New Constructions and Practical Applications for **Private Stream Searching** (Extended Abstract)

John BethencourtDawn SongBrent WatersCMUCMUSRI

Searching for Information

- Too much on-line info to download
 - WWW pages
 - Message boards
 - Web email, USENET
- Search
 - User specifies search criteria
 - Textual keywords
 - Server returns relevant content

Motivation for Private Searches

• What if keywords are secret?

- Personal privacy (example query: "lice removal")
- Commercial interests ("takeover bid")
- Intelligence gathering ("Al Qaeda")

- Client gives server encrypted query
- Server runs search algorithm, returns data
- Client recovers matching content
- Server does not know what client searched for

They'll know what

I'm looking for!

Practical Example: Google News Alerts

Create a Google Alert		
Enter the topic you wish to monitor.		
Search terms:	illuminati	
Туре:	News 💌	
How often:	once a day 🛛 💌	
Your email:	bethenco@cs.cmu.edu	
	Create Alert	
Google will not sell or share your email address.		

- Google News
 - Google continuously crawls 4,500 news sources
 - Estimated 135,000 news articles each day
 - Alerts service
 - User registers search keywords
 - Matching articles emailed as they are discovered

Private Google News Alerts

- What about a *private* alerts service?
 - User registers encrypted search keywords
 - Periodically receives matching articles
 - Google remains oblivious!

Google doesn't know what I want, but they can still give it to me!

Our techniques enable private alerts service

- Previous schemes not practical for this scenario
- Our results later in talk

Contributions

- New scheme for private stream searching
- Several novel constructions
 - Reconstructing matching documents by solving linear systems
 - Encrypted Bloom filters
- Practical analysis demonstrating feasibility
 - Orders of magnitude more efficient than previous work [Ostrovsky-Skeith CRYPTO 2005]

Basic Architecture: Overview

Basic Architecture Step 1: Query Construction

- Client runs QueryConstruction algorithm to produce encrypted query
 - Queries are disjunctions of textual keywords (simplest case)
 - Variations and extensions possible
- Sends encrypted query to server

raw keyword list

encrypted query

Basic Architecture Step 2: Executing the Search

- Server gets encrypted query
- Server runs StreamSearch algorithm
 - Processes documents to produce encrypted buffers
 - Server remains unaware of search keywords

Basic Architecture Step 3: Recovering the documents

- Client gets encrypted results
- Runs FileReconstruction algorithm
 - Uses private key
 - Recovers original matching documents

Scheme Highlights: Homorphic Encryption

- How is this accomplished?
 - Scheme in full paper
 - Just highlights, general flavor here
- Homomorphic encryption
 - Paillier cryptosystem
 - Public key system
 - Additive homomorphism:

 $E(a) \cdot E(b) = E(a+b)$

- Allows rudimentary computations on encrypted data
- Lets server meaningfully use encrypted query

Scheme Highlights: Encrypted Queries

- Queries are encrypted hash table
 - Each cell is encryption of zero or one
 - Probabilistic encryption
 - Homomorphic encryption

Scheme Highlights: Conducting the Search

- Server can then obtain encryption of number of keyword matches
 - Used to bootstrap rest of algorithm

Scheme Highlights: Recovering the Documents

- Client decrypts returned data with private key
- Can construct linear system in the matching documents
 - Special metadata returned from server
 - Encrypted Bloom filter
- Solves linear system for documents
 - System solveable if random 0,1 matrix is non-singular
 - Almost always the case

Singular with exponentially low probability with respect to size! [Komlós, Tao-Vu STOC 2005]

Communication Complexity

- Performance / robustness tradeoffs in size of queries and results
- New scheme
 - O(n) in the size of the returned content for the bulk content of the matching files
 - Some metadata is O(n log(t/n)) or O(n log n)
- Previous scheme
 - O(n log n) for bulk content
 - Much higher multiplicative constants

Practical Analysis: Private News Alerts

- Private news alerts scenario
 - 135,000 news articles searched each day
 - Retrieve results four times per day
 - 5KB article size (text only, compressed)
 - Up to 2000 matching articles per day
- Performance of our scheme
 - Query size: 4-30MB
 - Server processing time: 500ms per article
 - Communication size: 500KB 7MB per time period
 - Client reconstruction time: 0 15min

Communication Overhead: Our Scheme

- Low overhead
 - Factor of 1.2 before inflation due to Paillier
 - 2.4 after

Communication Overhead: Previous Scheme

- Previous scheme impractical
 - Communication overhead: 40 times
 - Reconstruction time: 4.7 hours

Conclusion

Efficient system for private stream searching

- Low communication overhead
 - Factor of 2.4 over actual matching documents
 - Previous system up to factor of 40
- Extensions also developed
 - Arbitrary length documents
 - More complex queries
 - Other stuff
- For more info see full version of paper
 - http://www.cs.cmu.edu/~bethenco/search.ps
 - Includes details of actual scheme!
 - Also security proofs, etc.