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ABSTRACT
Several important security protocols require parties to per-
form computations based on random challenges. Tradition-
ally, proving that the challenges were randomly chosen has
required interactive communication among the parties or the
existence of a trusted server. We offer an alternative solu-
tion where challenges are harvested from oblivious servers
on the Internet. This paper describes a framework for de-
riving “harvested challenges” by mixing data from various
pre-existing online sources. While individual sources may
become predictable or fall under adversarial control, we pro-
vide a policy language that allows application developers
to specify combinations of sources that meet their security
needs. Participants can then convince each other that their
challenges were formed freshly and in accordance with the
policy. We present Combine, an open source implementa-
tion of our framework, and show how it can be applied to
a variety of applications, including remote storage auditing
and non-interactive client puzzles.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection (e.g., firewalls); E.3 [Data]: Data
Encryption

General Terms
Design, Security

1. INTRODUCTION
In many distributed systems we want to verify claims

made by remote parties. For example, in remote storage
applications such as SafeStore [14], a client will pay remote
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servers to maintain a backup storage of his data. Such a
client will want to check that servers that collect storage
fees are actually using their resources to store his data. Else-
where, in a peer-to-peer (P2P) systems, it is typically desir-
able that a malicious machine not be able to create several
virtual identities and launch a Sybil attack. Thus, clients
will want to verify that no machine owns several nodes.

Verifying such claims with certainty is often extremely
costly or even impossible. For instance, if a remote server
stores 100GB of data for a client, it is prohibitively expensive
for the server to send all the stored data over the network
each time the client wishes to audit the server. Fortunately,
in practice it is often sufficient for a user to perform a prob-
abilistic check of system claims. In a storage system one
could query the server to send a randomly selected k blocks
of data. A cheating server that only stored half of a client’s
data would have a vanishingly small (2−k) probability of
avoiding detection.1 Similarly, a proof of work or client puz-
zle [10, 2, 12] used in a P2P system can be thought of a
probabilistic“proof” that a certain amount of computational
effort was spent by a machine solving the puzzle.

At the heart of these probabilistic checks is the idea that
a random challenge is given to the party making a claim.
The party will then need to create a response to this chal-
lenge such a returning a set of data or solving a client puzzle.
In distributed systems we will usually want two properties
from such a challenge/response mechanism. First, we want
the challenge to be fresh such that the responder could not
have predicted the response long in advance. Otherwise, a
cheating server might only store the challenge blocks of data
or a machine might pre-compute the solution to a client puz-
zle. Second, it is desirable that one response can be verified
by several receivers. That is, the responder should not need
to interact with and respond to each verifier independently.
This property is important, for example, if several users in
a P2P system want to verify a client puzzle, but we do not
want to burden the puzzle solver with performing a separate
computation for each of them. In addition, we would like
to support systems where there isn’t two way interaction
between the verifier and responder, or where the identity of
the verifiers isn’t known in advance.

When prior, interactive communication with the verifier is
not possible, the most straightforward solution is to deploy
a set of trusted servers dedicated to generating challenges,
but this approach has disadvantages of its own. Maintaining
a secure dedicated server can be expensive, especially when

1Using redundant encoding, a user can expect that all of his
data will be recoverable if such tests are met.



the number of participants in a system becomes large. While
it would be convenient to rely on volunteer or peer-to-peer
servers, it may be difficult to verify their legitimacy. An-
other risk is that dedicated random challenge servers might
become targets of denial-of-service attacks. They may also
be subjected to legal takedown measures if some of the sys-
tem’s users engage in illicit or politically sensitive activities.

Our Approach.
Rather than relying on dedicated trusted servers, we pro-

pose deriving what we call “harvested challenges” by mixing
content from a variety of pre-existing online data sources,
which can range from large news and stock quote providers
to personal blogs. Using pre-existing data sources has sev-
eral benefits. No new servers need to be deployed to provide
challenges. The data providers that are harvested likely have
infrastructure to handle large volumes of content requests,
and since the primary purpose of their servers is unrelated
to challenge generation, their removal for legal or political
reasons would be much less likely.

While using existing content providers has advantages, our
approach also presents a unique set of challenges. One prob-
lem is that we need a consistent method for deriving chal-
lenges from widely dissimilar types of content, none of which
are tailored to our application. Another issue is that web-
sites often modify or remove content after a period of time
(for instance, many newspaper sites remove old stories). Fi-
nally, our scheme needs to be resilient against an attacker
who can inject his own input as part of the challenge; for
example, the adversary might post his own entry to a blog
or alter the data on a compromised website.

Our solution to these problems is a general framework
for deriving harvested challenges from Internet sources and
an implementation of this framework called Combine (pro-
nounced like the name of the harvesting machine, with the
accent on the first syllable). Our system lets application
developers decide how data from many sources should be
combined to form challenges with an adequate level of trust
for a particular use. Verifiers can later test that a challenge
was properly derived in accordance with the application’s
policy by checking a subset of the original sources.

For example, an application’s policy might require that
challenges be generated by hashing together fresh content
from six particular sites, and that verifiers must be able
to confirm that the content of at least four of the sites was
included in the challenge. This means the challenge will con-
tinue to be acceptable if any two of the sites modify their
content or become unavailable. An attacker would need to
compromise or predict four of the sources in order to pre-
compute puzzle solutions based on this challenge.

Our framework is flexible in the types of sources that are
harvested. For instance, certain client puzzle applications
need to guarantee that challenges are derived from fresh
content, a task for which many popular RSS feeds are well
suited. On the other hand, cryptographic signature applica-
tions might be able to cope with less precise freshness but
require that content be available for verification long after
challenges are constructed. Policies might incorporate his-
torical stock market data for this purpose.

Which combinations of sites to trust, how to balance be-
tween security and robustness, and the proper levels of fresh-
ness and long term stability are decisions that individual
application developers will make to suit their particular re-

quirements. Our framework allows systems that answer
these questions in many different ways to create suitable
challenges using a single tool, such as Combine.

Outline.
We begin in Section 2 by presenting an overview of our

model and arguing about its security. In Section 3 we discuss
how our approach can be applied to different security appli-
cations. Section 4 describes our harvested challenge frame-
work, including our language for specifying data sources and
policies. In Section 5 we introduce Combine, our implemen-
tation of the framework, and describe an email client puzzle
application that we created to demonstrate its capabilities.
Section 6 presents a study of RSS feeds that we conducted
to evaluate the feasibility of our approach. We review sev-
eral areas of related work in Section 7. Finally, we conclude
and present ideas for future directions in Section 8.

2. HARVESTING CHALLENGES
In our setting there are two parties, which we will call the

deriver and the verifier (see Figure 1). Our system attempts
to achieve correctness and security properties with respect
to these parties:

Correctness A properly behaving deriver is able to con-
vince a verifier that the harvested challenge he presents
was well formed in accordance with the application’s
policy. The system should be robust to some of the
Internet sources becoming unavailable or removing or
modifying their content.

Security Intuitively, for our system to be secure, we must
prevent a corrupt deriver from being able to choose the
derived challenge himself without the verifier detecting
this. In addition, a deriver should not be able to lever-
age any precomputation he performed long before the
challenge was derived.

We assume that the deriver and verifier both have access
to Internet servers that will be used as sources of randomness.
These sources may be unreliable, and fresh data might ap-
pear on them at irregular intervals. The deriver and verifier
share a policy describing how challenges will be harvested
and verified. In general, the policy will be chosen by the ap-
plication developer and delivered along with the application.
We assume that policies are known to potential attackers.

To construct a harvested challenge, the deriver first con-
tacts n Internet sources specified by the policy and download
some content from each. He then hashes each piece of con-
tent with a hash function H to produce outputs h1, . . . , hn.
Next, the deriver hashes the concatenation of all of these
hashes to produce the harvested challenge u. The values
h1, . . . , hn form a derivation for the challenge, which is com-
municated to the verifier.

Upon receiving the challenge and derivation, the verifier
retrieves the content from the sources and verifies that their
hashes match at least k of those given in the derivation,
where k is a parameter that is given as part of the policy.
Essentially, the verifier requires at least k of the sources to
match the derivation and is willing to tolerate an error in the
deriver’s claim for the rest. By only requiring that a certain
threshold of the sources match, the system is robust to the
unavailability of some sources or the modification between
derivation and verification of the content that they hold.
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Deriver Verifier
Derivation

Policy Policy

Challenge := H(Derivation) Challenge := H(Derivation)
Timestamp

(Or Failure)

Source 1 Source 2 Source 3 …

Figure 1: Our model involves an interaction between

two parties, the deriver (blue/dotted lines) and the ver-

ifier (orange/dashed lines).

Intuitively, a larger k value will give a greater degree of
security at the cost of making the system’s correctness less
robust to missing content. By selecting the kinds of sources
and the values of n and k, application developers can create
policies that strike a balance between the correctness and
security requirements. Our framework also allows the con-
struction of more complex policies, as described in Section 4.

Of course, unless the verifier can check that all of the con-
tent included in the derivation matches the content provided
by the sources, a dishonest deriver will be able to replace
some parts of the derivation with arbitrary values he selects.
This turns out not to be problem for the applications we con-
sider as long as the derivation still contains sufficient fresh
entropy, since the harvested challenge is taken from the hash
of the derivation.

For our purposes we will model H as an ideal hash func-
tion in the random oracle model [4]. Let x be the the number
of sources that were both checked by the verifier and uncor-
rupted by a deriver. In addition, let t be the earliest time at
which any of the content used from any of these sources was
created and s be the amount of entropy from these x sources.
Then if a corrupt deriver wishes to create a challenge u, he
must create it by calling a random function that has as part
of its input s bits of entropy out of his control. Therefore, if
s is sufficiently large, say 80 bits2, then the attacker needs
to derive u by calling the ideal hash function. No amount
of pre-computation before time t will help due to the fresh
s bits of entropy.

3. APPLICATIONS
In this section we describe three application areas that can

apply our challenge harvesting technique. We first present
a storage application, then we give an example of a client
puzzle system, and, finally, we introduce a novel approach
to backward security of cryptographic signature schemes.

Remote Storage and Auditing Applications.
In the introduction we motivated our challenge harvest-

ing problem with the application of auditing remote storage
systems such as SafeStore [14]. Here we elaborate on a few

2Ideally, we would like s to be as large as the size of secu-
rity parameters used in cryptographic systems. For exam-
ple, several systems use 1024-bit RSA keys and 160-bit hash
functions which roughly corresponds to “80-bit security.”

details for how such a storage system might be built.
In a remote storage system a server will store data for

a set of clients. The clients will want to periodically audit
the server to verify that it continues to store their data. To
respond3 to an audit requirement, the server will derive a
harvested challenge that specifies a random set of k blocks
of data each of size b. The server responds by creating a
message consisting of those k blocks along with the deriva-
tion sketch from our system. If a verifying client locally
has a copy of the data that is backed up by the server the
client can simply verify the derivation sketch and check the
response blocks against his storage. In the case where the
client does not maintain an independent copy of the data,
we can apply a signature scheme to ensure integrity. When
the data is originally created each block of data (along with
its block number) will be signed by the data creator. The
responses can then be modified to include the signatures on
the challenge blocks. If signatures are of size s, then the
extra storage overhead is s/b and the communication of a
response is k(s+b); this shows a trade off in storage efficiency
and response efficiency in terms of the block size b.

Suppose that a storage server maintains a fraction x of
the blocks data where x < 1. Then if the challenge set is of
size k the server will have at most xk chance of being able to
respond to a particular challenge. For any significant data
loss, the server’s ability to respond correctly will decay ex-
ponentially in k. Data can be redundantly encoded such
that only a certain fraction of the stored data needs to be
recovered in order for the original data to be reconstructed.
If we encoded the data such that half the stored data was
required to reconstruct the original, then the system will de-
tect unrecoverable loss of the original data with probability
1 − (1/2)k.

One way a server might try to cheat is to derive multiple
random challenges until it finds one that it can satisfy. Sup-
pose that the server derived r challenges, then by the union
bound his probability of success is at most r · xk. In the
random oracle model we can bound r by the number of calls
made to the random oracle.

There are several other applications of using harvested
challenges for auditing systems. For example, if a system
was required to perform several database operations, a har-
vested challenge might be used to require that the transac-
tion receipt be given for a certain set of them. One intriguing
idea is to use harvested challenges in physical systems such
as voting systems. For instance, we might use a harvested
challenge to specify a certain group of precincts to perform
a manual hand recount. Of course voting is an application
of several subtleties and further analysis is required to de-
termine the suitability of an approach like this.

Mitigating Sybil Attacks in P2P Networks.
Some of the most troublesome attacks to mitigate on peer-

to-peer (P2P) networks are so-called Sybil attacks [9]. The
survival of a P2P system often depends upon correct behav-
ior of a majority of the participating nodes. In a Sybil at-
tack, one machine will try to disrupt the system by claiming
a large number of virtual identities. It will often be difficult
to prevent this type of attack where there is no authoritative
registration of users.

3A response might be to an implicit request. For example,
the server might be required to periodically broadcast a stor-
age proof.
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One technique that may be used to mitigate Sybil attacks
is to require that a machine solve a client puzzle in order to
gain an identity on a P2P system. A regular user will only
need to solve a single puzzle, but an attacker must solve
many in order to be effective. In this setting we have two
conflicting goals. First, we want the client puzzle challenge
to include some fresh randomness. Otherwise, an attacker
could build up an increasing number of identities over time.
Second, we want a user’s proof of work to be verified by many
other users, but the computational effort to gain an identity
should be independent of this number (i.e., we don’t want
to require the user to provide a fresh proof of work for each
verifier). Ideally, the user should not even need to interact
with every party that verifies his puzzle solution.

We can use our framework to provide a straightforward
solution to this problem. Let H1 and H2 be two independent
hash functions that we will model as ideal hash functions. A
node in a client puzzle system will first derive a harvested
challenge u with appropriate freshness. Then, the node will
choose random r until H1(u|r) satisfies some client puzzle
condition (e.g., its first k bits are 0’s). Then H2(u|r) = ID
will be the user’s identity in the system.

The harvested challenge was output from a random ora-
cle that had a sufficient amount of entropy outside of the
attacker’s control. Therefore, precomputation before deriv-
ing u will not help an attacker. Although an attacker could
always derive a different value of u by manipulating the in-
puts from the sources he has control over (or falsifying some
parts of the derivation), this would only have the effect of
calling the random oracle again and starting the client puz-
zle over.

Backward Secure Signatures.
In several applications of digital signatures a party will

sign a message along with a timestamp denoting when it
was signed. Forward secure signatures [3] are a method for
evolving a private signature key forward in time such that
if it is compromised at time t an attacker cannot use it to
sign messages at an earlier time period t′.

Here we explore the opposite idea of preventing an at-
tacker from being able to sign messages in the future if he
compromises a machine at time t. At first this might seem
impossible, since, if an attacker steals the private key mate-
rial from a victim, there is nothing to prevent the attacker
from posing as the victim himself. However, we show how
to accomplish this in a more limited model known as the
bounded retrieval model [6].

In the bounded retrieval model we assume that an attacker
who compromises a machine will be limited in the amount
of information he can steal from the machine due to con-
straints on his bandwidth or the possibility that exfiltrating
large amounts of data will be detected. Previous work [6]
under this model has suggested increasing the private key
material in password systems so that an attacker who only
manages to steal partial private key material will not be able
to subvert the system.

Here we show how to build a signature system that pre-
vents an attacker from forward dating a message. A user will
create n private signing key/certificate pairs (k1, c1), . . . , (kn, cn)
and store them on his machine. (The certificates can be
signed with a signature key that is associated to the user
and then discarded.) To sign a message M , at time t the
user derives a harvested challenge u and hashes this to get

a set, S, of k indices between 1 and n (where k is a system
parameter). The user then signs M under all the private
keys in the set S and also includes the certificates for the
keys in S. A verifier will check that u was derived correctly
and that all signatures verify.

If an attacker compromises a machine at time t and then
subsequently leaves, he will only be able to sign with the
keys he was able to retrieve. Therefore, if sufficiently many
keys remain uncompromised at a future time t′, the attacker
will not be able to sign a message since he will not have all
the keys dictated by the challenge u.

4. OUR FRAMEWORK
In this section we describe a generic policy framework for

challenge harvesting that is suitable for a wide variety of ap-
plications with different freshness and security requirements.
We believe this framework is simple enough to be used by
application developers while flexible enough to adapt to a
variety of data sources, including future ones that we have
not anticipated.

4.1 Basic Operation
Tools that implement our system operate in two modes,

which correspond to the role of the deriver and the role of
the verifier, as shown in Figure 1. In deriver mode, the tool
takes as input a policy file, which describes a set of content
sources and a set of policies that specify what combinations
of content from those sources will be acceptable to a veri-
fier. The tool queries some of the sources and breaks the
content from each source into content chunks based on the
date and time when each piece of content was first posted
at the source. When it has gathered enough content chunks
to satisfy the policy, the tool packages them into a deriva-
tion, which it hashes with SHA-1 to derive the harvested
challenge. The derivation is then passed to verifiers.

A derivation consists of a list of hex-encoded SHA-1 hashes
of content chunks from each source, together with a times-
tamp (represented as an integer in the style of the UNIX
time function) for each chunk that indicates when the data
was first published according to the source. Time is an im-
portant aspect of both the derivation and verification pro-
cesses. Policies may specify a maximum age for acceptable
content chunks. Derivers interpret this age relative to the
time when the derivation process began. This time (again,
in UNIX format) is included as the first line of the derivation.
Here is the format of a derivation:

derivation_timestamp

source1_name :
source1_chunk1_hash
source1_chunk1_timestamp
source1_chunk2_hash
source1_chunk2_timestamp
...

source2_name :
source2_chunk1_hash
source2_chunk1_timestamp
...

Optionally, a chunk timestamp may be followed by a comma
and an source-specific data field used to verify the chunk
hash.

Derivations contain the sources and chunks in a canonical
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order so that the derived challenge can be defined as the
SHA-1 hash of the derivation. Sources are ordered lexico-
graphically by name, and content chunks within each source
are ordered lexicographically by hash.

In verifier mode, the tool again takes a policy file as in-
put, as well as a derivation created by a deriver. The tool
inspects the derivation according to the policy and attempts
to contact some of the content sources to verify a subset of
the content chunks from the derivation. If enough of the
chunks can be verified to satisfy the policy, the tool hashes
the derivation to obtain the same challenge as the deriver.
Otherwise, the tool returns an error. Verifiers interpret con-
tent age constraints as relative to the timestamp included in
the derivation, and they output this timestamp along with
the derived challenge if verification is successful. Applica-
tions can use this timestamp to decide whether the challenge
is fresh enough for their purposes.

The policy files used in our framework are specified with
a policy language that we introduced later in this section.
(A Python YACC grammar is included with Combine and
should be considered the authoritative description.)

4.2 Data Sources
Our framework abstracts all types of content providers

into a notion of a source. Sources can encapsulate many
different kinds of data, such as news stories, stock quotes,
web pages, and blog entries, delivered in different kinds of
formats, such as HTML, RSS, and other XML schemas.

Policy files define sources using the following syntax:

source source_name (
type = source_type
attribute = "string_value "
attribute = numeric_value
...

)

A source’s type attribute refers to a source handler mod-
ule within the tool, and all other attributes specified for the
source are passed directly to that module. Each module
oversees the way source data is retrieved, divided into con-
tent chunks, cached, used in challenge derivation, packaged
into a derivation, and applied to challenge verification. This
level of abstraction means the framework can be extended
to support many other kinds of sources. In this section we
describe the sources we have implemented in Combine.

RSS Feeds.
RSS feeds [17] are well suited as a source for harvested

challenges. There are many feeds available—the aggrega-
tion site Technorati tracks about 69 million [18]—and they
represent many kinds of content, from newswire stories to
personal journals entries, in a consistent data format. An
RSS feed typically includes the most recent 10–50 pieces of
content posted to the site providing the feed, so tools can
retrieve several content chunks with a single HTTP request.
Each content item includes the date when it was posted or
last updated, which helps tools ensure the freshness of de-
rived challenges.4 Sites that provide popular RSS feeds are
equipped to serve a large volume of subscribers whose RSS
reader software refreshes the content at regular intervals, so

4These timestamps can sometimes be wrong, but applica-
tions that depend on freshness should create policies that
incorporate a number of sites that have a history of main-
taining accurate clocks.

they are likely to have the capacity to absorb extra load
from being used as a challenge source by a smaller number
of users.

Despite these advantages, RSS feeds also pose specific dif-
ficulties for our purposes. Sites publish new entries to their
RSS feed at widely varying rates—ranging from many times
an hour to once every few months. Since feeds only contain
the most recent entries, if they are updated too quickly, con-
tent may age out of the feed so fast that verifiers will be
unable to check them, even though they would otherwise be
fresh enough to meet the application’s needs. On the other
hand, if entries are published too infrequently, derivers may
not be able to collect enough recent content to satisfy the
policy. A similar difficulty stems from the tendency for sites
to update items that have already been published to a feed,
replacing the old content. If many of the entries in an RSS
feed change between derivation and verification, the policy
may not be satisfied.

Clearly, not every RSS feed will be a suitable challenge
source for every application, but developers can select spe-
cific feeds based on their past publication rate and tendency
to replace entries. Applications that require fine-grained
freshness over long-term verifiability should select feeds that
are published frequently, while ones where challenges from
longer in the past need to be verified should choose feeds that
are updated less frequently. We have conducted empirical
tests of RSS publication and update frequency that suggest
there are many feeds suitable to each kind of application.
These results are reported in Section 6.

RSS feeds are represented in policy files as sources with
the following attributes:

source source_name (
type = RSSFeed
url = "url "
min_entries = m (optional, default 1)
max_entries = n (optional, default ∞)
max_age = t (optional, default ∞)

)

The url attribute specifies the feed location. Derivers
will include up to max_entries content chunks from the
feed in derivations. Only chunks that are up to max_age

seconds old will be used. Verifiers will also check that at
least min_entries of them match entries still present in the
feed and unmodified when the derivation is verified. They
will check that the entries are dated no more than max_age

seconds before the derivation’s timestamp.
For example, this source represents an RSS feed provided

by a national newspaper:

source NYTimes (
type = RSSFeed
url = "http://www.nytimes.com/services/xml/rss/-

nyt/HomePage.xml"
min_entries = 5
max_entries = 20
max_age = 86400

)

Here, derivers will include up to 20 entries from the past
24 hours and verifiers require at least 5 to match.

Historical Stock Market Data.
Stock market data has been proposed as a source of public

randomness because it is widely disseminated from reputable
sources and difficult to exactly predict [20]. (An adversary
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who can accurately predict stock prices is likely to have
more lucrative uses for this skill than guessing harvested
challenges.) Furthermore, online sources provide daily his-
torical share prices extending years into the past. Such data
is suitable for constructing challenges with time granularity
to within one trading day that can be verified long after they
are derived.

Historical market data sources fit neatly within our frame-
work. Policy files define them with the following syntax:

source source_name (
type = DailyQuotes
symbols = "ticker_symbols "
min_entries = n (optional, default 1)

)

The deriver creates one content chunk for each quote using
data from the last full trading day. Each chunk consists of
the SHA-1 hash of the concatenation of the symbol, the
date, the opening, high, low, and closing share prices, and
the trading volume. Consistent data can be retrieved from
several different online sources.

For example:

source TechStocks (
type = DailyQuotes
symbols = "GOOG,YHOO,MSFT,INTC,IBM"
min_entries = 4

)

Here, derivers will include content chunks for up to all
five stocks, and verifiers will require at least four of them
to match figures obtained from a trusted historical market
data provider for the last full trading day prior to the date
of the derivation.

Explicit Randomness Servers.
Many traditional client puzzle schemes have relied on ex-

plicit servers to issue random challenges. For some appli-
cations, it may be appropriate to use an explicit server as
the main challenge source, but to use challenges harvested
from oblivious online sources as a backup in case the server
is unavailable. Our framework can accommodate dedicated
challenge servers using the RandomServer source type. This
allows applications to create policies that use explicit ran-
domness but fail over to derived randomness for added ro-
bustness.

An explicit random server is defined like this:

source AppsRandomServer (
type = RandomServer
url = "url "
max_age = t
verify_key = "filename "

)

When the tool derives a challenge from this source, it
makes an HTTP request to url. The server responds with
three lines: a 160-bit hex-encoded pseudorandom value, a
UNIX-format timestamp, and a DSA signature of the first
two lines that can be verified with verify_key. The deriver
uses the pseudorandom value and timestamp as the sole con-
tent chunk for the server. The derivation also includes the
signature as the optional verification value. When verifying
the challenge, the source is considered valid if the signature
can be verified with verify_key and the signed timestamp
is no more than max_age seconds older than the derivation.
Thus, the content chunk can be verified without further in-
teraction with the server.

Other Sources of Randomness.
Web sites provide many other sources of randomness that

could be utilized within our framework. A viable source
must contain sufficient fresh entropy that is at least par-
tially beyond adversarial control and can be accessed by
verifiers after the challenge is created. One potentially use-
ful class of sources is sensor data, such as archived feeds
from earthquake [16] and sunspot [15] monitoring systems.
These may provide better stability than RSS feeds, since
data from them will rarely change after it has been published.
Another promising category includes change logs from fre-
quently edited Wikis and source code repositories. Although
we have not yet implemented these sources in our Combine
tool, future versions easily could accommodate them within
the existing policy framework.

4.3 Policy Descriptions
We designed our policy language to cope with a variety

of unreliable data sources. Some sources may be unreach-
able when a challenge is being derived, others may change
or become unavailable by the time the challenge is verified.
Like sources, policies may define minimum and maximum
numbers of sources from different sets. This instructs de-
rivers to include additional sources, up to the maximum, for
increased robustness at verification time.

Policy files contain one or more policy definitions. A sim-
ple policy takes the form:

policy policy_name { source_1, source_2, ...}

For example:

policy PickOne { NYTimes, CNN, Slashdot }

By default, the tool assumes that at least one of the
sources must be satisfied, but it will attempt to include con-
tent chunks satisfying all of them in the derivation. A policy
can override this by specifying a minimum number of sources
to verify and maximum number to include at derivation, like
so:

policy policy_name { source_1, ...}[min,max ]

For example:

policy PickTwo { NYTimes, CNN, Slashdot }[2,2]

During derivation, the tool will include content chunks
from up to two of these three source, and verifiers will re-
quire any two to be satisfied. The tool evaluates the sources
in order from left to right, so content chunks from Slash-

dot will not be used unless the deriver cannot retrieve the
minimum number of content chunks required from either
NYTimes or CNN.

Sometimes when a source is referenced within a policy,
we may want to use different criteria for determining when
it is satisfied than those we specified when the source was
defined. To do this, we can specify local source attributes
that override the source’s global attributes. For example:

policy { NYTimes(min_entries=10) }

Policies may also be nested. In this example, an explicit
random server is used preferentially during derivation, but
a set of RSS feeds will be used instead if the server is un-
reachable:

policy FailOver { AppsRandomServer, { NYTimes, CNN,
Slashdot }[2,3] }[1,1]

A policy file can specify multiple policies, and they can
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refer to each other by name in place of sources, as in this
example:

policy Nested {
{ NYTimes, CNN, Slashdot }[2,3]
Recent

}
policy Recent {

NYTimes(min_entries=1, max_age=3600)
CNN(min_entries=1, max_age=3600)

}[2,2]

For this policy to be satisfied, the verifier needs to validate
the default number of sources from two of the three RSS
feeds, or, at least one story from within the past hour from
each of NYTimes and CNN.

5. IMPLEMENTING COMBINE
In this section we describe Combine, our implementation

of the framework introduced in the previous section. We
have released Combine under a BSD-style license, and we
invite application developers to adopt it. The source is avail-
able at http://www.cs.princeton.edu/~jhalderm/projects/
combine/.

We wrote Combine in Python because of the language’s
multi-platform support, object-oriented structure, and ro-
bust tools for parsing RSS feeds and other Internet data
sources. This simplified the tool’s construction significantly,
but we have been careful not to define any of framework in
terms of Python-specific behavior, so as not to preclude in-
teroperable implementations in other languages. Combine
provides a simple API that can be called from other Python
applications as well as a command line interface suitable for
use with a variety of other languages and scripting tools.

Combine supports the three kinds of data sources detailed
in the previous section: RSS feeds, historical market data,
and explicit challenge servers. It interprets RSS feeds using
the Python Universal Feed Parser, which supports the most
popular versions of the RSS and ATOM feed specifications.

Combine caches feed data on the client in order to mini-
mize redundant requests. This reduces the risk that an at-
tacker could execute a denial-of-service attack on the sources
by causing many challenges to be generated. Combine also
obeys the robots exclusion standard [13], so content providers
can choose not to be available for harvesting if they desire.

5.1 Complete Example
To better illustrate our system’s behavior, we now give an

end-to-end example of Combine in use. Here is an example
policy file (stored in a file named example.pol) that defines
a policy similar to the one shown at the end of the preceding
section:

source NYTimes (
type = RSSFeed
url = "http://www.nytimes.com/services/xml/rss/-

nyt/HomePage.xml"
min_entries = 5
max_entries = 10
max_age = 86400

)

source CNN (
type = RSSFeed
url = "http://rss.cnn.com/rss/cnn_topstories.rss"
min_entries = 5
max_entries = 10
max_age = 86400

)

policy Example { {NYTimes, CNN}[2,2], Recent }
policy Recent {

NYTimes(min_entries=1, max_age=3600)
CNN(min_entries=1, max_age=3600)

}

This policy file defines two sources, both of which are RSS
feeds from online news providers. It also defines two policies.
One policy is named Recent and requires one verifiable con-
tent chunk made from a story from either source but no
more than an hour old when the challenge was derived. The
other policy, called Example, is considered valid either if both
sources are satisfied with their default arguments (a mini-
mum of 5 entries from each, no more than 24 hours old), or
if Recent is satisfied.

Suppose Alice wants to derive a challenge from this policy
and output a derivation to a file named alice.d. She invokes
Combine like this:

$ combiner -policyfile example.pol -derivation \
alice.d -derive

By default, Combine will apply the first policy defined in
the policy file, so it will apply Example here. This behavior
can be overridden using the -policyname argument.

Assuming that the tool can find enough fresh RSS entries
to satisfy the policy, it outputs a message that indicates
success:

derived: Example, a936b92d6497..., 1169960994

This status line contains the name of the policy that was
applied, the derived challenge, and the challenge’s times-
tamp (which is normally the time when the derivation pro-
cess started, though it can be backdated with the -time

argument).
Alice can now use the challenge as the basis for a client

puzzle. She solves the puzzle, and sends the solution to Bob
along with the derivation returned by the tool.

The derivation looks like this:

1169960994

CNN
9a35a2442faf16b994f10b75573a18269fa4b97f
1169942568
a33524271ed0d5e9b0d2aafa8c0ed2a6c39a1b78
1169956546
(. . . 6 more content chunks)

NYTimes
8829863ca791800d164b546d03503eb74294713f
1169959720
d7190efb9603e0d88ea2cdff0134c5416ecfd656
1169959401
(. . . 9 more content chunks)

Note that CNN has only 8 content chunks—fewer than the
10 chunk limit specified by the source’s max_entries parame-
ter. This indicates that the RSS feed only contained 8 entries
that were younger than max_age. Also notice that though
each source was referenced twice in the policy, there is only
one section for each source in the derivation. The reason is
that the framework specifies that there is one derivation sec-
tion for each source name, so the tool collapses all content
chunks from each into a single section. This pool of content
chunks will be consulted any time the source is mentioned
by the policy during verification.
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A few minutes later, Bob wants to verify Alice’s derived
challenge. He runs Combine using the same policy file and
the derivation that Alice sent:

$ combiner -policyfile example.pol -derivation \
alice.d -verify

Suppose that a network outage is preventing Bob’s com-
puter from reaching the CNN web site to retrieve its RSS
feed. Can the Example policy still be satisfied? The {NY-

Times, CNN}[2,2] subpolicy is not satisfied, since it requires
some content chunks from both sources to be validated. How-
ever, Recent can be satisfied. Notice that the first content
chunk from NYTimes was only 1274 seconds old when the
challenge was derived. Recent only requires one content
chunk from either source to be verifiable as long as that con-
tent chunk was less than an hour old at the time of deriva-
tion, so the Recent subpolicy will be satisfied as long as the
RSS feed entry corresponding to this content chunk is still
present and unmodified when Combine checks the feed. If
so, Example will be satisfied, and the tool will output this
message:

verified: Example, a936b92d6497..., 1169960994

Now Bob can check the challenge’s timestamp to ensure
that it is fresh enough for his purposes, and he can check
that Alice’s solution is valid for the derived challenge.

5.2 Anti-Spam Demonstration
To demonstrate our tool’s capabilities, we have created a

prototype anti-spam application called Postmark that uses
derived challenges from Combine to improve upon existing
schemes.

One limitation of traditional proof-of-work anti-spam sys-
tems like Hashcash [2] is that they do not guarantee the
freshness of their random challenges. This allows an attacker
to perform a large amount of work ahead of time and then
send burst of messages in a short period.

Our Postmark application uses hash puzzles based on fresh
challenges derived by Combine to limit an attacker’s ability
to precompute puzzle solutions. Combine allows the system
to ensure freshness without having to interact with the re-
ceiver prior to sending a message or to rely on a dedicated
challenge server.

Postmark consists of two modules, an SMTP proxy server,
postserv and a Procmail-compatible message filter, postcheck.
Both are implemented in Python and incorporate Combine
using its API.

Postmark uses hash puzzles that are formed by concate-
nating and SHA-1 hashing the message body (along with
user-visible headers such as the sender, receiver, subject, and
date), derived challenge, and receiver envelope address, as
follows:

p = H(H(message body)|derived challenge|receiver address)

For a difficulty parameter n, a solution to the puzzle is a
string s such that H(s|p) has n leading zeroes. Postmark
solves puzzles with a separate process written in C that uses
a highly optimized SHA-1 implementation. Of course, verifi-
cations are nearly instantaneous after the derived challenge
is verified, since they require only two additional hash com-
putations.

The puzzle difficulty, the policy used to harvest the chal-
lenge, and the maximum age of acceptable challenges are
configurable. However, these parameters would need to be

standardized prior to widespread deployment to ensure in-
teroperability. We have tested the application with a sample
policy like the one in the previous section, using puzzles that
take approximately 10 seconds to solve on a fast machine
(n = 25) and are considered fresh for up to 60 minutes.

The Postmark server application acts as a local SMTP
proxy. It receives messages sent from an unmodified SMTP
client running on the local machine and appends puzzle so-
lutions before relaying them to the user’s normal SMTP
server. This design allows the tool to be nearly transparent
to the user, requiring only a simple mail client configuration
change.

When the Postmark proxy server receives a message, it
uses Combine to derive a fresh harvested challenge, then
solves a client puzzle based on the challenge. It wraps the
original message in the MIME multipart/signed message
type [11] (this directs mail transfer agents not to modify
the body in transit and assures that the Postmark data will
not cause problem for other receivers). It then attaches a
second message part containing the following values: the
receiver address, the derived challenge, s, n, and the deriva-
tion created by Combine. Finally, it passes the message to
the original SMTP server for delivery.

Recipients invoke the Postmark filter on incoming mail
using Procmail or another message filtering system. The
Postmark filter reads the received message from standard
input and tries to detect a Postmark puzzle solution. If one
is found, the filter checks that the recipient address used
in the puzzle matches the local user’s address, it uses Com-
bine to verify the challenge, it uses the timestamp on the
challenge to check that it is suitably fresh, and it verifies
the puzzle solution. If all these tests are passed, the Post-
mark filter returns an exit code of 0; otherwise, it returns a
non-zero exit code. The user’s Procmail system can be con-
figured to allow mail with a valid Postmark to bypass other
spam filters or receive less scrutiny than unmarked mail.

6. EVALUATION: RSS FEEDS
RSS feeds show considerable variation in several respects

that are important for our purposes. They differ in terms of
how many entries are served at once, how often new entries
are posted, how long entries remain available for verification,
etc. We conducted an empirical study to determine whether
actual RSS feeds are suitable for use with our system.

We studied two sets of sources. The first consists of the
most widely subscribed feeds as reported by the Bloglines
feed aggregation service on January 10, 2007. This set con-
tains 133 feeds, and we label it “Popular.” The second set
consists mainly of more esoteric feeds, which we compiled by
combining the subscriptions of four members of the Prince-
ton computer science department and removing any sites in
the Popular set. We believe this list is somewhat representa-
tive of the majority of RSS feeds, which fall into the long tail
of the popularity distribution. This set contains 142 feeds,
and we label it “Longtail.” For both data sets, we requested
the contents of each feed once every 10 minutes over a seven
day period in January 2007.

Availability.
Applications that require robustness will need to select

RSS sources with a high likelihood of being available when
challenges are derived and verified. We considered a source
to be available if it was reachable and returned parsable

8



0

10

20

30

40

0 5 10 15 20 25 30 35 40

Entries Per Day

En
tr

y
Li

fe
tim

e
(D

ay
s)

Popular
Longtail

Figure 2: Comparing the frequency of new posts and the average time posts remain in the feed reveals the expected

inverse relation.
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one post verifiable up to (A) 6 hours later, (B) 12 hours later; derivation using all posts fresh within one day, at least
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entries at a sample time. We disregarded sites that were
never available during out study (this was usually caused by
an outdated URL or chronically malformed data). For the
Popular data set, 2 of the 133 feeds never returned usable
data and were discarded. Of the remaining feeds, 90% were
available at least 99% of the time, and 97% were available
at least 95% of the time. For the Longtail data set, 16 of
the 142 feeds never returned usable data and were discarded.
Of the remaining feeds, 87% were available at least 99% of
the time, and 97% were available at least 95% of the time.

This data suggests that most feeds have high availability,
but our sample period was too short to draw a strong con-
clusion. The presence of outdated URLs in the sample sets
highlights the importance of a mechanism for occasionally
updating the policies once they have been deployed. For ex-
ample, a new policy could be delivered with other security
updates to the application.

Entry Lifetime and Frequency.
Entry frequency—the rate at which new entries appear or

old entries are altered—is a crucial parameter for feeds used
with our system, because it determines how often fresh en-
tries will be available. Among sites in the Popular data set
where any new entries appeared during our survey period,
the average entry frequency was 16.5 per day. Frequencies
ranged from as high as 125 entries per day to only a single
entry in our week long sample. For active sites in the Long-
tail data set, the entry frequency averaged a much lower 4.77
per day, but ranged as high as 65.8 per day.

Another important parameter, entry lifetime, measures
the time from when an entry first appears in the feed until
the time when it is updated, deleted, or displaced by newer
content. The average entry lifetime for a source determines
how long we can expect to be able to verify the source’s
content. We measured lifetimes for entries that died during
our data collection period. If an entry was posted before
we began collecting data, we used the posting date listed in
the feed as the start of the entry’s lifetime. We recorded
the lifetime of 11779 entries from 102 sites in the Popular
dataset. The average lifetime of an entry was 38.5 hours, but
the averages for individual sites ranged from 3.7 hours to 43
days (among sites for which we had a statistically significant
number of data points). From Longtail sources, we recorded
2404 entry lifetimes from 72 distinct sites. The average life-
time was 118 hours, and the averages for individual sites
ranged from 6.9 hours to 90 days (among sites for which we
had sufficient data).

RSS feeds typically include a fixed number of entries, with
older entries aging out as newer ones are posted. The num-
ber of entries present in an RSS feed limits how many con-
tent chunks we can extract from it. We recorded the average
number of entries present in each available feed. For sources
in the Longtail data set, the average number of entries was
16.3; for sources in the Popular data set, the average was
22.3. Since feed sizes are usually constant, we expect to see
an inverse relationship between the frequency of new entries
and the average time entries remained in a feed, as shown
in Figure 2. We observe that points in the horizontal tail
of the distribution tend to come from the Popular data set,
indicating that Popular sources are more likely to post sev-
eral entries a day, leading to a short lifetime for each entry.
Points in the vertical tail tend to come from the Longtail
data set, indicating that those sites are more likely to post

entries infrequency, leading their entries to have a long life-
time.

Policy Satisfaction.
To test how well the RSS feeds in our data sets would serve

as sources for harvested challenges, we modeled a number of
simple policies and verifiability requirements and calculated
the percentage of the sample period when the policies and
requirements would be satisfied.

Generally, the more time that elapses between derivation
and verification, the less precisely we need to know the fresh-
ness of the challenge. If a week has passed since the challenge
was generated, it is less likely to matter whether the chal-
lenge was fresh a few hours earlier or later. This mirrors the
inverse relationship between entry lifetime and frequency de-
picted in Figure 2. Thus, we expect RSS feeds to meet the
needs of many kinds of applications.

In the first policy we modeled, which we label “Short,” a
deriver collects all entries from the source that are less than
one hour old, and verifiers require at least one entry in the
derivation to match the contents of the feed. We calculated
satisfaction using this policy and two robustness standards,
which required the policy to be verifiable a minimum of 6
hours and 12 hours after derivation. We tested these models
with the Popular sources. Series A and B of Figure 3 show
the percentage of sources that satisfied these requirements
at least a given fraction of the time. In all, 13% of sources
satisfied the 6 hour requirement at least 50% of the time, as
did 7% the 12 hour requirement.

In the second policy we modeled, which we label “Long,”
derivers collect all entries from the source that are less than
one day old, and verifiers require at least one entry in the
derivation to match the contents of the feed. We calculated
satisfaction using this policy and two robustness standards,
which required the policy to be verifiable a minimum of 7
days and 14 days after derivation. We tested these models
with the Longtail sources. Series C and D of Figure 3 show
the percentage of sources that satisfied these requirements
at least a given fraction of the time. In all, 24% of sources
satisfied the 7 day requirement at least 50% of the time, as
did 7% the 14 day requirement.

As these data show, not all sources are equally suitable
for harvesting challenges; however, a significant fraction of
sources were able to satisfy our model requirements at least
half the time. Policy creators can achieve high robustness
by combining data from a number of such sources. If sat-
isfaction times were uniformly distributed and uncorrelated
between sources, we would need to combine 10 sources with
a suboptimal 50% satisfaction rate to reduce expected down-
time to less than 90 seconds a day.

In practice, satisfaction times were correlated and not dis-
tributed uniformly, but policy creators will tend to select
sources that are well suited for their policies. Here we depict
the satisfaction of 7 selected sources modeling the “Short”
policy with a 6 hour verifiability requirement. Each horizon-
tal bar represents one source over the course of the week;
shaded areas indicate times when challenges could be har-
vested and meet these requirements. At least one of the
sources satisfied the policy at all times during the period; at
least two sources satisfied the policy more than 90% of the
time:
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The next figure depicts satisfaction of 7 selected sources
modeling the “Long”policy with a 7 day verifiability require-
ment. At least two of the sources satisfied the policy at all
times during the period:

Our models indicate that RSS feeds may not be well suited
to applications that require freshness guarantees within a
time frame much shorter than an hour, ones that require
verifiability over periods greater than a few weeks, or ones
that require precise timestamps that are verifiable over long
periods. Other sources may be more appropriate for such
applications. For instance, realtime seismographic data [16]
could provide very fine grained freshness (though from rel-
atively few data providers), or historical stock quotes could
provide coarse-grained timestamps that are verifiable many
years into the future.

Other Considerations.
To ensure freshness of harvested challenges, a policy needs

to prevent an attacker from predicting the future contents of
sufficiently many of its sources. The predictability of an RSS
feed depends heavily on the type of content being served.
Content like wire service news headlines that are widely car-
ried by different sites may be predictable minutes or hours
before appearing on a particular source. Some sites, like
the popular link aggregator Digg, allow members to influ-
ence the content that appears in their feeds by voting on
candidate entries. An attacker could monitor changes in
popularity during the voting process to predict future feed
contents. Policy creators should avoid such feeds.

Posting times for many sources in our data sets were
strongly correlated with local daylight hours for the site.
This effect is clearly visible in first figure above, where the
large vertical shaded regions indicate times from 7 p.m. to
7 a.m., PST. If freshness on the order of hours is required,
policy creators might select sources from around the world,
such major newspapers from each timezone.

We normally assume that an attacking deriver cannot sit
between the verifier and the Internet sources and modify the
verifier’s view of their contents. Even if this is not the case,
our model can remain secure in instances when the deriver
is unable to corrupt enough sources to fool the verifier. The
remaining danger can be mitigated by selecting feeds that
are served using HTTPS.

7. RELATED WORK
Our work on harvesting challenges from the Internet touches

on prior research in a number of areas. In this section we
describe relevant related work and provide a context for our
contributions.

Deriving Randomness.
The idea of extracting bits from a random source has been

around for many years. Several works have shown how to
extract randomness suitable for cryptographic applications
from non-uniform sources of entropy, such as physical events
on a local machine (see, for example, [8] and the references
therein). Our problem is of a somewhat different flavor from
this work. We want Alice not only to be able to extract suffi-
cient randomness for her own use, but to be able to convince
Bob that she derived it properly and freshly. Our primary
challenges arise because the oblivious Internet sources that
we wish to use are unreliable, which means the deriver and
the verifier may not have the same view of these entropy
sources. Our work focuses on the practical problems arising
from this setting; we simplify the theoretical aspect of deriv-
ing uniform randomness by modeling our hash function as a
random oracle [4].

Proofs of Work and Client Puzzles.
Dwork and Naor [10] first proposed the idea of using proofs

of computational puzzles for mitigating spam. Adam Back
independently proposed and implemented a similar system
known as Hashcash [2]. Both the Dwork-Naor and the Back
systems fail to prevent the pre-computation of puzzles by an
attacker. The attacker can therefore begin his computation
arbitrarily long before an attack is launched.

Juels and Brainard [12] observed that allowing arbitrary
precomputation was problematic for protecting against DoS
attacks, where an adversary might build up a collection of
puzzle solutions over a long period of time and use them
over a brief period to flood a server. Juels and Brainard pro-
posed a solution they called “client puzzles” where a chal-
lenger would first send a fresh random challenge to a ma-
chine requesting a resource, and demand that the machine
do a proof of work relative to the fresh challenge. Since an
attacker does not know the challenge ahead of time, he is
forced to perform all his computation on-line. Several other
papers subsequently proposed other types of client puzzle
solutions [1, 7, 19, 20].

One issue that arises from these systems is that a chal-
lenger must issue a random challenge. Unfortunately, this
is not possible for non-interactive applications such as email.
By leveraging our tool, we can provide suitable fresh chal-
lenges in many of these settings. Waters et al. [20] provide
another motivation for our approach. In their system a client
spends a somewhat larger amount of time solving a puzzle
that he can use as a proof of work for many different servers.
Since each server does not have the opportunity to chal-
lenge the client individually, the system requires a common
trusted source for random challenges. In their work, Waters
et al. suppose the existence of dedicated “bastion” servers
for this purpose. By adapting their system to utilize our
tool, we can potentially eliminate the need for such servers.

Borisov [5] examined the problem of deriving randomness
from a community of peer-to-peer servers. Our approach is
quite different in that we harvest challenges from oblivious
Internet content providers and require less complex interac-
tion to synthesize our challenges. In addition, the work of
Borisov was initially inspired by our preliminary research
(as noted in the related work section of [5]).

Client puzzle solutions must be carefully designed if they
are to successfully mitigate attacks. Issues include the cost
of verifying puzzles, the discrepancy between the computa-

11



tional resources of portable devices and standard processors,
and the possibility that attackers will have control of large
bot-nets. Many of the works cited above address these is-
sues in particular settings. We stress that any system that
uses our tool must carefully consider issues such as these in
the context of the application it is protecting.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we addressed the problem of harvesting chal-

lenges from oblivious online servers. This setting presented
us with a challenging set of issues in that we not only had
to consider the usual issues of security and robustness in our
application, but to deal with the unique problem that our
Internet sources are unaware of their role in our system.

We addressed this problem by creating a framework with
which a party can harvest a challenge from several sources
and (non-interactively) convince another party that it was
formed correctly. Our framework allows an application de-
signer to specify a flexible policy that can be tailored to spe-
cific needs. We identified multiple security contexts where
our tool may be valuable, including remote storage auditing
and P2P Sybil attack prevention.

We implemented our methods in a software tool named
Combine. Combine is able to use RSS feeds, historical stock
quotes, and explicit randomness servers as sources for har-
vesting random challenges. We provided experimental data
supporting our framework’s practicality, and we built a proof-
of-concept application, Postmark, that uses Combine to cre-
ate an improved client puzzle system for email.

In the near future we plan to apply these techniques to
build auditing mechanisms for existing systems. We will
start by constructing an auditing component for a remote
storage service. We expect that this process will teach us
more about the subtleties of using harvested challenges in
a systems environment. From a broader perspective, we
will continue to search for additional applications where har-
vested challenges can be used to verify claims of distributed
systems.
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