use a CRHF H : {0, 1}∗ → {0, 1}n, we can first hash the message and then use
Lamport to sign the hashed message. The verifier checks that f(σi) = yi,H(m)i

for i 1 to n.
Security is maintained by the above proof combined with the collision resistance of H.

4 Inherent Limitations and Future Direction

The obvious limitation of one-time signatures is that they can only be used one time! In the
last two lectures, we have seen how to use the security of OWFs to establish the security of
the Lamport scheme in signing 1-time, n-bit messages, and we just used CRHFs to extend
this to 1-time security for messages of arbitrary length. Next we will show how to use
tree-based techniques to construct a system that can securely sign an exponential number
of arbitrarily-large messages.
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Lecture 7: Tree-Based Technique for Signing Many Messages

Instructor: Brent Waters TA: Sara Krehbiel

1 Lamport Recap

• What was nice about Lamport? It was based on OWFs, so there was no tricky number
theory.

• What were the major drawbacks? Big keys, so a little inefficient, but more importantly
it could only be used once.

• How did we show security? A reasonable Lamport attacker would break OWFs.

• What’s next? Use Lamport signatures to motivate a scheme that allows us to sign
more than one message without increasing key size.

2 Multi-Time from One-Time Signature Schemes

The following procedure allows us to store multiple VK, SK pairs and build multiple signa-
tures that are verifiable via clever use of any one-time signature scheme algorithm.

1. (VKε, SKε) := Setup-OT

2. (VK0, SK0) := Setup-OT

3. (VK1, SK1) := Setup-OT

4. σε := Sign-OT(m = VK0|VK1, SKε)

5. Get message m0 to sign

6. σ0 := Sign-OT(m0, SK0)

7. Sign m0 as σm0 := σε|VK0|VK1|σ0

8. Verify m0 iff Verify-OT(m = VK0|VK1, σε, VKε) and Verify-OT(m0, σ0, VK0)

9. Handle the second message m1 analogously

We can continue generating keys and signatures in a similar fashion to get VK00, SK00,
VK01, SK01, VK10, 10, VK11, and SK11 and be able to sign up to 4 messages. In fact, we
could extend this for λ = n levels to securely sign 2n messages. However, if we did this
all at once, the storage and setup costs would be completely inefficient. Instead, generate
messages from the left to right of the leaves of the tree, generating only the path of SK,
VKs and their siblings that is needed to sign some message mq. The next section presents
an algorithm for this process.
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3 Efficient Depth-First Approach for Signing Many Messages

3.1 Algorithms

Algorithm 1 Setup(1n)
Create VKε, SKε with Setup-OT algorithm
Initialize counter c := 0n

Initialize set of VKs produced S := {ε}
Set VK := VKε, SK := SKε

Algorithm 2 Sign(m, SK)

{c(i) denotes the first i bits of c; c(0) = ε, c(n) = c}
for i = 1 . . . n do

if c(i) /∈ S then
Run Setup-OT twice to get VKc(i−1)|0, SKc(i−1)|0; VKc(i−1)|1, SKc(i−1)|1
σc(i−1) := Sign-OT(m = VKc(i−1)|0|VKc(i−1)|1, SKc(i−1))
S := S ∪ {c(i−1)|0, c(i−1)|1}

end if
end for
σc := Sign-OT(m, SKc)
return σm := σε|VK0|VK1| . . . |σc(i) |VKc(i)|0|VKc(i)|1| . . . |σc(n−1) |VKc(n−1)|0|VKc(n−1)|1|σc|c
{then increment c}

Fact 3.1 Let the number of signatures on distinct messages that have been generated by the
sign algorithm above be Q = poly(n). Then |S|, the number of nodes for which a VK and
SK have been generated, is bounded by 2Q+ 2n.

Algorithm 3 Verify(m,σm, VK)
{check the path}
for i = 1 . . . n− 1 do

if Verify-OT(VKc(i−1)|0|VKc(i−1)|1, σc(i−1) , VKc(i−1)) = false then
return false

end if
end for
if Verify-OT(m, σc, VKc) = false then

return false
end if
return true
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3.2 Security proof

Suppose that there exists an algorithm AQ that requests Q = poly(λ) signatures from our
scheme (in order) and forges on some message (not necessarily in order) with non-negligible
probability. We construct algorithm B from AQ to break the one-time signature scheme by
simulating for AQ a modified version of the tree scheme’s Sign algorithm and then using
AQ’s forgery for a non-negligible advantage against the one-time challenger.

Algorithm 4 B(1n)
Receive VK∗ from OTChallenger
Pick some n∗ from the set of nodes that will be in S after Q signatures are generated
Let i∗ := number of bits of n∗

if n∗ = ε then
VKε := VK∗, VK := VKε

c := 0n, S := ∅
else

Run Setup(1λ) of tree signing schme
end if
Publish VK for AQ
Sign up to Q messages from AQ using modified SignB below
if AQ successfully forges σ′ on m′ and σ′ first deviates at c′(i

∗) = n∗ then
Defeat one-time challenger with forged message m = VK′n∗|0|VK′n∗|1 and signature σ′n∗

end if

The correctness of the construction can be established by verifying the following facts:

1. B satisfies all of AQs signature requests with signatures that would be verified by
the tree signature scheme’s verify algorithm. (The inputs for the black box AQ are
well-formed.)

2. B makes at most one signature request to the one-time challenger. (B works within
the rules of the one-time signature challenge game.)

3. If AQ’s forgery first deviates at n∗, the specified components of that forgery constitute
a message and signature that would be verified by the one-time challenger’s signature
scheme. (If B does not quit, B defeats the one-time challenger.)

B’s efficiency and non-negligible advantage is established as follows: Let the (non-
negligible) probability that AQ successfully forges be ε. If AQ successfully forges, then the
node corresponding to the first deviation of the forged signature is n∗ with probability ≥
1/(2Q+2n). If this happens, B defeats the one-time signature challenger by the correctness
of the construction. B’s advantage is therefore at least ε/(2Q + 2n), which is polynomial.
The structure of the algorithms and B’s dependence on efficient AQ also guarantees that B
runs in polynomial time. This completes the proof that our efficient many-message signature
scheme is at least as secure as any one-time signature scheme.
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Algorithm 5 SignB(m)
for i = 1 . . . n do

if c(i) /∈ S then
if i = i∗ and c(i−1) = n∗(i−1) then

VKn∗ = VK∗

if last bit of n∗ is 0 then
Run Setup-OT to get VKc(i−1)|1, SKc(i−1)|1

else
Run Setup-OT to get VKc(i−1)|0, SKc(i−1)|0

end if
else

Run Setup-OT twice to get VKc(i−1)|0, SKc(i−1)|0; VKc(i−1)|1, SKc(i−1)|1
end if
if c(i−1) = n∗ then

Request OTChallenger for signature σc(i−1) on m = VKc(i−1)|0|VKc(i−1)|1
else
σc(i−1) := Sign-OT(m = VKc(i−1)|0|VKc(i−1)|1, SKc(i−1))

end if
S := S ∪ {c(i−1)|0, c(i−1)|1}

end if
end for
if n∗ = c then

Request OTChallenger for signature σc on m
else
σc := Sign-OT(m, SKc)

end if
return σm := σε|VK0|VK1| . . . |σc(i) |VKc(i)|0|VKc(i)|1| . . . |σc(n−1) |VKc(n−1)|0|VKc(n−1)|1|σc|c
{then increment c}
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Lecture 8: RSA, Full Domain Hash, and Random Oracles

Instructor: Brent Waters TA: Sara Krehbiel

1 Lecture 7 Recap

Last time we constructed a signature scheme that build trees of keys in a depth-first, on-
demand manner. This used the one-time signature scheme (based on one-way function) to
sign many messages. The downsides were that the signatures produced were linear in the
size of the security parameter and we had to store the state, requiring considerable memory.
More importantly, synchronizing the states of two machines that are supposed to be signing
in parallel would introduce non-trivial implementation challenges.

Next, we will try to construct a signature scheme that is stateless, more efficient, and
has shorter signatures. We will base these schemes on the RSA assumption.

2 RSA Assumption

Assumption 2.1 Given N = pq, h ∈u Z∗N , and e ∈u [1, . . . , ϕ(N)] where gcd(e, ϕ(N)) = 1,
computing y such that ye = h is hard without knowing ϕ(N).

3 Original (”Textbook”) RSA Signature Scheme

3.1 Algorithms

1. Setup: Choose N := pq, publish VK := e as in RSA assumption, compute SK :=
d =ϕ(N) e

−1 (with Euclidean algorithm and ϕ(N)).

2. Sign(m ∈ ZN ): Return σ := md

3. Verify(σ, m, e): Check σe = m

3.2 Problems

• Some messages (like m = 1) are very easy to forge.

• Attackers can ask for two signatures and receive σ0 for m0 and σ1 for m1. Then it’s
easy to compute σ = σ0σ1 as the forgery for m = m0m1.

• Other basic algebraic tricks make forging certain messages easy.
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4 Full Domain Hash RSA Signatures

4.1 Algorithms

1. Setup: Choose N , e, and d as before. Also publish a hash function H : {0, 1}∗ → Z∗N .

2. Sign(m ∈ {0, 1}∗, d): Return H(m)d

3. Verify(σ,m, e): Check σe = H(m)

4.2 Approach to security analysis

For this to fix any of the security flaws of the original scheme, we need to prove some
security property of H. For example, we may want something like SHAW1 that breaks the
algebra that allowed us to make attacks like (m0m1, σ0σ1) from (m0, σ0) and (m1, σ0).

5 Random Oracle Methodology

[Bellare and Rogaway, ’93]

5.1 Intuition and definition

In the real world, an attacker has access to the actual code that implements a hash function
H. In a hypothetical world, an attacker has only ”oracle access” to H. An oracle generates
random outputs for any input unless it has already been queried on that input, in which
case returns the previous output.

5.2 Proof strategy

Proofs of security of a cryptosystem using the random oracle model will be proofs of state-
ments of the form: ”If there exists an attacker A that breaks a cryptosystem with random
oracle access, then there exists an attacker B that contradicts the RSA assumption.”

The underlying assumption that allows us to infer from a proof of such a statement that the
cryptosystem is secure is that the hash function in question behaves like a random oracle, or
alternatively that the attacker suffers no disadvantage from using the random oracle instead
of the real H.

6 Proof of Security of the Full Domain Hash RSA Signature
Scheme

We establish the security of the full domain hash (FDH) RSA under the random oracle
model by giving a describing an algorithm B that would break the RSA assumption using
a black box algorithm A that breaks the security of FDH with at most Q = poly(N). As
usual, the proof establishes B’s efficiency and non-negligible advantage.
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6.1 Description of B

1. B gets an RSA challenge N , e, and h ∈ Z∗N . B wins if it produces σ such that σe = h.

2. B gives N and e to A as the inputs for an FDH challenge.

3. B chooses k ∈u {1, . . . , Q} as guess for which random oracle query A will use to
produce a forgery.

4. When A makes a random oracle query for the hash of m, B determines an output as
follows: If A has previously queried on m, return the previous answer. If not, return
H(m) = h if it is the kth query and H(m) = xe

i for a random xi ∈ Z∗N otherwise.

5. When A makes a signature request for m, quit if m was the kth random oracle query
and return σm = xj if m was the query j 6= k.

6. If A forges σ′ on m′ for m′ not the kth oracle query, quit. Otherwise B outputs
σ∗ = h1/e to the RSA challenger.

6.2 Efficiency and advantage of B

Since there is constant time setup, a polynomial number of iterations of constant time steps
4 and 5, and step 6 is bounded by the (polynomial) runtime of A, B is efficient.

B breaks the RSA assumption with non-negligible advantage ε/Q because B has proba-
bility at least 1/Q of planting h in the correct random oracle query and A (independent of
B’s construction) has non-negligible advantage ε of being successful.
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Lecture 9: Public Key Encryption and IND-CPA Security

Instructor: Brent Waters TA: Sara Krehbiel

1 Public Key Encryption

1.1 algorithms

• Gen(λ) → PK (public), SK (secret)

• Enc(PK, m ∈M, r = random bit string) → CT (ciphertext)

• Dec(SK, CT) → message m or failure ⊥

1.2 Correctness property

Correctness requires that Dec(SK, Enc(PK, m ∈ M, r)) = m for all m ∈ M and random
r with PK, SK produced by Gen.

1.3 Desired security properties

An eavesdropper (someone who observes CT and doesn’t have access to SK) should not be
able to read any part of m. We formalize this notion below.

2 IND-CPA Security

[Goldwasser and Micali]

A public key encryption scheme is said to be IND-CPA (indistinguishable under chosen
plaintext attack) secure if any attacker (who implicitly knows the algorithms being used)
has at most negligible advantage in the following challenge:

1. Challenger runs Gen(λ) → PK, SK; publishes PK.

2. Attacker chooses two messages m0 and m1 of equal length.

3. Challenger chooses b ∈ {0, 1} at random; outputs Enc(PK, mb, r).

4. Attacker chooses b′ ∈ {0, 1}.

The attacker’s advantage is AdvA = Pr[b′ = b] − 1
2 =

Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]
2

.
The equivalence of these two definitions can be shown using conditional probability rules
given that Pr[b = 1] = Pr[b = 0] = 1/2 when b is chosen randomly.

The IND-CPA security notion allows the attacker to choose between any two messages,
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so if there is any way to reveal any part or quality of a message without the secret key,
some attacker could find it.

Why do we need randomness? Since the algorithms are known to the attacker, the at-
tacker could compare his own encryption of m0 and m1 to the ciphertext output by the
challenger and easily infer which message produced it.

What concepts do this definition not cover? The attackers model eavesdroppers in the
game. We don’t allow them choose ciphertexts and see how the Dec algorithm responds.

If we specify that even an attacker allowed to encrypt many messages must have a non-
negligible advantage, does this result in a stronger concept of security?

3 Many-Message Security

Call a public key encryption scheme many-message secure if any attacker has at most
negligible advantage in the following game:

1. Challenger runs Gen(λ) → PK, SK; publishes PK.

2. Attacker chooses two message vectors ~M0 = (m01, . . . ,m0n) and ~M1 = (m11, . . . ,m1n.

3. Challenger chooses b ∈ {0, 1} at random; outputs ~CT = (Enc(PK,mb1), . . . Enc(PK,mbn)).
(Random rs are also implicit parameters.)

4. Attacker chooses b′ ∈ {0, 1}.

Define AdvA as above. Are these notions equivalent?

4 Equivalence of IND-CPA and Many-Message Security

Note that if an encryption scheme is not IND-CPA secure, a trivial many-message attacker
with n = 1 can copy the IND-CPA attacker to establish that it is not many-message secure.
To prove that many-message security is not a stronger security definition but rather an
equivalent one, we must prove the following theorem.

Theorem 4.1 Any encryption system that satisfies IND-CPA also satisfies many-message
security.

Alternatively, we can prove the contrapositive: Suppose A breaks the many-message chal-
lenge for some encryption scheme E and show that from this we can break IND-CPA.

Proof. Consider the following fact:

Fact 4.2 Consider probabilities A0, . . . , An ∈ [0, 1]. If we have |Ai+1 − Ai| < ε for all i,
then we have |An −A0| < nε.
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Note: Our proof will associate cryptographic meaning to the Ai, but the fact holds for any
arbitrary probabilities.

Now consider a series of n + 1 experiments Expt0, . . . , Exptn, where Expti outputs the
encryption of the first i messages from ~M1 and the last n − i messages from ~M0. Define
Ai = Pr[attacker A outputs 1 on Expti]. It may be helpful to consider that A is not really
constructed to handle these experiments, but it will always output 1 with some probability,
so the notion is well-defined.

Lemma 4.3 If an encryption scheme is IND-CPA secure, then Ai+1 −Ai is negligible ∀i.

Proof. Assume there exists some i = 0, . . . n− 1 where Ai+1 −Ai. Construct an attacker B
for the IND-CPA challenge as follows:

1. B takes in PK from IND-CPA challenger

2. B forwards PK to A

3. A gives ~M0, ~M1 to B for encryption

4. B gives m0,i+1, m1,i+1 to IND-CPA challenger for encryption

5. B receives CT∗ as encryption of mb,i+1 from IND-CPA challenger

6. B creates the ciphertext for A as follows:
CT := Concatenate the encryption of the first i elements of ~M1

CT := CT | CT∗

CT := CT | concatenate the last n− (i+ 1) elements of ~M0

7. A outputs b′; B outputs b′ to the IND-CPA challenger

We can see from the definition of Expti and the way the CT is constructed that A sees
Expti if b = 0 and Expti+1 if b = 1. By assumption, the probability that A outputs 1 when
b = 1 is non-negligibly greater than the probability that A outputs 1 when b = 0. Since B
gives the IND-CPA challenger A’s answer, this corresponds to a non-negligible advantage
for B. This proves the contrapositive of the lemma and therefore the lemma itself. 2

The above lemma holds for i = 0 . . . n − 1. Apply the fact to conclude that |An − A0|
is negligible if an encryption scheme is IND-CPA secure. This completes the proof of he
theorem that many-message security is implied by IND-CPA security, thus establishing the
equivalence of many-message and IND-CPA security. 2

Now that we have proved equivalence of the security notions, we can ignore the notationally-
burdensome many-message security concept and focus on proving IND-CPA security.
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CS 388H Introduction to Cryptography 30-Sept-2009

Lecture 10: Security of RSA Encryption in Random Oracle Model

Instructor: Brent Waters TA: Sara Krehbiel

1 Lecture 9 Recap: Hybrid Techniques

Last lecture we saw an example of using hybrid techniques in a security proof. In proving
the equivalence of IND-CPA security and many-message security, we gave an attack algo-
rithm hybrid experiments it wasn’t trained to succeed on, but it’s ”success” probability was
nonetheless well-defined, so we could use it to make statements about its success defeating
the true challenger.

2 RSA Encryption: A First Attempt

• Gen(λ) → Choose N = pq and e ∈ {1, . . . , ϕ(N))} coprime with N ; publish PK =
(N, e), compute SK = e−1

• Enc(PK, m ∈ M, r = random bit string) → Choose random x ∈ Z∗N ; output CT =
(c1 = xe, c2 = m⊕ x)

• Dec(SK, CT) → Output m = cd1 ⊕ c2

Recall that you can compute the Jacobi symbol of a number in ZN without knowing

the factorization of N . Furthermore,
( x
N

)
=

(
xe

N

)
. Then the attacker knows not to guess

b if
( c1
N

)
6=

(
c2 ⊕mb

N

)
, giving him an advantage against the IND-CPA challenger.

Next, use hash functions to eliminate this security vulnerability.

3 RSA Encryption: Take Two

• Gen(λ) → Choose N = pq, e ∈ {1, . . . , ϕ(N))} coprime with N , and hash function
H : Z∗N → {0, 1}k; publish PK = (N, e), compute SK = e−1

• Enc(PK, m ∈ {0, 1}k, r = random bit string) → Choose random x ∈ Z∗N ; output CT
= (xe,m⊕H(x))

• Dec(SK, CT) → Output m = H(cd1)⊕ c2

Reality check: We have preserved the correctness of the previous algorithm, but removed
the potential for the attack we identified on the first scheme presented.
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4 Security of RSA Encryption Scheme with Hashing

We establish the security of the previous scheme by proving the following theorem:

Theorem 4.1 If the RSA assumption holds, then our encryption scheme is IND-CPA se-
cure in the random oracle model.

Proof. Assume there exists an attack algorithm A in the random oracle model that breaks
the IND-CPA security of our scheme. Construct B as follows to defeat the RSA challenge
using A:

1. B accepts RSA challenge: N, e, h (challenge is to find x st xe = h)

2. B gives PK = N, e to A
3. B gets request from A for an IND-CPA challenge with input messages m0 and m1

4. B gives A IND-CPA challenge CT∗ = (h, r), r ∈u {0, 1}k

5. Suppose A queries random oracle for H(y). B checks if ye = h (ie whether A has
”guessed” the underlying x st c1 = xe). If ye = h, B outputs y as the answer to the
RSA challenge and quits. Otherwise, B continues to accept random oracle queries.

For this construction to constitute a valid reduction from the IND-CPA security of RSA
encryption to the RSA assumption, we have to justify that any non-negligibly successful
RSA encryption attacker A will indeed query the random oracle on y = he−1 with non-
negligible probability. We do this with the following lemma:

Lemma 4.2 Suppose A has AdvA = ε /∈ negl in breaking the IND-CPA security of the RSA
encryption scheme with hashing. Then A must query H(ce

−1

1 ) with non-negligible probability
(when the encryption challenger outputs CT∗ = (c1, c2) after receiving m0,m1 from A).

Proof. Let W be the event that A outputs the correct b in the IND-CPA challenge for
the RSA encryption scheme, and let Q be the event that A queries the random oracle for
H(ce

−1

1 ) and Q̄ be the event’s complement.

Prob[W ] = Prob[W |Q̄] · Prob[Q̄] + Prob[W |Q] · Prob[Q]
≤ 1/2 · Prob[Q̄] + Prob[Q]
= 1/2 + 1/2 · Prob[Q])

1/2 + ε ≤ 1/2 + 1/2 · Prob[Q]
2ε ≤ Prob[Q]

ε non-negligible implies 2ε is is non-negligible, and the lemma is proven. 2

The lemma establishes that B successfully breaks the RSA assumption if A successfully
attacks RSA encryption. This concludes the proof of the theorem about the security of the
RSA encryption scheme under the random oracle model. 2

At a high-level, this proof used A’s reliance on the random oracle to extract information
based on the queries rather than employing the ”plug and pray” technique we’ve seen
before. Next lecture, we’ll see a security proof under the Decisional Diffie-Helman problem
that doesn’t rely on the random oracle model.
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CS 388H Introduction to Cryptography 5-Oct-2009

Lecture 11: ElGamal Encryption

Instructor: Brent Waters TA: Sara Krehbiel

1 Lecture 10 Recap and Lecture 11 Agenda

Last time, we proved the security of an RSA encryption scheme by implicitly forcing the
black-box attacker to use the random oracle. On the one hand, this was a reasonable stip-
ulation because the random oracle was the only way for the attacker to see an encryption
as anything other than random, but in some sense it violates the black-box nature of the
attacker.

This time, we’ll see our last encryption scheme before moving onto foundational cryp-
tography concepts. We will show that the ElGamal encryption scheme is secure under
the Decisional Diffie-Helman assumption without having to rely on assumptions about the
black-box attacker’s use of the random oracle.

2 Decisional Diffie-Helman Problem

Consider the following game:

1. Challenger chooses a group G of prime order p, two random elements g,R ∈ G, and
two integers a, b ∈ Zp.

2. Challenger gives attacker A a tuple (G, g, ga, gb, T ), where T is either gab or R.

3. A guesses whether T = gab or T = R.

Define A’s advantage as AdvA = Pr[A guesses correctly]− 1/2.

G is said to be DDH-secure if AdvA is negligible.

3 ElGamal Encryption Scheme

• Gen(λ) →

– Choose prime p (with |p| ≈ λ) and create group G of prime order p

– Choose g ∈ G, y ∈ Zp

– Set PK = (g, h = gy), SK = y

• Enc(PK, m ∈ G, r ∈u Zp) → Output CT = (c1 = gr, c2 = mhr)

• Dec(SK, CT) → Decrypt m =
c2
cy1
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Notes: So far, we’ve encrypted messages expressed as integers, but here we are encrypting
group elements. It’s fine for know to only understand abstractly that messages could be
expressed as elements of an arbitrary group. As in previous messages, the randomness r is
needed for security. The multiplier hr in c2 can be thought of as the blinding factor that
obscures m.

4 Security of ElGamal Encryption Scheme

To show security of the ElGamal encryption scheme, we must establish that if the DDH
assumption holds for some group G (ie G is DDH-secure), then ElGamal implemented with
G is IND-CPA secure.

As usual, our overall approach for the proof of this theorem will be to assume there exists
an attack algorithm A that defeats the ElGamal IND-CPA challenger and construct an
algorithm B from A that break the DDH assumption.

However, we should first consider what might be challenging about this proof: there is a
mismatch in the goals of the two attackers in that the IND-CPA attacker (A) distinguishes
between two chosen messages m0 and m1 whereas the DDH attacker (B) distinguishes be-
tween one chosen message m′ and a random message R.

To get around this, we will show that the advantage of any attacker in each of a sequence
of games is approximately equal, and then show that there is negligible advantage in the
second. Consider the following two games:

1. Define GameReal to be the IND-CPA challenge: attacker picks 2 messages and guesses
which was encrypted as CT = (gr,mbh

r).

2. Define GameRand to be the same as GameReal except that the attacker guesses which
message was encrypted as CT = (gr, R′), where R′ is a random group element.

Claim 4.1 Suppose there exists an attack algorithm A with AdvA−Real − AdvA−Rand = ε
(non-negligible). Then there exists and algorithm B that break the DDH assumption.

Proof. We prove the claim by constructing B as follows:

1. B receives a DDH challenge (G, g, C = gc, D = gd, T = {gcd, R})

2. B gives A a public key (which implicitly includes the description of G) for an ElGamal
encryption scheme: PK = (g, C)

3. B receives two messages m0 and m1 chosen by A for the IND-CPA challenge, and B
randomly chooses b = {0, 1}

4. B gives A CT∗ = (c∗1 = D, c∗2 = mbT )

5. B receives A’s guess b′ of which message was encrypted and guesses T = gcd if A was
correct and T = R otherwise
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Step 4 determines whether A is playing GameReal or GameRand. B does not know whether
T = gcd or T = R, but if the former is true, then A sees a valid ElGamal encryption of mb

(since d is hidden from A so it is no different from r in the encryption scheme), and if the
latter is true then A sees a random power of g and a random element R′ since mb multiplied
by a random element R just gives another random element.

In step 5, B finds out whether A succeeded or failed. B does not know which game A
was playing, but by assumption, A is ε better at GameReal. Therefore, B takes A’s success
as an indication that A was playing GameReal and therefore that B was given T = gcd by
the DDH challenger in step 1. This gives B a non-negligible advantage of ε/2 against the
DDH assumption and the claim is proven. 2

It is not difficult to see that AdvA−Rand is zero, since the game does not provide A with
a ciphertext containing any information (obscured or otherwise) about m0 or m1. Because
of this, the above claim immediately proves the following theorem:

Theorem 4.2 Any algorithm that attacks the IND-CPA security of the ElGamal encryption
scheme (ie some algorithm A with AdvA−Real = ε /∈ negl) could be used to construct (as
above) an algorithm B that breaks the DDH assumption.

The theorem as stated above shows that ElGamal is IND-CPA secure as long as the
underlying group G is DDH-secure.
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CS 388H Introduction to Cryptography 7-Oct-2009

Lecture 12: One-Way Functions As Cryptographic Primitives

Instructor: Brent Waters TA: Sara Krehbiel

1 Announcements and Course Roadmap

The in-class midterm is tentatively scheduled for November 4.

So far, the course has focused on cryptosystems and their security under number theory
assumptions such as discrete log, RSA, DDH, etc. Now we will start to build cryptographic
primitives with properties that are not derived from number theory assumptions. This will
enable us to build cryptosystems from arbitrary instantiations of these general primitives
that will remain secure in general even if a particular number theory assumption is dis-
proven.

Today we will focus on the significance of one-way functions in this sense. We’ll start
to see how crypto assumptions (even very weak assumptions) can be used to build OWFs
and how OWFs can be used to build cryptosystems. To justify the cryptographic impor-
tance of OWFs, we’ll look at why the security of many crypto applications actually imply
the existence of OWFs.

2 Definitions

Definition 2.1 A function f : {0, 1}∗ → {0, 1}∗ is a one-way function if and only if

1. evaluating f is easy (polynomial in the size of the input), and

2. inverting f is hard (for any efficient A, Pr[A(y = f(x)) = x′ st f(x′) = y] ∈ negl,
where the probability is taken over A’s randomness and all inputs x).

Definition 2.2 A length-preserving OWF is a OWF f such that |x| = |f(x)|.

Definition 2.3 A one-way permutation is a OWF f such that the function fn, denoting
f with restricted domain {0, 1}n, is a bijection. (A bijection is a function whose domain
and range have the same cardinality and every element in its range is mapped to by exactly
one element in its domain. Because of this, one-way permutations have no collisions.)

Definition 2.4 A family/collection of OWFs is specified by 3 algorithms as follows:

• Gen(λ)→ I indexing OWF fI : DI → RI

• Sample(I)→ x ∈ DI

• Evaluate(I, x ∈ DI)→ fI(x) ∈ RI
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3 OWFs From Secure Signature Schemes

Claim 3.1 If there exist signature schemes that are secure (existentially unforgeable under
chosen message attack), then one-way functions exist.

Proof. The approach for this proof will be to first define a function from the abstract de-
scriptions of the setup, sign, and verify algorithms specifying all signature schemes. Then
we will assume for contradiction that the function is not a OWF and use a black-box in-
version algorithm to construct an algorithm that attacks the signature scheme.

We’ll work through a first proposed function and show why it will not prove the above
claim. A test question could be of the form ”Illustrate why the following proposition fails”:

Proposition 3.2 For any secure signature scheme, Sign(SK, m) = σ is a OWF.

Say we have some secure signature scheme. Modify the sign algorithm so there exists one
degenerate SK∗ (eg 0n) where Sign(SK∗,m) = m for all m ∈ M. This modification main-
tains the security of the signature scheme as long as Gen produces SK∗ with only negligible
probability. Then an efficient inversion algorithm could produce SK∗,m as a possible preim-
age for any OWF challenge m. This shows that Sign(SK, m) is not a OWF, so we have
failed to prove the claim.

We will instead use the OWF construction suggested by the following lemma:

Lemma 3.3 Define f(x) to be the VK produced by a signature scheme’s setup algorithm
on random input x (a natural corresponding security parameter would be λ = |x|). If the
signature scheme is secure, then f is a one-way function.

Proof. Assume for contradiction that there exists some algorithm A that efficiently inverts
f . Construct B to attack the signature scheme:

1. B receives VK from the signature scheme challenger and gives VK to A as the pos-
timage of f for A to invert

2. A outputs a randomness parameter x satisfying f(x) = VK

3. B runs Setup(λ = |x|, r = x) = VK′, SK′

4. B forges a signature for any message m∗ with σ∗ = Sign(SK′,m∗)

It may be the case that step 3 produces VK′ 6= VK, but the VK′, SK′ pair produced is a
valid VK, SK pair for the signature scheme simulated by B’s challenger. If the signature
scheme is secure, this construction shows that A cannot exist so f is indeed a OWF. 2

The lemma shows how to construct a OWF from a secure signature scheme. This proves
the claim that the existence of secure signature schemes implies the existence of OWFs. 2
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4 More Conjectured OWFs

4.1 OWF based on the hardness of factoring

It is conjectured that fmult(x, y) = x · y, |x|, |y| is a OWF.

4.2 OWF based on NP-hard problem

fsubset−sum(x1, . . . , xn, J ∈ 2{x1,...,xn}) =
∑

j∈J xj , x1, . . . , xn.

4.3 RSA collection of OWFs

• Gen(λ)→ Choose p, q primes, N = pq, e ∈ Z∗N ; set I = N, e

• Sample(I)→ Output random element x ∈ ZN

• Evaluate(I, x ∈ DI)→ xe

Notice that these fI are one-way permutations.

5 Exercise

Suppose we f is a OWF. Let g(x) = f(1, x2, . . . , xn). Is g a OWF?

Assume there exists an attacker A that inverts g with probability ε. Consider an f -inverter
B that passes an f inversion challenge y to A and returns A’s answer x such that g(x) = y.
If x1 = 1, then g’s definition implies f(x) = y and B succeeds. B inverts f with probability
ε/2. Since f is given to be a OWF, no such A exists, and we conclude that g is a OWF.
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CS 388H Introduction to Cryptography 12-Oct-2009

Lecture 13: Hardcore Bits

Instructor: Brent Waters TA: Sara Krehbiel

The midterm is scheduled for November 4 (same time and place as lecture), and it will be
closed-book and closed-notes.

1 Hardcore Bits

Last class we talked about how a OWF f is such that, given y = f(x) it is hard to discover
some x′ such that f(x′) = y. However, this makes no guarantees about how hard it is to
find individual bits of x.

Definition 1.1 A function h : {0, 1}∗ → {0, 1} is hardcore for OWF f if and only if

1. evaluating h(x) is easy (polynomial in the size of x), and

2. predicting h(x) given f(x) is hard.

The second condition can be formalized in either of two ways:

• For any efficient A that predicts h(x) given f(x),

Pr[A(f(x)) = h(x)] ≤ 1/2 + negl(n).

• For any efficient A that distinguishes h(x) from a random bit given f(x),

Pr[A(f(x), h(x)) = 1]− Pr[A(f(x), b ∈u {0, 1}) = 1] = negl(n).

In both cases, probability is taken over A’s randomness and all possible inputs x ∈ {0, 1}n.

1.1 Sample hardcore bit exam question

Show a counterexample to the claim that the first bit of any OWF is hardcore.

Approach: Assume f is a OWF. Construct g from f such that g is a OWF and the first bit
is not hardcore. (Ie h(x) = x1 is not hardcore for g.) Example: Take g(x) = x1|f(x2 . . . xn).
Exposing one bit of the pre-image of g(x) does not break the one-wayness provided by f
of of the remaining bits, but it allows the first bit to be read, so g constitutes a OWF in
which the first bit is not hardcore.
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2 Goldreich-Levin Theorem: Hardcore Predicates from OWFs

Theorem 2.1 Suppose f is a OWF. For x, r st |x| = |r|, define g(x, r) = f(x), r. Then
the following two conditions hold:

1. g is a OWF.

2. h(x, r) =< x, r >= ⊕r
i=1xi · ri is hardcore for g.

The first part of the proof is straightforward: construct a simple reduction from the problem
of inverting g to the problem of inverting f to show that g must be a OWF.

The approach for the second condition is similar: assume that h is not hardcore (ie there
exists an efficient attacker A with non-negligible advantage in predicting h(x) given f(x)),
and use this to invert f . (Note that after proving the first part of the theorem, inverting g
using A would be an acceptable proof, but we will find it more direct to invert f .)

For the rest of lecture, we will prove that h is at least semi-hardcore. More precisely,
we first show that there cannot exist a perfect attacker A that predict h(x) with 100%
success, and then we show a stronger result that there is no A that predicts h(x) with at
least 3/4 + 1/p(n) success (for some polynomial p).

2.1 Proof that h cannot be perfectly predicted

Lemma 2.2 Assume there exists an efficient A such that Pr[A(g(x, r)) = h(x, r)] = 1.
Then there exists an efficient B that inverts f with non-negligible probability.

Proof. First, some additional assumptions and notation:

• Assume for now that f is injective. Then we can assume |f(x)| = |x| and B doesn’t
have to worry about guessing the length of x given f(x).

• Let e(i) ∈ Rn denote the vector with 1 in the ith position and 0 everywhere else.

• Note that h(x, e(i)) = xi.

Now consider the following construction of B:

1. B is given f(x) from the f inversion challenger.

2. For i = 1 . . . n, B challenges A to find the hardcore bit of g(x, e(i)) = f(x), e(i) and
sets xi to be A’s output.

3. B produces x = x1 . . . xn as an inversion of f(x).

If A perfectly predicts h(x), then B inverts f by the observation that h(x, e(i)) = xi,
contradicting that f is a OWF. Therefore, no perfect predictor of h exists. 2
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2.2 Proof that h cannot be predicted with probability greater than 3/4

Lemma 2.3 Assume ∃ efficient A with Prx,r∈{0,1}n [A(g(x, r)) = h(x, r)] = 3/4 + 1/p(n).
Then ∃ an efficient B that inverts f with non-negligible probability.

How much of our previous construction of B do we have to change? All we know about
A is that it succeeds with probability at least 3/4 over all the inputs and its randomness.
We don’t know whether there are certain inputs on which it always fails. Since the e(i)

constitute only n of the 2n possible inputs for r and n/2n << 1/4, it may be the case that
A fails on all of the inputs the previous construction gives it. We must consider alternate
ways to determine the xi from queries to A that guarantee some non-negligible probability
of a successful prediction of the hardcore bit.

Fact 2.4 a(b⊕ c) = ab⊕ ac.

Corollary 2.5 h(x, r)⊕ h(x, e(i) ⊕ r) = h(x, r)⊕ h(x, r)⊕ h(x, e(i)) = xi.

Notice that while r and e(i)⊕r are clearly related, they are independently random in {0, 1}n.

Next, we consider that A’s probability of success is taken over all x, r ∈ {0, 1}n. This
gives no guarantees about the probability of success taken over all r for a given x. If A
succeeded sufficiently frequently on only a negligible amount of x, we would not be able to
use it to invert f(x) for random x with non-negligible probability. Instead, we want it to be
the case that for some non-negligible fraction of x, Prr[A(f(x), r) = h(x, r)] is sufficiently
high. For these x, we should be able to use A to invert f by feeding it inputs specified by
the corollary.

Claim 2.6 Let S = {x st Prr[A(f(x), r) = h(x, r)] ≥ 3/4 + 1/2p(n)}. Then |S| ≥ 2n

2p(n)
.

Proof. We prove the claim be contradiction: Suppose |S| < 2n/2p(n). Now we want to
show that even if A always guesses the hardcore bit for x ∈ S, S is too small to satisfy that
the total Prx,r[A guesses h(x, r)] ≥ 3/4+1/p(n) as the initial assumption about A requires.
For notational simplicity, let G denote A(f(x), r) = h(x, r), the event that A succeeds.

Prx,r[G] = Prr[G|x ∈ S]Pr[x ∈ S] + Prr[G|x /∈ S]Pr[x /∈ S]

< 1 · 1
2p(n)

+ (
3
4

+
1

2p(n)
) · 1

=
3
4

+
1

2p(n)

This completes the proof by contradiction of the lower bound on the size of S. 2

To be able to do anything useful with the corollary that shows how to extract xi from a
specific pair of hardcore bits, we need a lower bound on the probability that A will produce
the correct bits for both of those queries.

Claim 2.7 For all x ∈ S and i = 1 . . . n,

Prr[A(f(x), r) = h(x, r) ∩ A(f(x), e(i) ⊕ r) = h(x, e(i) ⊕ r)] ≥ 1/2 + 1/p(n).
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Proof. We have no guarantee that the probability of these two events is independent, so we
cannot simply multiply the separate probabilities. Instead, we use the union bound:

Fact 2.8 Pr[X ∪ Y ] ≤ Pr[X] + Pr[Y ].

Let Gr′ denote A(f(x), r′) = h(x, r′). Then

1− Prr[Gr ∩Ge(i)⊕r] = Prr[¬Gr ∪ ¬Ge(i)⊕r]
≤ Prr[¬Gr] + Prr[¬Ge(i)⊕r]

≤ 1− (
3
4

+
1

2p(n)
) + 1− (

3
4

+
1

2p(n)
)

=
1
2
− 1

p(n)

so Prr[Gr ∩Ge(i)⊕r] ≥ 1− (1
2 − 1

p(n)) = 1
2 + 1

p(n) as desired. 2

2.2.1 Sketch of the rest of the proof...

Construct B as follows:

1. B is given f(x) from the f inversion challenger. We hope that x ∈ S as defined above.
The claim ensures this will happen a non-negligible fraction of the time.

2. For i = 1 . . . n, B challenges A several times with random r, r ⊕ e(i) pairs. Set xi to
be the bit corresponding to the majority result of this sample. (The main part of
this proof we didn’t covered is how to use Chernoff bounds to determine how many
random samples - it will be poly(n) - we have to take to guarantee that the majority
vote will correctly produce xi with high probability.)

3. B produces x = x1 . . . xn as an inversion of f(x).

This construction shows that there cannot be any efficient A that predicts h(x) with proba-
bility > 3/4. The proof that there is no efficient A that predicts h(x) with any non-negligible
advantage is known but harder.
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CS 388H Introduction to Cryptography 14-Oct-2009

Lecture 14: Pseudorandom Generators

Instructor: Brent Waters TA: Sara Krehbiel

1 Recap: Constructing a Hardcore Predicate from a OWF
(Goldreich-Levin Theorem)

Our goal last class was to show that no attacker can guess the hardcore predicate h(x, r) for
modified OWF g with probability at least 3/4+1/p(n). If we had shown this for probability
1/2 + 1/p(n) (which can be done), that would prove that h(x, r) is hardcore for g. Here is
a summary of the lemmas and proof strategies we used:

1. Corollary 2.5 in the previous lecture notes shows how B can determine xi given A’s
(correct) predictions of h(x, r) and h(x, e(i) ⊕ r).

2. To ensure that B was non-negligibly successful, in Claim 2.6, we defined a set S of
inputs x on which A was successful > 3/4 of the time and showed that it contained a
non-negligible fraction of all possible inputs x.

3. Claim 2.7 used the union bound to show that A correctly predicts both h(x, r) and
h(x, e(i) ⊕ r) non-negligibly greater than half the time for x ∈ S.

4. Because B hopes x ∈ S and A succeeds on non-negligibly greater than 1/2 of the
random inputs h(x, r) and h(x, e(i) ⊕ r), B has non-negligible advantage.

We skipped the explanation of how to use Chernoff bounds to bound the probability that
> 1/2 of p(n) trials of h(x, r) and h(x, e(i) ⊕ r) will be wrong. This may come up on a
subsequent problem set.

2 Pseudorandom Generators: Preliminaries

Having shown roughly how to construct hardcore predicates, we next discuss pseudorandom
generators.

Intuition. We want to be able to take a random seed and amplify it in a way that attackers
that don’t see the seed can’t tell whether the expanded randomness is amplified from some
seed or true randomness.

Usefulness. Computers build up entropy from events like keystrokes, network interrupts,
etc. The ability to amplify this randomness is important for situations in which a computer
has a small amount of truly random bits and a running program needs many more random
bits.
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Definition 2.1 G : {0, 1}n → {0, 1}l (where l is a function of n with l > n) is a pseu-
dorandom generator (PRG) iff any efficient A (which may know the code for and be able
to evaluate G) is such that Prx∈{0,1}n [A(G(x)) = 1] − Pr[A(Ul) = 1] ∈ negl(n), where Ul

denotes an l-bit string of bits chosen uniformly at random.

3 Proof of Existence of PRGs from OWPs

We take a 2-step approach to proving the existence of PRGs with output size l = p(n) for
an arbitrary polynomial p from OWPs:

1. Show that the existence of an OWP with domain and range {0, 1}n implies the exis-
tence of a PRG that amplifies n bits of randomness by one bit.

2. Show that the existence of a PRG that amplifies a single bit of randomness implies
the existence of a PRG that amplifies n bits to l bits.

Question: We’ve shown how to construct OWFs from secure signature schemes and seen
examples of functions believed to be one-way based on hardness assumptions, but how many
OWPs do we actually know? Ie is proving PRGs from OWPs even a useful exercise? Hill
’89 shows the stronger result that OWFs imply PRGs. The proof approach is more subtle
so we won’t cover it, but a lot of the OWP =⇒ PRG techniques we are about to see help.

3.1 ∃ OWP f : {0, 1}n → {0, 1}n =⇒ ∃ PRG g : {0, 1}n → {0, 1}n+1

Let f : {0, 1}n → {0, 1}n by a OWP with hardcore predicate h (h needn’t be the GL HP
we saw last time, but that construction establishes that some HP h exists), and define
g(x) = f(x), h(x).

Lemma 3.1 If there exists an efficient algorithm A that defeats the PRG game with g,
then there exists an efficient B that guesses h(x) given f(x).

Proof. Assume there exists some A that successfully distinguishes g(x) from random bits.
Formally,

Prx[A(f(x), h(x)) = 1)]− Pr[A(Un+1) = 1)] ≥ ε /∈ negl(n)

Note that x ∼ Un implies f(x) ∼ Un since f is a permutation, so Un+1 ∼ f(x), U1, where U1

is h(x) half the time and ¯h(x) the rest of the time. The second term of the above equation
is therefore equivalent to 1

2(Prx[A(f(x), h(x)) = 1] + Prx[A(f(x), ¯h(x)) = 1]) and we can
regroup the terms in the equation to get:

1
2

(Prx[A(f(x), h(x)) = 1]− Prx[A(f(x), ¯h(x)) = 1]) /∈ negl(n)

This shows that a PRG attack algorithm A can also serve as an algorithm that guesses a
hardcore bit of a OWF. By definition of OWFs and hardcore bits, this cannot happen, so
g must be a PRG. 2
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3.2 ∃ PRG g : {0, 1}n → {0, 1}n+1 =⇒ ∃ PRG g′ : {0, 1}n → {0, 1}l

We present an algorithm for constructing g′ : {0, 1}n → {0, 1}l using PRG g : {0, 1}n →
{0, 1}n+1. Note that we require only that g is a PRG; it needn’t be f(x), h(x) as in the
proof of the previous lemma.

Algorithm 1 g′(x ∈ {0, 1}n)
s0 := x
for i = 1, . . . , l do
si, σi := g(si−1)

end for
return σ1, σ2, . . . , σl

Lemma 3.2 g′ defined by Algorithm 1 is a PRG. Formally, no efficient algorithm can
distinguish g′(x) = σ1, . . . , σl from Ul with non-negligible advantage for random, secret x.

Proof. The proof uses a hybrid argument based on a set of experiments Expt1, . . . , Exptl,
where Expti generates l bits as follows:

• Choose σ1, . . . , σi−1 at random.

• Choose si−1 uniformly at random from {0, 1}n.

• Run the g′ algorithm starting at the ith iteration of the for loop to determine σi, . . . , σl.

Then Expt1 gives g′(x) for random x and Exptl+1 is Ul.

We show that Pr[A(Expt1) = 1] − Pr[A(Exptl+1) = 1] ∈ negl(n) (ie g′ is a PRG) by
showing the following claim.

Claim 3.3 Pr[A(Expti) = 1]− Pr[A(Expti+1) = 1] ∈ negl(n) for i = 1, . . . , l.

Assume for contradiction that the previous expression is not negligible for some i. Then we
can construct B as follows to break PRG g:

• B gets y = {g(x), Un+1} from the PRG challenge for g.

• B chooses σ1, . . . , σi−1 at random.

• B sets σi = yn+1.

• B runs the g′ algorithm starting at the (i + 1)th iteration of the for loop using si =
y1, . . . , yn to produce σi+1, . . . , σl.

• B gives σ1, . . . , σl to A and uses A’s output as its output to the PRG challenger for g.

Note that if y = g(x), thenA receives Expti with si−1 = x ∼ Ul. If y ∼ Ul+1, thenA receives
Expti+1 with si = y1, . . . , yn ∼ Ul. B’s advantage therefore is exactly A’s advantage. Since
g is a PRG by assumption, this proves the claim. The lemma follows from the fact that
there are a polynomial number of experiments, all of which are individually close. 2
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CS 388H Introduction to Cryptography 19-Oct-2009

Lecture 15: Pseudorandom Functions

Instructor: Brent Waters TA: Sara Krehbiel

1 Lecture 14 Recap: PRGs from OWPs

Last lecture we wanted a PRG g : {0, 1}n → {0, 1}l from a OWP f : {0, 1}n → {0, 1}n. We
did this in two steps:

1. We showed that for OWF f , g(x) = f(x), h(x) was a PRG by reducing a PRG attack
algorithm to an algorithm that guessed the h(x) given f(x), which is not possible for
OWP f and HP h.

2. We showed how to construct g′ : {0, 1}n → {0, 1}l using PRG g : {0, 1}n → {0, 1}n+1

and established that g′ was a PRG by defining a series of hybrid experiments and
showing that each pair of consecutive experiments was indistinguishable based on the
assumption that g is a PRG.

2 Pseudorandom Functions

Definition 2.1 A random function F : {0, 1}k → {0, 1}l is specified by a table of 2k × l
random bits.

Consider a family of functions F : {0, 1}k → {0, 1}l where each is specified uniquely by a
random key K. Efficiency essentially requires k = p(λ). Usually, |K| ∈ O(λ). In any case,
|K| << 2k · l, so the amount of randomness required in such a set of functions is polynomial
in λ compared to the exponential amount of randomness needed to define a truly random
function. We want a good notion of pseudorandom functions for a couple reasons:

1. They can be used to create symmetric key cryptography. We will show today that
PRFs can be built from PRGs, which we know exist if OWFs exist. This gives
symmetric key cryptography an advantage over public key cryptography in that it
is based on the very weak and general assumption of the existence of OWFs, so its
security is potentially stronger.

2. Next lecture, we’ll see how to use PRFs to build many-message signature schemes
that avoid the state explosion of the tree-based scheme from lecture 7.

Definition 2.2 F as above is a secure pseudorandom function family iff all efficient
A are such that Prf [Af() = 1]− PrK [AFK() = 1] is negligible.

The notation above essentially means A is not significantly more likely to detect true ran-
domness when given oracle access to a truly random function f than when it is given oracle
access to FK from family F (where K is hidden from A).
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Why is this setup different from (and maybe more legitimate than) the random oracle
model? In the random oracle model, we assume that H behaves as a random function
despite the fact that an attacker in reality could have access to all of the code specifying H.
Here, we give the attacker the description of function family F but explicitly withhold K.

3 Constructing PRFs from PRGs

We now present the Goldreich, Goldwasser, and Micali construction of a secure PRF
family F : {0, 1}k → {0, 1}n with security parameter λ (ie |K| = O(λ)) from a PRG
G : {0, 1}n → {0, 1}2n.

Given s ∈ {0, 1}n, define G0, G1 : {0, 1}n → {0, 1}n so that G(x) = G0(s)|G1(s). De-
fine FK (|K| = n) with the following algorithm:

Algorithm 1 FK(x ∈ {0, 1}k)
{Here, we label the s with 0, . . . , k. In the proof, we will label them with prefixes of x.}
s0 := K
for i = 1 . . . k do
si := Gxi(si−1)

end for
return sk

We want to prove that F is a secure PRF family if G is a PRG. Our approach will be a
series of double-hybrid experiments.

We are no longer concerned with a single si specified at each level i = 0 . . . k, but with
each possible s̃x(i) , where x(i) = x1, . . . , xi is the ith prefix of x.

Define hybrid Hi to be the experiment where we choose s̃y uniformly at random for all
values of y st |y| ≤ i. Then compute s̃x(j) := Gxj (s̃x(j−1)) for j = i+ 1 . . . k and return s̃x.

H0 is FK and Hk is a random function, so if we show that Pr[A(Hi) = 1]−Pr[A(Hi+1) = 1]
is negligible, we can conclude that F is a PRF family.

In Hi, the s in the first i levels of the tree are generated randomly and subsequent nodes
are generated with G0 or G1 (half of the PRG) seeded with the value of the parent node,
specified by x(i). In Hi+1, the s in the first i + 1 levels are all random. To prove indistin-
guishability, we define another set of hybrid experiments where Hi,0 = Hi and Hi,last = Hi+1

and Hi,j is indistinguishable from Hi,j+1.

One idea: Successive sub-experiments could make two more of the level-(i + 1) nodes
random from left to right. What is the problem with this? Even if it is the case that
successive sub-experiments are only negligibly distinguishable, there are 2i experiments, so
this will not show that Hi an Hi+1 are only negligibly distinguishable.
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Better idea: Assume wlog that A makes at most t = poly(n) oracle queries. Use these
queries to define intra-level hybrid experiments. (We’ll pursue this next lecture.)
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CS 388H Introduction to Cryptography 21-Oct-2009

Lecture 16: PRFs Continued and Symmetric Key Cryptography

Instructor: Brent Waters TA: Sara Krehbiel

1 GGM PRFs: Lecture 15 Recap and Security Reduction

Algorithm 1 FK(x ∈ {0, 1}k)
{Here, we label the s with 0, . . . , k. In the proof, we will label them with prefixes of x.}
s0 := K
for i = 1 . . . k do
sx(i) := Gxi(sx(i−1))

end for
return sx

Last lecture we presented the GGM construction of PRF family F : {0, 1}k → {0, 1}n
from a PRG G : {0, 1}n → {0, 1}2n and began to outline the proof that FK is indeed a PRF.
The algorithm above is the same as from lecture 15 with the seeds/nodes specified with the
successive prefixes of input x rather than just the level. Here we complete the proof.

Theorem 1.1 If G is a PRG, then FK as defined by Algorithm 1 is a PRF.

Proof. Our approach will be to illustrate if any efficient PRF attacker A can distinguish
between any two of a polynomial number of 2-level hybrid experiments, then A can be used
to defeat the PRG challenger on G. We suppose A makes t ∈ poly(n) queries to the oracle
it is provided (truly random f or pseudorandom FK as above with K hidden).

Define Hi to be the experiment that on query x generates sx(i) randomly and uses the
FK algorithm starting at the (i+ 1)th iteration to produce sx as the oracle’s output.

We can see that H0 mirrors FK and Hk mirrors a truly random function. As with other
hybrid proofs, because there are a polynomial number (k) of experiments, if we can estab-
lish that A cannot distinguish any Hi from Hi+1, then we have shown that F is a secure
pseudorandom function family.

To show Pr[AHi+1 = 1] − Pr[AHi = 1] ∈ negl(n), we define a series of hybrid experi-
ments Hi,j where Hi,0 = Hi and Hi,t = Hi+1 and show that A cannot distinguish between
any of these on the assumption that G is a PRG.

Define Hi,j to be the experiment that generates outputs for the first j queries requested by
A by choosing random sx(i)|0, sx(i)|0 and then picking up at the (i + 2)th iteration of FK

(seeded with sx(i+1)). The remaining queries are generated by choosing random sx(i) and
picking up at the (i+ 1)th iteration of FK .
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Now we are ready to show if A distinguishes between Hi,j and Hi,j+1, we can construct a B
that breaks the PRG challenge (r0, r1) for G by keeping track of A’s t queries and producing
outputs for them using the following algorithm:

Algorithm 2 B for A that distinguishes Hi,j from Hi,j+1 with queries x1, . . . , xt

for ` = 1 . . . t do
if x(i) has been seen before then

use old values of sx(i)|0 and sx(i)|1
else if ` ≤ j then

choose sx(i)|0 and sx(i)|1 at random
else if ` ≥ j + 2 then

choose sx(i)|0 = G0(Sx(i)) and sx(i)|1 = G1(Sx(i))
else
{` = j + 1} choose sx(i)|0 = r0 and sx(i)|1 = r1

end if
start running FK from the i+ 2th iteration and give sk to A

end for
return A’s answer to PRF challenge as answer to PRG challenge (r0, r1)

If (r0, r1) are truly random, then B simulates Hi,j+1 for A. If (r0, r1) = G(s) for some s,
then B simulated Hi,j . B’s advantage in the PRG game is therefore exactly A’s advantage
in distinguishing Hi,j+1 from Hi,j . Because G is given to be a PRG, A’s advantage must
be negligible, and this completes the proof that FK is a PRF. 2

2 More Space-Efficient Signature Schemes Using PRFs

Recall the tree-based many message signature scheme from lecture 7. Every time we reached
a new node we had to not only generate but store two new public and private key pairs for
its children in order to be able to sign messages along that path in the future. However, we
could have instead stored the randomness that the key generation algorithm used and just
regenerated the same pairs as needed.

So far, this still requires O(# messages signed) storage. However, now that we have es-
tablished the existence of PRFs that deterministically produce random-looking outputs for
a given input, we can use pseudorandom bits for the key generation at each node. Then
we can store K and any time a key pair for the children of some node is required, we use
FK(node ID #) as the pseudorandom (but deterministically computed) input for the key
gen algorithm. This reduces the space requirement to a |K|.

3 Symmetric Key Cryptography

Symmetric key cryptography assumes a single shared key SK required by the both the
encrypting party and the decrypting party. This is less convenient than public key cryp-
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tography in that it requires transfer of a secret, but now that we know how to construct
PRFs from OWFs, we will be able to argue the security of symmetric key cryptosystems
on extremely weak assumptions.

3.1 Algorithms for symmetric key encryption

• Gen(λ)→ SK

• Enc(SK,m ∈M)→ CT

• Dec(SK,CT )→ m∪ ⊥

3.2 Security definitions

We’ll first give the definition for security under chosen plaintext attack, which is the sym-
metric key analogue to IND-CPA security of public key encryption. Then we will introduce
a new, stronger form of security under chosen ciphertext attack.

3.2.1 CPA security for symmetric key encryption schemes

A symmetric key encryption scheme E is CPA secure if for any efficient attack algorithm
A, the advantage of A in the following game is negligible (AdvA = Pr[b′ = b]− 1/2):

• Challenger computes SK ← GenE(λ).

• Challenger gives A oracle access to EncE(SK, ·). (A can request CT = EncE(SK,m)
for poly(λ) messages m ∈ M throughout the course of the game. You can think of
this as the symmetric key analogue to giving VK to A in the public key IND-CPA
challenge, because it similarly gives A the ability to encrypt messages.)

• A is allowed to choose m0,m1 for the challenger to encrypt. (Assume |mi| = |mj |
∀mi,mj ∈M.)

• Challenger picks b ∈ {0, 1} and gives CT ∗ = EncE(SK,mb) to A.

• A gives guess b′.

Note that A may query the oracle for one of the mb it provides to the challenger for
encryption, but A has no control over the randomness used in any of the algorithms.

3.2.2 CCA security for symmetric key encryption schemes

A symmetric key encryption scheme E is CCA secure if for any efficient A, A’s advantage
is negligible in the previous game with the added stipulation that A also receives oracle
access to DecE(SK, ·) and can ask for decryptions of any poly(λ) number of CT for CT 6=
CT ∗ = EncE(SK,mb).
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3.3 Construction of a CPA-secure symmetric key encryption scheme

Assume we have a PRF F : {0, 1}` → {0, 1}n with functions indexed by keys K. Define the
algorithms of an encryption scheme as follows:

• Gen(λ)→ Pick PRF key K at random; set SK := K.

• Enc(SK,m ∈M = {0, 1}n)→ Choose random r ∈ {0, 1}`; set CT := (r, FSK(r)⊕m).

• Dec(SK,CT = (c1, c2))→ Decrypt m = c2 ⊕ FSK(c1).

It is easy to check that this scheme is correct. Its CPA security will be shown next lecture
using a reduction showing that A’s advantage in this scheme is close to as in a scheme
using truly random f instead of PRF FSK . The security of the truly random scheme is
straightforward to establish.
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CS 388H Introduction to Cryptography 26-Oct-2009

Lecture 17: Message Authentication Codes

Instructor: Brent Waters TA: Sara Krehbiel

1 From Last Lecture: Finishing Proof of Security of PRF-
Based Symmetric Key Encryption Scheme

Consider the algorithms for the symmetric key encryption scheme that was proposed last
lecture as CPA-secure. It assumes the existence of a PRF family F : {0, 1}` → {0, 1}n.

• Gen(λ)→ Pick PRF key K at random; set SK := K.

• Enc(SK,m ∈M = {0, 1}n)→ Choose random r ∈ {0, 1}`; set CT := (r, FSK(r)⊕m).

• Dec(SK,CT = (c1, c2))→ Decrypt m = c2 ⊕ FSK(c1).

1.1 Size of `

Last lecture, the question of how large ` needed to be for security was posed. Because
attacker A is allowed oracle access to the encrypt algorithm, a polynomial number of queries
could potentially give A non-negligible information about FSK if the size of F ’s domain (2`)
is not exponential in λ. To avoid this, choose ` ≈ λ.

1.2 Security proof approach

Let GameReal be the IND-CPA challenge for the above encryption scheme. Let Gam-
eRandom be the IND-CPA challenge for the encryption scheme with F replaced by a truly
random function f .

If we can show that any algorithm’s advantage in GameReal is at most negligibly dif-
ferent than its advantage in GameRand and that its advantage in GameRand is at most
negligible, then we will have established the CPA-security of the encryption scheme.

Lemma 1.1 For all efficient A, |AdvA,Real −AdvA,Rand| ∈ negl(λ).

Proof. Assume for contradiction that there exists some A for which the lemma does not
hold. We construct B that breaks the PRF property of F .

• PRF challenger gives B oracle access to either f or FK (K hidden).

• B simulates an IND-CPA challenger for the encryption scheme for attacker A, replac-
ing computation of FK(r) with oracle queries through the PRF challenger.

• A gives B two messages, m0,m1.

• B chooses random bit b and passes encryption of mb to A.
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• A makes guess b′.

• B outputs 1 to the PRF challenger if b′ = b and 0 otherwise.

B simulates GameReal for A if the PRF challenger gives him oracle access to FK and
GameRand if his oracle access is to f . By forwarding the correctness of A’s guess, he
effectively harnesses A’s de facto ability to distinguish between the games to achieve a non-
negligible advantage against the PRF challenger. F is given to be a OWF, so the lemma is
proven. 2

Lemma 1.2 For all efficient A, AdvA,Rand ∈ negl(λ).

Proof. We may note that f(r)⊕mb ∼ U` and infer that AdvA,Rand = 0. However, we have
to consider that the attacker is allowed Q ∈ poly(λ) encryption queries and therefore may
know f(r) for up to Q values of r. If the encryption algorithm randomly chooses one of
these values for r when it encrypts mb, the attacker can figure this out from c1 and decrypt
the message perfectly before guessing. However, there are 2` possible values for r, so we can
use the union bound to establish that the attacker only can guess perfectly with at most
negligible probability Q/2` and in all other cases f(r)⊕mb ∼ U` implies zero advantage for
A. 2

We have shown that no efficient polynomial A breaks IND-CPA and the proposed OWF-
based symmetric key encryption scheme is therefore IND-CPA secure.

2 Exercises

Here we present two exercises using the IND-CPA’ game, which we define to be the same
as the IND-CPA game except that in addition to encryption oracle access, the attacker can
specify what randomness is used in oracle queries.

2.1 Security of modification to previous encryption scheme

Argue whether, given the security of the previous encryption scheme and OWF g : {0, 1}` →
{0, 1}`, the following encryption scheme is IND-CPA’ secure:

• Gen(λ)→ Pick PRF key K at random; set SK := K.

• Enc(SK,m ∈ M = {0, 1}n) → Choose random r ∈ {0, 1}` or specific r specified by
attacker; CT := (g(r), FSK(g(r))⊕m).

• Dec(SK,CT = (c1, c2))→ Decrypt m = c2 ⊕ FSK(c1).

2.2 Security of modification to arbitrary encryption scheme

Argue whether IND-CPA’ security is implied by IND-CPA security for general encryption
schemes.
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3 Message Authentication Codes (MACs)

MACs are symmetric key analogues of signature schemes. The motivation for symmetric
vs public key signatures is that they may be more efficient.

3.1 Algorithms

A MAC scheme is characterized by the following algorithms:

• Gen(λ)→ SK

• MAC(SK,m)→ tag σ

• V erify(SK,m, σ)→ {0, 1}

Correctness is essentially the same as with public key signature schemes: For SK ← Gen(λ),
we should have V erify(SK,m,MAC(SK,m)) = 1.

3.2 MAC security

3.2.1 Standard unforgeability

A MAC scheme is said to be existentially unforgeable under chosen message attack if any
attack algorithm has at most negligible advantage in the following game:

• Challenger gets SK ← Gen(λ).

• Attacker gets oracle access to MAC(SK, ·).
Let S = {m1, . . . ,mQ} be the attacker’s oracle queries (Q ∈ poly(λ)).

• Attacker outputs m∗, σ∗.

• Attacker wins if V erify(SK,m∗, σ∗) = 1.

Note that the attacker doesn’t really benefit from oracle access to V erify(SK, ·, ·) because
the MAC oracle is guaranteed to produce correct results and checking a polynomial number
of attempted forgeries before submitting them will not increase a negligible advantage to a
non-negligible one.

3.2.2 Strong unforgeability

The setup of the strong unforgeability of the game is the same, but instead of S consider
T = {(m1, σ1), . . . , (mQ, σQ)}, the series of pairs of the attacker’s oracle queries and the
tags they returned. To win, the attacker must submit any forgery (m∗, σ∗) /∈ T .

Note that this is a stronger notion of security because for forgery (m∗, σ∗), m∗ /∈ S =⇒
(m∗, σ∗) /∈ T , so any attacker of the standard unforgeability game can attack the strong
unforgeability game.
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3.3 Construction of a fast MAC using a PRF

Given F : {0, 1}` → {0, 1}n, build a MAC for messages in M = {0, 1}`:

• Gen(λ)→ Choose random PRF key K

• MAC(K,m)→ σ := FK(m)

• V erify(K,m, σ)→ 1 if σ = FK(m), 0 otherwise

3.4 Structure of proof of security

Use a strategy similar to the proof of security of the PRF-based encryption scheme from
the beginning of lecture:

1. Define GameReal to be the unforgeability game with the encryption scheme above;
define GameRand to be the unforgeability game with an encryption scheme as above
but with random f replaced for PRF F .

2. Show that the advantage of any attacker in GameRand is at most 1/2n, or Q/2n if
the attacker is given a V erify(SK, ·, ·) oracle, but negligible in any case.

3. Show that the advantage of any attacker is not significantly different in GameReal and
GameRand by constructing an algorithm B that harnesses a non-negligible advantage
of such an attacker to break the PRF.
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CS 388H Introduction to Cryptography 28-Oct-2009

Lecture 18: Constructing a CCA-Secure Encryption Scheme

Instructor: Brent Waters TA: Sara Krehbiel

1 Rigor Guidelines

Consider the algorithms for the symmetric key encryption scheme that was proposed last
lecture as CPA-secure assuming that its function F was a PRF. Establish that it is IND-
CPA-secure based on the PRF property of F using the following structure:

1. State the theorem: eg If F is a PRF family, then the scheme is CPA-secure.

2. Define the games/hybrid experiments your proof will use, if applicable. With games,
it’s often enough to clearly describe them in terms of their difference from a well-
established game: eg Define GameRand to be the CPA challenge with random f used
in place of PRF FK .

3. Provide intuition about how the proof will proceed: eg We will argue that the dif-
ference in advantage in the two games is negligible and then that the advantage in
GameRand is negligible, thereby showing that the attacker has negligible advantage
in GameReal.

4. State your lemma(s): eg For any efficient A, the A’s advantage in GameReal is neg-
ligibly different than A’s advantage in GameRand.

5. Proof: eg Assume for counterexample that an A with non-negligibly different ad-
vantages exists. Construct B to break PRF F . Give your construction/description
of B. Analyze B’s advantage. Things like the factor of two converting between
Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0] and Pr[b′ = b] − 1/2 are not super impor-
tant, but terms like Q/2n are important to call out explicitly before establishing them
as negligible (and subsequently ignoring them, as appropriate).

2 Constructing a CCA-Secure Encryption Scheme

2.1 Re-examine previous symmetric encryption scheme (Lectures 16-17)

Given OWF family F : {0, 1}` → {0, 1}n, define:

• Gen(λ)→ Choose random K

• Enc(K,m ∈ {0, 1}n)→ Choose random r ∈ {0, 1}`; CT := (r, FK(r)⊕m).

• Dec(K, (c1, c2))→ Decrypt m = c2 ⊕ FK(c1).
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We showed this was CPA-secure by using a CPA attacker to break F ; is it CCA-secure?
CCA-security is a valid real-world concern because attackers can often get a lot of informa-
tion just from seeing whether a decrypt algorithm fails on certain ciphertexts.

CCA-secure systems allow attackers to query the decryption oracle on any ciphertexts
other than their challenge ciphertext. Suppose an attacker is given an encryption CT ∗ =
(r, FK(r)⊕mb. The attacker can request decryption on CT ′ = CT ∗ with the last bit flipped.
Flip the last bit of the returned message, and that gives mb, making it easy for the attacker
to guess b.

2.2 Using MACs for CCA-Secure Encryption

Implicit in the definition of the algorithms comprising a symmetric key encryption scheme is
the idea that only trusted parties with access to the secret key should be allowed to produce
ciphertexts. It seems reasonable that we would want these ciphertexts to be MACed so
decrypt will reduce the possibility of bogus decryption oracle queries by explicitly failing
on anything that is not MACed properly.

2.2.1 First proposal: Encrypt and MAC

Given an unforgeable MAC scheme (GenMAC ,MAC, V erify) and a CPA-secure symmetric
encryption scheme (GenCPA, EncCPA, DecCPA), define another symmetric key encryption
scheme as follows:

• Gen(λ)→ SK := (KM ← GenMAC ,KE ← GenCPA)

• Enc(SK,m)→ CT := (c1 ← EncCPA(KE ,m), c2 ←MAC(KM ,m))

• Dec(SK,CT )→ If V erify(KM , DecCPA(KE , c1), c2) then output m, else output ⊥

Is this CCA-secure? Note that both CPA and CCA-security of encryption schemes deal
with preventing an attacker from getting information about the message, but MAC un-
forgeability ensures only that attackers can’t trick the Verify algorithm, making no claims
about the ease of distinguishing between the tags of two messages.

To see this more concretely, consider a secure scheme MAC′. Build MAC as a modified
version of MAC′ that adds the message to the end of the tag, and the Verify algorithm
ignores those bits. The new scheme is a legitimate MAC scheme, but the tags clearly do
not hide the message.

Since the above encryption scheme exposes the tag of m, it would not even be CPA se-
cure with the MAC scheme described above.

2.3 Second proposal: MAC then Encrypt

This time we try a scheme that hides the MAC tag so we don’t have to worry that CPA/CCA
attackers will be able to read the message from the ciphertext.
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• Gen(λ)→ SK := (KM ← GenMAC ,KE ← GenCPA)

• Enc(SK,m)→
Let x←MAC(KM ,m)

Set CT := EncCPA(KE , (x,m))

• Dec(SK,CT )→
Let (x,m)← DecCPA(KE , CT )

If MAC(KM ,m) = x then output m, else output ⊥

This looks CPA secure because x, which we previously saw could potentially give away m,
is hidden. Is there a way to manipulate CT while keeping (x,m) in tact so decrypt will
actually work?

Consider a secure scheme CPA′ whose encrypt algorithm outputs some CT. Define scheme
CPA where its algorithm takes the CPA′ encryption of a message and tacks on a random bit.
Decrypt just ignores the last bit and otherwise works like the CPA′ decryption algorithm.

If we use this CPA scheme in our scheme above, then we could just flip the random bit at
the end and query the decrypt oracle to get m.

2.4 Third proposal: Encrypt then MAC

• Gen(λ)→ SK := (KM ← GenMAC ,KE ← GenCPA)

• Enc(SK,m)→ CT := (c1 ← EncCPA(KE ,m), c2 ←MAC(KM , c1))

• Dec(SK,CT )→ If V erify(KM , c1, c2) output m← DecCPA(KE , c1), else output ⊥

This proposal is CCA-secure. To prove this, define Game CCA to be the standard IND-
CCA game and define Game SetReply to be a simulation of the CCA game where the
decrypt oracle given to the attacker is modified. The simulation keeps track of S = the
set of (c1, c2) pairs produced by the attacker’s queries to the encrypt oracle. If the decrypt
oracle is queried on (c1, c2) ∈ S, it replies with the message that was used to produce the
encryption. Otherwise, it returns a fail.

If we prove the security of the SetReply game, how will this relate to the security of the
real game?

Claim 2.1 For all efficient A that make at most Q queries, if MAC is strongly unforgeable,
then |AdvA,CCA −AdvA,SetReply| ∈ negl(λ).

To prove this, we construct an algorithm B from an attacker A that violates the above claim
and show that B forges a MAC tag.

1. B is given MAC oracle access.

2. B chooses KE for the CCA encryption simulation.
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3. A queries the encrypt and decrypt oracles, and B handles them as follows:

When A queries for the encryption of m, B gets c1 by running EncCPA(KE ,m)
and gets c2 as result of query to MAC oracle for tag of c1

When A queries for the decryption of (c′1, c
′
2), B returns the previous value of m

if (c′1, c
′
2) ∈ S. Otherwise, ask the verify oracle if c2 is a valid tag of c1. If not, return

a fail. If it does, then submit this as the MAC-breaking forgery.

Unless A queries on (c′1, c
′
2) /∈ S, B simulates the SetReply game. But A is given to have

a non-negligibly better advantage in CCA than in SetReply, so it must make such a query
with non-negligible probability.

To show the second claim, that A’s advantage in the SetReply game is negligible, we note
that the SetReply game basically reduces to the CPA game with some additional book-
keeping. Intuitively, this should work out since the encryption scheme is based on a known
CPA-secure encryption scheme.
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CS 388H Introduction to Cryptography 2-Nov-2009

Lecture 19: Midterm Review

Instructor: Brent Waters TA: Sara Krehbiel

There are no scribe notes for the lecture that was devoted to the midterm review, when
we discussed topics for the midterms and practice problems.
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CS 388H Introduction to Cryptography 9-Nov-2009

Lecture 20: Bit Commitment

Instructor: Brent Waters TA: Sara Krehbiel

1 Agenda

• Today: Bit commitment

• Wednesday: Lecture by Vitaly Shmatikov

• Next week: Zero knowledge

• Later: Lossy trapdoor functions

2 Bit Commitment: Intuition and Protocols

Basic idea:

1. One party chooses a bit, puts it in a lock box, keeps the key.

2. Other party receives the box but not the key.

3. Box can be unlocked with the key at a later point.

Applications:

• Two people can remotely simulate flipping a coin by each choosing a bit, sending them
in locked boxes, and simultaneously revealing and XORing them.

• This can be extended to encompass more general knowledge commitment: put a
prediction about a future event in a lock box.

Bit commitment schemes are characterized by two protocols:

1. SC(b, λ)↔ RC(λ)

Commitment c is a common output; witness w is output to sender only.

2. SR(c, w, b)↔ RR(c)

Receiver outputs accept and b or reject.

The protocols are said to be correct iff the receiver accepts the behavior of an honest sender.
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3 Bit Commitment Security Properties

3.1 Hiding: Sender’s security

Hiding is maintained if for all efficient malicious receivers R∗C that outputs a guess of the
bit chosen during the commit protocol,

Pr[SC(b = 1)↔ R∗C = 1]− Pr[SC(b = 0)↔ R∗C = 1] = negl(λ)

3.2 Soundness/binding: Receiver’s security

A protocol is sound if all efficient malicious attackers S∗R have a negligible chance of winning
the following game:

1. Challenger runs RC with S∗C ; common output c is revealed and attacker can save w.

2. S∗C executes the reveal protocol with RC twice using the same c and both values of b;
wins if both values of b are accepted.

3.3 Perfect hiding and binding

Statistically secure hiding. Statistically secure hiding is when unbounded adversaries
have at most negligible advantage.

Perfect hiding. In a perfect hiding scheme, all unbounded receiver adversaries have zero
advantage in determining b.

Perfect binding. In a perfectly binding scheme, all unbounded sender adversaries have
zero advantage in getting both values of b accepted.

Claim 3.1 A bit commitment protocol cannot simultaneously be perfectly hiding and per-
fectly binding.

Proof. Assume perfect binding. Then for an honest run of the commit protocol, it is only
possible to convince the receiver to accept a reveal of either 0 or 1 (not both). An unbounded
receiver could iterate through all possibilities for randomness associated with either input
and determine which input generated the commitment. 2

4 Pederson Commitment

Commit SC(b, λ)↔ RC(λ)

1. Receiver chooses group G of prime order p with |p| ≈ λ and two generators g and h.
Receiver cares that g 6= 1 (which would destroy binding). Give (G, g, h) to sender.

2. Sender checks h 6= 1 (this would destroy hiding).

3. Sender chooses r ∈ Zp. Computes σ = gbhr (r is the witness). Sends to receiver.
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4. Commitment c = ((G, g, h), σ).

Reveal SR(b, c, r)↔ RR(c)

1. SR gives receiver r ∈ Zp, b ∈ {0, 1}.

2. Receiver checks that σ = gbhr. If so, accept b; else, reject.

The Pederson bit commitment protocol is perfectly hiding. Proof: With r random
and h 6= 1, the distribution of σ is independent of b. Formally:

∀x ∈ G,Pr[σ = x|b = 0] = Pr[σ = x|b = 1]

. This means that b is information theoretically secure. (Additionally, all values of x are
equally likely, but this isn’t required for perfect hiding.)

The Pederson bit commitment protocol is binding. Proof: Assume there exists
some efficient malicious sender A that breaks the commitment, and build B to break DL:

1. B gets DL challenge G, g, h(= ga).

2. B starts commit by giving G, g, h.

3. A gives σ to B.

4. B checks that A produces two effective reveals (b = 0, r), (b = 1, r′).

5. Then σ = hr = ghr′ → g = hr−r′
, so B breaks DL with a = (r − r′)−1 mod p.

Note the similarities to the argument we used earlier for proving security of CRHF families.
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CS 388H Introduction to Cryptography 11-Nov-2009

Lecture 21: Guest Lecture

Instructor: Brent Waters TA: Sara Krehbiel

Lecture 21 was a guest lecture by Professor Vitaly Shmatikov on security.
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CS 388H Introduction to Cryptography 16-Nov-2009

Lecture 22: Interactive Proof Systems and Zero Knowledge

Instructor: Brent Waters TA: Sara Krehbiel

1 Interactive Proof Systems

1.1 Motivation for zero knowledge systems

One situation in which zero knowledge schemes are useful is when you want to prove the
effectiveness of an algorithm without revealing it. For example, Netflix recently offered a
$1M prize to the person that could produce the best preference-predicting algorithm. To
participate in this competition, you may have wanted a way to prove that your algorithm
works without exposing it before getting your prize.

1.2 Interactive proof systems

An interactive proof system is a protocol between an unbounded prover P (sometimes called
a wizard) and a poly-time verifier V that accepts or rejects inputs x as members of a given
language L.

1.3 Completeness

< P, V > is complete if for all inputs x ∈ L, Pr[< P, V > (x) = accept] = 1− negl(k).

1.4 Soundness

< P, V > is sound if for every potentially malicious prover P ∗ and any input x /∈ L,
Pr[< P ∗, V > (x) = accept] = negl(k).

1.5 IP languages

IP is the class of languages L that have interactive proof systems.

2 Example: Graph Isomorphism

Definition 2.1 Let G0 = (V0, E0) and G1 = (V1, E1). G0 and G1 are isomorphic if and
only if there exists a permutation π : [1 . . . n] → [1 . . . n] such that for all i, j ∈ {1, . . . , n},
(i, j) ∈ E0 ↔ (π(i), π(j)) ∈ E1.

Consider the language of pairs of isomorphic graphs: L = {(G0, G1)|G0 andG1 are isomorphic}.
How could an unbounded prover P prove to an efficient verifier V that (G0, G1) ∈ L?
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2.1 Interactive proof system for graph isomorphism

P enumerates through all permutations and provides the π such that π(G0) = G1. V checks
that for all i, j ∈ {1, . . . , n}, (i, j) ∈ E0 ↔ (π(i), π(j)) ∈ E1 (in time linear with the number
of edges) . If so, accept, else reject.

Completeness holds because if the graphs are isomorphic, a permutation exists so P will
find it in an exhaustive search of the n! permutations.

Soundness holds because if the graphs are not isomorphic, no verifiable permutation ex-
ists for P to choose from.

2.2 Graph non-isomorphism

How could a prover convince a verifier with high probability that a two graphs are not
isomorphic? Two observations:

• G0, G1 not isomorphic means that for any G′, G′ is isomorphic to at most 1 of G0, G1.

• If an unbounded prover is shown G′ = π(Gσ) for a random permutation π and bit σ,
it will not be able to guess σ with probability greater than 1/2. This is because there
exists permutation π′ such that G′ = π′(G1−σ), and this permutation-bit combination
was equally likely to have been chosen. This argument is information theoretic (the
distribution of G′ is not affected by the value of σ), so P ’s unboundedness can’t help.

Now consider a protocol where V challenges P k times as follows:

1. V chooses random σ, π and sends π(Gσ) to P

2. P checks whether π(Gσ) is isomorphic to G0 or G1 and returns σ corresponding to
the isomorphic graph.

3. If correct, V continues with a fresh challenge. If incorrect, V rejects G0, G1 as not in
the language of non-isomorphic graphs.

The protocol is complete because if the graphs are not isomorphic, the unbounded prover
will always determine which was permuted by comparing G′ to all permutations of each
graph. Only one of the graphs will have a match, revealing σ. The verifier will accept the
correct σ all k times.

The protocol is sound because the second observation that σ is information theoretically
hidden from the prover if the graphs are isomorphic ensures that the prover will be right
just 1/2 the time. The probability of being right k times is 1/2k ∈ negl(k).

2.3 Witnesses

Note that in system checking whether graphs are isomorphic, we could have required P to
be bounded but given the witness π so P didn’t have to iterate through the n! possibilities.
In graph non-isomorphism, we rely on iterated experiments because we don’t know of a
similarly short witness to establish non-isomorphism.
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3 Zero Knowledge

A zero knowledge system is an interactive proof system in which P and V must both be
efficient, but P is additionally given a witness w. For example, say P is supposed to provide
V with the prime factorization of an integer N . If we give P witness w = p, q both prime
with N = pq, then P can provide a verifiable answer efficiently.

Completeness and soundness are as before. Note that soundness protects the verifier against
a cheating prover. In zero knowledge schemes we require an additional property that en-
sures a prover that a nosy verifier will not learn anything other than what the prover gives
it explicitly.

3.1 Zero knowledge property (Goldwasser, Micali, Rackoff definition)

A proof system < P (w), V > satisfies the zero knowledge property if and only if for every
efficient cheating verifier V ∗ and any x ∈ L, there exists an efficient M that simulates the
protocol using access to the code of V ∗ and the transcript of the < P (w), V ∗ > protocol
but does not have access to the witness or P ’s code such that the distribution of the view
(transcript of interactions and coins of V ∗) of < P (w), V ∗ > (x) is indistinguishable from
M(x)’s outputs.

This is the same as saying that for every poly time distinguisher D that outputs 1 when
it thinks it has seen the transcript of a protocol (where the prover had the witness) and 0
otherwise, it must be that Pr[D(< P (w), V ∗ > (x)) = 1]− Pr[D(M(x)) = 1] = negl.

4 3-Coloring

Later we will see a zero-knowledge protocol for 3-coloring. This is important because 3-
coloring is a known NP-complete problem, so it implicitly gives us a zero-knowledge proof
system for every NP problem, including factoring, etc.
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CS 388H Introduction to Cryptography 18-Nov-2009

Lecture 23: Zero Knowledge for Graph Isomorphism

Instructor: Brent Waters TA: Sara Krehbiel

Last time we gave a protocol for deciding whether graphs were isomorphic. It involved a
prover P providing a witness π to V , which gave the verifier knowledge. This time, we will
come up with a zero-knowledge system for graph isomorphism.

1 Zero Knowledge for Graph Isomorphism

Recall the definition of zero knowledge for a language L: for all V ∗ and x ∈ L there exists
an M such that M(x) is indistinguishable from the view of < P (w), V ∗ > (x).

Define protocol < P (φ), V > (G0, G1) with φ(G0) = G1 to be the following done k times:

1. P chooses random π and sends F = π(G1) to V .

Note that now P can provide a permutation from either G0 or G1 to F :

G1
π→ F G0

φ→ G1
π→ F

2. V chooses random b ∈ {0, 1}.
3. If b = 1, P gives π. If b = 0, P gives φ ◦ π.

4. V checks that the received permutation takes Gb to F . If yes, continue, else quit.

The protocol is clearly complete because G0, G1 isomorphic means P can always give a
correct permutation. Soundness holds because if G0, G1 are not isomorphic, P will be able
to provide permutation π when V chooses b = 1, but no permutation exists for b = 0
because F and G0 are not isomorphic. The probability of winning k times is the probability
of V randomly picking b = 1 k times in a row which is 1/2k ∈ negl(k).

2 Proof that Graph Isomorphism Protocol is Zero Knowl-
edge

For the zero knowledge proof, describe a simulator M for V ∗. For each round:

1. Record the state of V ∗ (you can think of this as the configuration of the turing machine
representing V ∗ or a snapshot of a virtual machine)

2. Choose a random b′, π′ and send F = π′(Gb′) to V ∗.

3. Get request b from V ∗.

4. If b = b′, give π′ to V ∗. Else restart V ∗ at its previous state and go back to step 1.

We can say this runs in expected poly-time or we can stipulate that we quit (with negligible
probability 1/2k if we fail k times in a row.
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2.1 Analysis

We’ve established that (G0, G1) ∈ L means F is distributed independently of b′, so b′ is
information theoretically secure. Thus, at each try, we have has exactly 1/2 chance of
success (when V ∗ picks b = b′). Then in the entire simulation, there is a negligible chance
of quitting, and when M doesn’t quit, it outputs permutations distributed exactly like the
permutations given by P in the real protocol. In other words,

Pr[D(< P (φ), V ∗ > (x)) = 1]− Pr[D(M(x)) = 1|M doesn’t quit] = 0

. We want that for every D,

Pr[D(< P (φ), V ∗ > (x)) = 1]− Pr[D(M(x)) = 1] = negl(k)

Note that

Pr[D(M(x)) = 1] = Pr[D(M(x)) = 1|no quit]Pr[no quit]
+ Pr[D(M(x)) = 1|quit]Pr[quit]

Pr[no quit] is negligibly close to 1 and Pr[quit] is negligible, so D has negligible advantage
in distinguishing M from the view of P, V ∗.
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