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Abstract. To this day, realizations in the standard-model of (lossy)
trapdoor functions from discrete-log-type assumptions require large pub-
lic key sizes, e.g., about Θ(λ2) group elements for a reduction from the
decisional Diffie-Hellman assumption (where λ is a security parameter).
We propose two realizations of lossy trapdoor functions that achieve
public key size of only Θ(λ) group elements in bilinear groups, with a
reduction from the decisional Bilinear Diffie-Hellman assumption.
Our first construction achieves this result at the expense of a long com-
mon reference string of Θ(λ2) elements, albeit reusable in multiple LTDF
instantiations. Our second scheme also achieves public keys of size Θ(λ),
entirely in the standard model and in particular without any reference
string, at the cost of a slightly more involved construction.
The main technical novelty, developed for the second scheme, is a com-
pact encoding technique for generating compressed representations of
certain sequences of group elements for the public parameters.

1 Introduction

The notion of Lossy Trapdoor Function (LTDF) is a new fundamental public-key
primitive that was recently introduced by Peikert and Waters [20], henceforth
PW. This notion has generated interest for two main reasons:

1. LTDFs can be constructed from widely differing hardness assumptions. These
include the two recent constructions of PW from the Discrete-Log-based
DDH and a worst-case Lattice assumption [20]. In addition, the Damg̊ard-
Jurik [9] variant of the decade-old Paillier cryptosystem [19], which, as was
independently pointed out in [23, 5], happens to immediately give an LTDF
from the Factoring-based assumption of composite residuosity.

2. LTDFs can in turn serve as black-box building blocks within more complex
primitives, such as regular injective trapdoor functions, provably collision-
resistant hashing, and public-key encryption with chosen-ciphertext security
[20], as well as some new strong notions of security for deterministic public-
key encryption [5]. We may also expect to see more such applications in the
future.
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Since LTDFs are general and admit several applications, an interesting pur-
suit is to seek how to realize them in the most efficient manner, from robust and
hardness assumptions. Peikert and Waters (PW), who first proposed the notion,
provide two LTDF constructions from appealing hardness assumptions [20]. All
of their constructions provided built upon a public key that reflected a “matrix
structure”. One drawback of this approach is that it results in a rather large
public key of Θ(λ2) group elements and thus (for the DDH-based construction)
grows cubically with the security parameter λ. As a concrete example, at the
λ = 128 bit security level, if we assume an optimal elliptic-curve implementation
with the smallest possible 256-bit element representation, this implies a public-
key storage and transmission requirement in excess of (3 × 128)2 × 256 bits, or
about 36 Mb, for every single instance of the LTDF.

In subsequent work Boldyreva, Fehr, and O’Neill [5] and Rosen and Segev [23]
provided constructions of Lossy Trapdoors from the composite residuosity as-
sumption. These constructions provided greater efficiency. Their security de-
pends upon the composite residuosity assumption, while our goal is to look for
new and efficient lossy trapdoors that do not depend upon the difficulty of fac-
toring.

Our goal is to work toward achieving efficient trapdoor functions based on
discrete log assumptions. One compelling reason to find solutions in the discrete
log setting is that there are potentially many concrete instances for any one
constructions. For example, there are several different realizations of bilinear
groups [13]. If one group them turned out to be insecure, a construction might
still be viable under a different group. In contrast, the assumption of factoring
is absolute.

Our Approach In this work, we aim toward making LTDFs from discrete log
assumptions realizable in practice. Our guiding principle is to try to compress
the DDH-based LTDF construction from [20] in order to shrink the public key
size from Θ(λ2) to Θ(λ) group elements.

More precisely, we propose two new LTDF constructions that extend the PW
DDH-based LTDF onto pairing-friendly curves. Since with a (symmetric) pairing
the DDH assumption is generally false, we use the related decisional Bilinear
Diffie-Hellman (DBDH) assumption. DBDH is weaker than DDH, which is why
it may hold even in bilinear groups where DDH does not, but in counterpart our
constructions do require a pairing.

On pairing-friendly curves, we will show how to exploit the bilinear map
in various ways in order to remove much of the redundancy from the LTDF
public key, and instead allow the user to reconstruct it efficiently as needed. Not
only does this save a factor of λ in the public-key size, it also makes the LTDF
computation more space- and time-efficient.

We begin by observing that in the original construction there is informational
theoretically much redundancy in their public key. When constructing an injec-
tive key their setup algorithm chooses r1, . . . , rn, a1, . . . , an ∈ Zp for a trapdoor
function of input length n. The (i, j)-th entry for i 6= j is the element gri·aj and
along the diagonal the key consists of gri·ai · g.



In order to take advantage of this redundancy our first idea is to use a
bilinear group G with generator g. A natural approach is to consider publishing
as part of the public key ga1 , . . . , gan , gr1 , . . . , grn consisting of only O(n) group
elements. Then when evaluating the trapdoor, one can dynamically generate
the PW matrix by taking the (i, j)-th element as e(gri , gaj ). While this first
technique does indeed compress the matrix, it actually gives the attacker too
much information. In particular, it gives the attacker the diagonal of a lossy key.
This allows the attacker to trivially distinguish between a lossy and an injective
key; undercutting the main security guarantee. Our challenge is create a public
key that allows a user to generate all the matrix elements except along the
diagonal, but while simultaneously keeping the key short (Θ(n) group elements).

In our first construction we amortize the cost of a creating the matrix by
leveraging a (fixed, reusable) common reference string (CRS) to achieve the com-
pression. The reference string consists of Θ(n2) group elements, and is therefore
as long as one public key in the PW scheme; however, each additional public key
consists of just O(n) group elements. This system works since the CRS provides
information when taken along with the public key to generate everything except
along the diagonal. The primary downsides to this approach are the reliance on
a trusted third party to generate the reference string and the large size of the
reference string itself.

In our second construction we develop a new method in order to achieve true
key compression without CRS. To do this we find a somewhat surprising connec-
tion to the identity-based revocation scheme of Lewko, Sahai, and Waters [17].
In their work, they describe a “two equation” technique for identity-based revo-
cation. They show how to encrypt to an identity ID∗ such that a private key for
any identity ID 6= ID∗ is able to decrypt.3 Intuitively, we will apply a (high-level)
version of this idea, not for revocating IBE users but for compressing an LTDF
public key.

Conceptually we will map each row i of a ciphertext to a ciphertext that is
associated with a “virtual identity” i and each column j with a “virtual key”
for identity j. Using this approach one is able to decompress the encoding and
obtain an LTDF public key matrix for every element (i, j), except on the diagonal
where i = j. Along the diagonal, the system generates two dependent equations
and the public key will provide these components separately. Taken all together,
this gives us a Lossy TDF system with Θ(n) size public keys in the standard
model.

The security of both schemes follows from the DBDH assumption, respec-
tively in the common reference string model in the first case and in the standard
model in the second case.

We note that, while our keys and ciphertext only require Θ(λ) group elements
instead of Θ(λ2), half of the new elements will live in the bilinear “target” group
Gt instead of entirely in the “source” group G. For known pairing and known
attacks, the optimal choices of G and Gt are such that the representation size of

3 The work of Lewko et al. [17] actually shows how to efficiently revoke several users
at once, but for our purposes discussing a single revocation is sufficient.



Gt-elements grows faster than that of G-elements. This makes our technique less
useful in the asymptote that one could have expected (based on current knowl-
edge). Nevertheless, our framework is quite advantageous for practical values of
the security parameter.

1.1 Related Work

The concept of trapdoor functions was first proposed by Diffie and Hellman [10].
In an (injective) trapdoor function f() a party with a trapdoor can invert the
function; however, inversion should be hard for any attacker. Trapdoor func-
tions have several interesting applications in cryptography ranging from two
party computation [26], Non-Interactive Zero Knowledge Proofs [4], and Chosen-
Ciphertext Secure Encryption [18, 11] among others.

The first trapdoor realization was given by Rivest, Shamir, and Adleman [22]
with security based on what has become known as the RSA assumption. Other
standard model construction include the factoring based one of Rabin [21] and
that of Paillier [19]. We note that all these standard model constructions rely on
the difficulty of factoring.

Using the random oracle heuristic it is possible to transform any secure pub-
lic key encryption system into an injective trapdoor [3, 2]. In addition, Bellare,
Halevi, Sahai, and Vadhan gave generic standard model transformations from
one way functions to highly non-injective trapdoor functions; however, the ap-
plications of these forms of trapdoors is rather limited. For example, they cannot
be used to realize public key encryption. For this reason, we will often implicitly
assume injectiveness when discussing useful trapdoor functions.

Until recently, the only known standard model realizations of trapdoor func-
tions (LTDFs) relied on the difficulty of factoring. Recently, Peikert and Wa-
ters [20] introduced the concept of Lossy Trapdoor Functions. A Lossy Trapdoor
system has the property that a publicly evaluable function f can be created to
either be an injective function or highly non-injective; moreover, an adversary
should not be able to distinguish what type of function f is given its description.
They showed that Lossy TDFs implied standard trapdoor functions and gave
several other applications of LTDFs including chosen-ciphertext secure encryp-
tion. In addition, they showed different realizations from both the hardness of
the decisional Diffie-Hellman problem and certain lattice-based problems. One
drawback of their construction is that uses a matrix of public key components
that results in large public keys of O(λ2) group elements.

The PW lattice-based LTDF construction fares better asymptotically than
the discrete-log one, since it requires O(λ2) elements of Zq where q is relatively
small 4. However, the constants associated with the lattice-based construction
might make it less efficient for security parameters in the foreseeable future,
and for this paper we focus on the discrete-log setting (specifically, in a pairing-
enabled context).

4 Typically, q is set to be much less than 2λ. See Gama and Nguyen [14] for a discussion
of current lattice parameters.



One potential benefit of our work is that our public key compression tech-
niques, developed here in a pairing context, might have future applications to the
lattice setting. We note that lattice-based crypto analogues of pairing-based tech-
niques have been used to construct Identity-Based Encryption in a lattice setting:
e.g., Gentry et al. [15] recently gave a lattice-based trapdoor function system with
interesting applications such as hash-and-sign signatures and identity-based en-
cryption: at first in the random-oracle model (see [15]), and more recently in the
standard model (see [1, 7, 8]).

More recently, Boldyreva, Fehr, and O’Neill [5] and Rosen and Segev [23]
independently showed that the Damg̊ard Jurik [9] extension of the Paillier [19]
trapdoor was actually an efficient lossy trapdoor function and therefore inher-
its its applications. Freeman et al. [12] gave a number of LTDF constructions
based on the quadratic and composite residuosity assumptions, or on d-Linear
assumptions (see [6, 24]). Hemenway and Ostrovsky [16] showed that LTDFs can
also be constructed from smooth homomorphic hash proof systems.

2 Preliminaries

Before describing our constructions, it is useful to review and understand the
original scheme, and also to see where it can be improved. (The paper [20] has
two constructions, one from the DDH problem, the other from worst-case Lattice
problems. We focus on the first. We refer to the paper for the full details of their
construction.)

2.1 Simplified Definition of Lossy TDFs

First, we give a somewhat simplified definition of Lossy TDF, based on [20].
Let λ be a security prameter and n(λ) be the length of the input on which the
function is evaluated.

Definition 1. A lossy trapdoor function (LTDF) is a collection of polynomial-
time algorithms (Sinj, Sloss, Fltdf, F

−1
ltdf) such that

– Sinj randomly generates an injective function along with an associated trap-
door,

– Sloss generates a lossy function (and no trapdoor),
– Fltdf evaluates any function generated by either Sinj or Sloss on any input

vector x ∈ {0, 1}n,
– F−1ltdf recovers the original input x from the output y of an injective function

using its trapdoor.

Additionally, there is a security requirement that the injective and lossy functions
respectively generated by Sinj and Sloss be computationally indistinguishable.

This simplified definition will cover all the cases of interest in this paper.
We refer to [20] for a more precise and more complex definition. A few related
notions (such as the amount of “lossiness” induced by the lossy mode of an
LTDF) will be recalled as we need them.



3 Compact LTDFs from DBDH in the CRS Model

Our first LTDF construction with a compressed output is set in the common
reference string (CRS) model, and uses bilinear maps.

The main interest of this construction is that it is very simple, yet produces
a Lossy TDF with shorter public keys than any previous ones not based on
factoring. It also features a security reduction from the decisional bilinear Diffie-
Hellman assumption, which is one of the most-studied and weakest among all
the very many bilinear-group assumptions that have been made to date.

Although the reference string in this scheme is about as long as the public
key in the PW DDH scheme of the previous section, we stress that the CRS is
reusable across users whereas public keys are clearly not.

3.1 Intuition

At a high level, this LTDF is a bit similar to the PW DDH-based PW. A gener-
alized ElGamal scheme is used to encrypt a matrix message M that is either the
identity matrix I or the zero matrix 0, with the same consequences on injectivity
versus lossiness as before. The novelty lies in the distribution of the public key.

Recall that in the PW DDH-based LTDF, the public key comprises the actual
ciphertext C of M, and whose representation takes up to n × (n + 1) group
elements. Of course, there is a lot of redundancy in C, due to the way it is
constructed, but all of this redundancy had to remain computationally hidden
in order for the injective and lossy modes to remain indistinguishable.

Our general goal here will be carefully to reveal a portion of this redundancy,
so that it can be reconstructed at the time of use (explicitly or implicitly) with-
out having to be transmitted, but without compromising the computational
indistinguishability between an injective LTDF and a statistically lossy one.

Our approach in this first scheme starts with a decomposition of the cipher-
text C = (C1‖C2) linearly into two “additive” components: C = Cbulk ⊕Cdiag,
where ⊕ is the element-wise matrix addition using G’s own group operation
(which we chose to write using a multiplicative notation):

1. The first component, Cbulk, will correspond to C1 and all the elements of
C2 off the diagonal: this is the “bulk” of the matrix C, which stays the same
in both injective and lossy modes.

2. The second component, Cdiag, will comprise just the elements on the diag-
onal of C2: there are only n of them, and the only ones whose construction
changes between the two modes.

Since Cdiag is already relatively compact, most of the gain will come from com-
pressing Cbulk. Observe in the PW scheme that the off-diagonal elements of C2

are of the form grizj , where ri is ephemeral and zj belongs to the private key (if
any); i.e., we have a product of two secret values in the exponent of a fixed group
generator. Instead of publishing all the grizj elements in extenso, this suggests
the publication of “precursor” elements gri and gzj and the use of a pairing to



reconstruct e(g, g)rizj = e(gri , gzj ) on the receiving end. From there, one could
then implement the rest of the PW scheme in the group generated by e(g, g)
instead of G.

Unfortunately, this idea does not quite work yet, because it also exposes the
diagonal values e(gri , gzj ) for i = j, and from this information the injective and
lossy modes become easy to distinguish. We need to forbid the reconstruction
of e(gri , gzj ) when i = j, and allow it only when i 6= j. This is where the CRS
comes into play: the CRS can be constructed in such a way that it contains
values of the form e(gri , gzj ), or even grizj , but only for i 6= j and not for i = j.

Alas, there is still one problem: the private key elements zj clearly cannot be
part of a CRS that is meant to be reusable across multiple users. The solution
is to have the CRS contain a reusable matrix of non-diagonal elements griaj ,
and have each LTDF public key contain an independent vector of gbj . A bilinear
pairing can be used to reconstruct e(griaj , gbj ) = e(g, g)riajbj as needed, for i 6= j.
The products ajbj play the role of the zj in the PW scheme (though only bj is
available as trapdoor information). The ri are analogous to the secret ephemeral
randomizers in the PW scheme, except that they have been immortalized in the
CRS.

The main difficulties will be to show that inversion can still be performed
only with the partial trapdoor bj (in injective mode), and to prove that the ri
can be safely reused for all LTDF instances (even with different public keys)
without putting their security in jeopardy.

3.2 Construction

Consider a pair of finite, abelian, bilinear groups (G,×) and (Ĝ,×) of prime order

p = |G| = |Ĝ|, respectively generated g ∈ G and ĝ ∈ Ĝ. Let e : G× Ĝ → Gt be
a non-degenerate, efficiently computable, bilinear pairing into a third abelian
group Gt also of order p = |Gt| and thus generated by e(g, ĝ) ∈ Gt. We
use the multiplicative notation for the group operation in all three groups.
There may or may not exist efficiently computable group homomorphisms be-
tween G and Ĝ; we make no requirement of this nature either way. We as-
sume that the Decision Bilinear Diffie-Hellman (DBDH) problem is hard in

G × Ĝ, meaning that no probabilistic polynomial-time algorithm A can distin-
guish (g, ga, gb, ĝ, ĝa, ĝc, e(g, ĝ)abc) from (g, ga, gb, ĝ, ĝa, ĝc, e(g, ĝ)d) with proba-
bility non-negligibly greater than 1

2 , for randomly chosen a, b, c, d ∈ Zp.
As before, in all generality we must consider not a fixed pair of groups G and

Ĝ, but an infinite family of such groups sampled by a PPT instance generator G,
where G on input 1λ outputs a description of (p,G, g, Ĝ, ĝ, e) such that blog2 pe =
Θ(λ). The DBDH assumption, rigorously speaking, pertains to the family of
groups induced by G for sufficiently large λ.

For simplicitly of notation, in the description of the scheme and its proof
below, we drop all “hats”, thereby blurring the distinction between the two
bilinear groups G and Ĝ (though Gt must remain distinct). For example, in this
case the Decision-BDH problem becomes to distinguish (g, ga, gb, gc, e(g, g)abc)
from (g, ga, gb, gc, e(g, g)d).



Our compact LTDF from DBDH in the CRS model is constructed as follows:

CRS Setup: The universal setup algorithm, on input 1λ, selects a bilinear
group (p,G, g, e) ← G(1λ) and fixes n > 3 log2 p. It then secretly chooses
random ri ∈ Zp for i ∈ [n] and random aj ∈ Zp for j ∈ [n], and publishes a
CRS that consists of the following:

– the description of G = 〈g〉, and the pairing e;

– gri for all i ∈ [n];

– gaj for all j ∈ [n];

– griaj for all (i, j) ∈ [n]2 such that i 6= j;

Everyone can check that the CRS has been computed correctly (though of
course not that the exponents ri and ai have been actually picked at random
and forgotten).

Sampling algorithm, Injective mode: The injective function generator, de-
noted Sinj(p,G, g, e), randomly draws bj ∈ Zp for j ∈ [n]. It looks up the
CRS to obtain gri for i ∈ [n] and gaj for j ∈ [n].

– The LTDF function index, or “public key”, is published as 2n elements
of G and Gt in total, arranged in a single-row matrix B and a diagonal
matrix D (where 1 = e(g, g)0),

B =
(
gb1 · · · gbn

)
D =


e(gr1 , ga1)b1 · e(g, g) 1 · · · 1

1 e(gr2 , ga2)b2 · e(g, g) · · · 1
...

. . . 1
1 1 · · · e(grn , gan)bn · e(g, g)


– The LTDF trapdoor, or “private key”, consists of the n-vector b =

(b1, . . . , bn) ∈ Znp .

Sampling algorithm, Lossy mode: The lossy function generator, denoted
Sloss(p,G, g, e), looks up the CRS and proceeds in the same fashion as Sinj,
except that the public and private keys are created differently.

– The LTDF function index, or “public key”, consists of two matrices B
and D, where,

B =
(
gb1 · · · gbn

)
D =


e(gr1 , ga1)b1 1 · · · 1

1 e(gr2 , ga2)b2 · · · 1
...

. . . 1
1 1 · · · e(grn , gan)bn


– There is no LTDF trapdoor, or “private key” (since in this case one is

statistically unable to perform an inversion, whether one is given the bj
or not).



Evaluation algorithm: The evaluation algorithm, denoted Fltdf, takes as in-
put ((B,D),x), where (B,D) is a function index, and x ∈ {0, 1}n is an
n-bit binary input string. The evaluation algorithm Fltdf naturally also has
access to the CRS. To facilitate the exposition, we present two different but
functionally equivalent implementations of Fltdf.

• “Pedestrian” evaluation (requires n2 − n pairings):
To compute the desired output, the simplest way is first to reconstruct the
analogous to the matrix C in the PW scheme, and then proceed with the
function evaluation in the analogous way. One big difference with PW is that,
here, the matrix C does not have all of its elements in the same group G.
Rather, the zero-th column, C1, has elements in G, whereas the remaining
n column, C2, have elements in Gt.
Let thus C = C1‖C2 with C1 ∈ Gn×1 and C2 ∈ Gn×nt computed from B,
D, and the CRS,

C1 =

g
r1

...
grn

 C2 =



D1 e(gr1a2 , B2) · · · e(gr1an , Bn)
...

. . .
...

e(gr2a1 , B1) D2 · · · e(gr2an , Bn)
...

. . .
...

e(grna1 , B1) e(grna2 , B2) · · · Dn


The output is the row-vector y = x ·C, with 1 element in G and n elements
in Gt, given by,

y = x ·C = x · (C1‖C2) =
(
x1 . . . xn

)
·

c1,0 c1,1 · · · c1,n...
. . .

...
cn,0 cn,1 · · · cn,n


=
( ∏n

i=1 c
xi
i,0 ,

∏n
i=1 c

xi
i,1 , . . .

∏n
i=1 c

xi
i,n

)
∈ G×Gnt

• “Shortcut” evaluation (requires n pairings):
A careful study of the above procedure suggests a faster but equivalent way to
evaluate the function on the given inputs. Instead of expanding each element
of C using a pairing, only to have them multiplied up together down the line,
we keep the multiplication in mind from the start which allows us to do but
a single pairing for each output element.
The output must be a row-vector y of size n+ 1, where y0 ∈ G and each of
the elements yj ∈ Gt for j ∈ [n] are directly computable from the respective
expressions,

y0 =

n∏
i=1

(gri)xi ∈ G , yj = e

 ∏
i∈[n]\{j}

(griaj )xi , Bj

 ·Dxj

j ∈ Gt

It is easy to see that both methods give the same result. The pedestrian
methods clearly shows the analogy to PW, while the shortcut method re-
quires much less memory and is more efficient.



Inversion algorithm: The inversion algorithm F−1ltdf is input (b,y), where b =
(b1, . . . , bn) ∈ Znp is the trapdoor from the injective sampling algorithm Sinj,

and y = (y0, y1, . . . , yn) ∈ Gn+1
t is the output of the evaluation algorithm

Fltdf. The algorithm F−1ltdf has access to the CRS.
The bits of the preimage x = (x1, . . . , xn) ∈ {0, 1}n of y are output as
follows,

xj =

{
0 if yj = e(y0, g

aj )zj · e(g, g)0

1 if yj = e(y0, g
aj )zj · e(g, g)1

Naturally, e(y0, g
aj )zj is only computed once for each j ∈ [n], so the entire

inversion process requires n pairing evaluations — or n+1, strictly speaking,
though e(g, g) never changes.

3.3 Security

There are three properties that must be satisfied in order for our scheme to be
an LTDF: (1) injectivity in injective mode; (2) enough lossiness in lossy mode;
(3) computational indistinguishability of the two modes.

Theorem 1. The preceding algorithms define a collection of (n, n−log2 p)-Lossy
TDFs under the Decision Bilinear Diffie-Hellman assumption for G, in the Com-
mon Reference String model.

Proof. We need to prove each of the three listed properties: (1) injectivity in
injective mode; (2) enough lossiness in lossy mode; (3) computational indistin-
guishability of the two modes.

Injectivity in injective mode follows from that, since the matrix M and thus
C2 is invertible, the information from x will be preserved by the evaluation
function, which by construction amounts to “multiplying” the input vector x by
the matrix C2 (and also C1 which is important to compute the function inverse
but not to show injectivity).

Lossiness in lossy mode follows from that, under the parameters generated
by Sloss, the evaluation function Fltdf(C, ·) has at most p possible output values
as the input vector x varies, for any given choice of randomness, and so the
information about x contained in the output y is at most log2 p bits. Since the
domain of x is {0, 1}n of size 2n for n > 3 log2 p, it follows that the lossiness (i.e.,
the information loss about x for a uniformly distributed x) caused by Fltdf(C, ·)
is equal to k = log2(2n)− log2 p = n− log2 p > n− n/3 = 2n/3.

Indistinguishability is the only property that requires a complexity assump-
tion, and whose proof makes use of the common reference string. The result is
stated in Lemma 1.

Lemma 1. Under the Decision Bilinear Diffie-Hellman assumption in G, the
distributions of public keys C generated by Sinj and by Sloss cannot be distin-
guished with non-negligible advantage by a probabilistic polynomial-time algo-
rithm, in the CRS model.



Proof (Proof.). The proof is based on a hybrid-game argument; that is, we grad-
ually switch the LTDF from an injective-mode setup Sinj to a lossy-mode setup
Sloss, one element of the diagonal at a time. That is, for k ∈ [n], one k at a
time, we change Dk from the injective definition (where mk = 1) into the lossy
definition (where mk = 0). For each k, we then show that if the adversary can
successfully distinguish the transition from Hk to Hk+1, then we can turn it into
a BDH distinguisher. (And it must distinguish at least one such transition, if it
is to distinguish injective from lossy.)

We begin by defining intermediate game H ′k where in game H ′k the first k−1
elements are in lossy mode, Dk is a random group element, and Di for i > k are
chosen according to the injective setup.

Under the BDH assumption we can show that Hk is indistinguishable from
H ′k. Our reduction algorithm takes in a d-BDH challenge tuple g, ga, gb, gc ∈
G and T ∈ Gt. For i 6= k it chooses random ai, bi, ri itself. It uses these to
populate the CRS and the public key B at all positions except the k-th position.
It then sets gak = ga , grk = gc, and gbk = gb. Using these knowledge of
bi for i 6= k the reduction can create Di = (e(gai , gri))bi for i < k and for
Di = (e(gai , gri))bie(g, g) for i > k. It finally creates Dk = Te(g, g). If T is a
bilinear tuple we are in game Hk; otherwise we are in game H ′k.

A symmetrical argument can show that for all k it is difficult to distinguish
between H ′k and Hk+1. Putting the sequence together completes our proof.

4 Compact LTDFs from DBDH in the Standard Model

We now present a second LTDF construction with public keys about as compact
as our first construction, and likewise also based on the DBDH assumption in
bilinear groups, but without CRS or any setup requirement.

4.1 Intuition

The general structure is similar to that of our first scheme, which is to say that
it combines the PW LTDF strategy to achieve lossiness with some algebraic
manipulations to remove as much redundancy as possible from the public key.

There is a paradox that we mentioned in the intuition of our first scheme:
that, in order to achieve any meaningful compression of the elements of C with-
out “outside help”, we would need to expose the redundancy that was hidden
in the matrix C. But we could not do that, because it would allow an adversary
to reconstruct not only its off-diagonal elements , but also the “forbidden” ele-
ments on the diagonal (those that determine whether the function is injective or
lossy). Our solution was to use a (thankfully reusable) common reference string
to reveal (the better part of) the off-diagonal elements without saying anything
much at all about the diagonal ones.

Here, we will do much better, and resolve the paradox: we construct a special
compact encoding that, without any outside help, will let anyone easily recon-
struct the off-diagonal elements of C, without exposing the diagonal ones (which
are sent separately).



The idea is to construct a linear system of equations, with one equation per
row i and one per column j, in such a way that each element at the intersection
(i, j) can be obtained by solving the pair of the i-th row and j-column equations
for two variables. The trick is that the equations are constructed in such a way
that they become linearly dependent for i = j, rendering them useless on the
diagonal — and only on the diagonal. As stated in the introduction, this can
be viewed as a novel twist on Lewko’s et al. [17] two equation-based revocation
system, where we conceptually match up rows and columns of the Lossy TDF
with ciphertexts and private keys of an broadcast revocation system.

Of course, we cannot give the equations in the clear, we use a technique that
is quite common in Discrete-Log-hard groups, of encoding all the coefficients we
need to hide as powers of some group generator. That is, instead of revealing
α ∈ Zp, we reveal gα ∈ G. Because Zp and G are homomorphic through expo-
nentiation, we can still perform any additive operation that we like on the “α”s
hidden in the exponents.

Then, since our stratagem with the pairs of equations require some multipli-
cation at some point when trying to solve for the unknowns, we need to make
use of a bilinear map in order to do this one multiplication “in the exponent”.

We now describe our system. The crux of the construction lies in the de-
nominator 1

j−i that we make appear along the computation path, and that will
break things down when one tries it for i = j.

4.2 Construction

The notation regarding bilinear groups is the same as in Section 3. Likewise, to
avoid clutter, we drop all “hats” in the notation, thereby implicitly assuming a
symmetric pairing e : G× Ĝ→ Gt where G = Ĝ. The system continues to work
in the asymmetric setting, for any partition of the bilinear-group elements into
G or Ĝ, as long as it is self-consistent.

Our compact LTDF from DBDH in the Standard Model is constructed as
follows:

Sampling algorithm, Injective mode: The injective function generator Sinj,
on input a security parameter 1λ, selects a bilinear group (p,G, g, e)← G(1λ),
and fixes n > 3 log2 p. It also chooses two independent random generators
u ∈ G and h ∈ G in addition to g ∈ G. It then chooses random ri ∈ Zp for
each i ∈ [n], and random zj ∈ Zp for each j ∈ [n].
– The LTDF function index, or “public key”, is listed as 4n elements of G

and n of Gt:

for each “row” indexi ∈ [n] : Ri = gri , Si = (hi · u)ri

for each “column” indexj ∈ [n] : Vj = gzj , Wj = (hj · u)zj

for each “diagonal” elementk ∈ [n] : Dk = e(g, u)rkzk · e(g, g)

– The LTDF trapdoor, or “private key”, consists of the n-vector z =
(z1, . . . , zn) ∈ Znp .



Sampling algorithm, Lossy mode: The lossy function generator Sloss, on in-
put a security parameter 1λ, proceeds similarly as Sinj above, except for the
key computation:

– The LTDF function index, or “public key”, is listed as 4n elements of G
and n of Gt:

for each “row” indexi ∈ [n] : Ri = gri , Si = (hi · u)ri

for each “column” indexj ∈ [n] : Vj = gzj , Wj = (hj · u)zj

for each “diagonal” elementk ∈ [n] : Dk = e(g, h)rkzk

– There is no LTDF trapdoor (since the evaluation output will be lossy
even with the knowledge of all the secret exponents).

Evaluation algorithm: The evaluation algorithm Fltdf takes as input an LTDF
public key and an n-bit binary input string x ∈ {0, 1}n. Again, there are at
least two functionally equivalent ways to perform the computation; we start
with the inefficient one for expository purposes.

• “Pedestrian” evaluation (requires a total of n2 pairings and double-pairings):
To compute the desired output, the evaluation algorithm starts by recon-
structing a virtual matrix C very similar to that of the CRS scheme of
Section 3 (in its “pedestrian” implementation), and then proceed with the
actual function evaluation. With the present notation, here the virtual ma-
trix C = C1‖C2 is written,

C1 =

e(g, h)r1

...
e(g, h)rn



C2 =


e(g, h)r1z1 · e(g, g)m1 e(g, h)r1z2 · · · e(g, h)r1zn

e(g, h)r2z1 e(g, h)r2z2 · e(g, g)m2 · · · e(g, h)r2zn

...
...

. . .
...

e(g, h)rnz1 e(g, h)rnz2 · · · e(g, h)rnzn · e(g, g)mn


As before, the “message” (m1, . . . ,mn) is a vector of all 0 or all 1, depending
whether the LTDF is lossy or injective (which fact must remain unknown to
Fltdf). We now show how the evaluation algorithm can compute C given the
information at its disposal.
The zero-th column of C consists of elements of Gt that are computed from
the public key. For each index i ∈ [n], the i-th element of C1 is computed as
the pairing,

ci,0 : = e(Ri, h)

= e(g, h)ri ∈ Gt which is indeed the required value for ci,0

The diagonal elements of C are elements of Gt which are explicitly given
in the public key. For k ∈ [n], those are the given values Dk. Hence, the



algorithm simply assigns, for i ∈ [n],

ci,i : = Di

= e(g, h)rizi · e(g, g)mi ∈ Gt as required, with mi ∈ {0, 1} unknown

The off-diagonal of C, i.e., the values ci,j with indices i, j ∈ [n] such that i 6=
j > 0, must be computed explicitly. For each such pair (i, j), the algorithm
Fltdf computes a double-pairing, which is a product, or more precisely here,
a ratio, of two pairings. (Such “double pairings” can be computed almost as
fast as a single pairing.) It computes,

c′i,j : =
e(Ri,Wj)

e(Vj , Si)
=
e(g, hj)rizj · e(g, u)rizj

e(g, hi)rizj · e(g, u)rizj
=
e(g, hj)rizj

e(g, hi)rizj
=
(
e(g, h)rizj

)j−i
and for each such value takes its (j − i)-th root,

ci,j : =
(
c′i,j
) 1

j−i =
(
e(g, h)rizj

) j−i
j−i

= e(g, h)rizj as required for ci,j

Thus, for i 6= j this gives the desired outcome, e(g, h)rizj , as the preceding
derivations show. Crucially, this computation and the root-taking step in
particular will succeed if and only if i 6= j. Hence, a malicious Fltdf cannot
use this method to compute e(g, h)rkzk on the diagonal, and, by comparison
with Dk, infer whether the LTDF is lossy or injective.

The actual LTDF output is the row-vector y = x ·C with n+ 1 elements in
Gt, given by,

y = x ·C = x · (C1‖C2) =
( ∏n

i=1 c
xi
i,0 ,

∏n
i=1 c

xi
i,1 , . . .

∏n
i=1 c

xi
i,n

)
∈ Gn+1

t

• “Shortcut” evaluation (requires n double-pairings plus 1 pairing):

As in Section 3, it is possible to delay the pairing computation and do the
group multiplications first. This reduces the number of pairings (or more
precisely, two-pairing ratios) from n to 1, for each element of the output
vector.

Thus, to compute the output y, a row-vector of n + 1 elements, it suffices
for the algorithm Fltdf to compute yj for j = 0 and j ∈ [n] respectively as
follows,

y0 : = e
( n∏
i=1

Rxi
i , h

)
=

n∏
i=1

e(g, h)rixi ∈ G which is the required value for the output y0



yj : =

(
e

(∏
i6=j R

xi
j−i
i , Wj

)
/e
(
Vj ,

∏
i6=j S

xi
j−i
i

))
·Dxj

j

=
e
(∏

i 6=j g
rixi
j−i , (hj · u)zj

)
e
(
gzj ,

∏
i 6=j(h

i · u)
rixi
j−i

) ·Dxj

j =

∏
i 6=j e

(
g, h
)j rixi

j−i zj∏
i6=j e

(
g, h
)i rixi

j−i zj
·Dxj

j

= e(g, h)
∑

i6=j
j

j−i rixizj · e(g, h)
∑

i6=j
−i
j−i rixizj ·Dxj

j

= e(g, h)
∑

i6=j
j−i
j−i rixizj ·Dxj

j =
∏
i 6=j

e(g, h)rixizj ·Dxj

j

=

n∏
i=1

e(g, h)rixizj · e(g, g)mjxj ∈ Gt as required for yj

It is easy to see that this “Shortcut” evaluation gives the same result as the
“Pedestrian” one, while requiring much less memory and being much faster.

Inversion algorithm: The inversion algorithm F−1ltdf is input (z,y), where z =
(b1, . . . , bn) ∈ Znp is the trapdoor output by the injective-mode Sinj, and

y = (y0, y1, . . . , yn) ∈ Gn+1
t is the output of the evaluation algorithm Fltdf.

The bits of the preimage x = (x1, . . . , xn) ∈ {0, 1}n of y are output as
follows,

xj =

{
0 if yj = y

zj
0 · e(g, g)0

1 if yj = y
zj
0 · e(g, g)1

4.3 Security

Theorem 2. The preceding algorithms define a collection of (n, n−log2 p)-Lossy
TDFs under the Decision BDH assumption for G.

Proof. The theorem follows from the following Lemmas 2, 3, and 4.

Lemma 2. For all LTDF parameters (C, z) produced by the injective-mode setup
function Sinj, we have that ∀x ∈ {0, 1}n, F−1ltdf(z, Fltdf(C,x)) = x, i.e., the LTDF
output is invertible.

Proof. By inspection of the algorithm specifications. Notice that in injective
mode (i.e., for parameters sampled by Sinj), the exponents mi on the diagonal
are equal to 1, and thus preserve the information in the bit xi, allowing the
inversion algorithm to proceed.

Lemma 3. For all LTDF parameters C produced by the lossy-mode setup func-
tion Sloss, the “lossiness” (or information loss for a uniform input vector x) of
the function Fltdf(C, ·) is at least k = n− log2 p >

2
3n bits.

Proof. By construction of the lossy-mode parameters generated by Sloss, the
evaluation function Fltdf(C, ·) has at most p possible output values as the input
vector x varies, for any choice of randomness. Thus the information leakage
about x is at most log2 p bits. Since the domain of x is {0, 1}n of size 2n for
n > 3 log2 p, it follows that the lossiness of Fltdf(C, ·) is k = log2(2n)− log2 p =
n− log2 p > n− n/3 = 2n/3.



Lemma 4. Under the DBDH assumption in G, the distributions of public keys
C generated by Sinj and by Sloss cannot be distinguished with non-negligible ad-
vantage by a probabilistic polynomial-time algorithm.

Proof. The proof is based on a hybrid-game argument; that is, we gradually
switch the LTDF from an injective-mode setup Sinj to a lossy-mode setup Sloss,
one element of the diagonal at a time. That is, for k ∈ [n], one k at a time, we
change Dk from the injective definition (where mk = 1) into the lossy definition
(where mk = 0). For each k, we then show that if the adversary can successfully
distinguish the transition from Hk to Hk+1, then we can turn it into a BDH
distinguisher. (And it must distinguish at least one such transition, if it is to
distinguish injective from lossy.)

Here are the details of the hybrid argument.
We define a series of experiments H1, ...,Hn+1, where, in the experiment

Hk, the LTDF setup function sets Dj = e(g, h)rjzj for all j < k, and sets
Dj = e(g, h)rjzje(g, g) for all j ≥ k. Recall that all the other components of the
public key (i.e., other than the Dj) are defined identically in the injective mode
and the lossy mode.

Observe that H1 is an injective key with the correct distribution, and that
Hn+1 is a lossy key also with the correct distribution. It follows that if for no
k can an adversary distinguish between Hk and Hk+1, then no adversary can
distinguish the injective mode from the lossy mode.

Suppose then that for some k an adversary distinguishes Hk and Hk+1. Then
we can use that adversary to solve a Decisional BDH challenge, thereby contra-
dicting our assumption. Let thus g, ga, gb, gc ∈ G and T ∈ Gt be our DBDH
challenge, where T is either e(g, g)abc or a random element in Gt.

For any fixed k ∈ [n], the reduction for the transition from Hk to Hk+1 works
as follows.

For all i 6= k and j 6= k, the simulator simply chooses ri ∈ Zp and zj ∈ Zp
at random, and computes the corresponding public-key elements Ri and Vj as
in the actual scheme.

For i = k and j = k, the simulator instead chooses some random y ∈ Zp,
and lets h = (gc) and u = h−kgy. It then sets Rk = (ga) and Vk = (gb) (thereby
implictly setting a = rk and b = zk, even though it does not know such values).

The simulator can now compute the public-key components Si and Wj for
all i 6= k and j 6= k, since it knows the exponents ri and zj can thus compute
Sk = (ga)y and Wk = (gb)y. This works only because the contribution of h = (gc)
vanishes from within Sk and Wk for this value of k, and one can check that this
gives the correct values for Sk and Wk.

The simulator can also compute the public-key components Di for all i 6= k.
For consistency and continuity within the entire hybrid sequence of games, for
i < k the components Di are set to be lossy (i.e., computed as in Sloss), while
for i > k the Di are set to be injective (i.e., computed as in Sinj).

To set the one remaining public-key component, Dk, the simulator flips a
coin β ∈ {0, 1} and defines Dk = T · e(g, g)β . The public key is given to the
adversary, who must tell whether it is lossy or injective.



If the BDH instance was genuine, then T = e(g, g) and the adversary will be
in the situation of having to distinguish Hk (if β = 1) from Hk+1 (if β = 0);
it will thus be able to exploit its advantage, if any. However, if T is random
then the adversary cannot have any advantage in this situation since the bit β
is completely hidden from its view.

It follows that any advantage ε that the adversary has at distinguishing Hk

from Hk+1, gives us a BDH distinguisher with advantage ε/2.
To conclude the hybrid argument, considering the entire sequence of hybrid

transitions from Hk to Hk+1 for k ∈ [n], we deduce that any adversary that can
distinguish an injective key from a lossy key with advantage ε, must be able to
distinguish Hk from Hk+1 for at least one value of k with advantage ε/n, which
in turn will give us a distinguisher for solving DBDH with advantage ε/(2n).

This concludes the proof of indistinguishability between the injective and
lossy modes.

5 Conclusion

We have proposed two new Lossy Trapdoor Function schemes of the “discrete-
log” type, that are significantly more efficient than earlier comparable construc-
tions. We gave two schemes: with and withour common reference string. Both of
them make use of pairings, and have efficient security reductions from the classic
DBDH assumption.

The main advantage of “discrete-log-type” LTDF constructions, compared
to more efficient ones of the “factoring” type (based on the Paillier trapdoor),
is that the hardness of problems related to the discrete log generally depend
on the choice of group, unlike those related to factoring that are, so to speak,
absolute. In other words, even though Factoring is liable to be universally easy
independently in all choices of context, there is a hope that Discrete Log and
related problems can remain hard for certain choices of groups (e.g., the counter-
factual generic groups [25]), provided that we can find and construct them.
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