
New Client Puzzle Outsourcing Techniques
for DoS Resistance

Brent Waters1, Ari Juels2, J. Alex Halderman1, and Edward W. Felten1

1 Princeton University
Princeton, NJ

{bwaters,jhalderm,felten}@cs.princeton.edu

2 RSA Laboratories
Bedford, MA

ajuels@rsasecurity.com

ABSTRACT
We explore new techniques for the use of cryptographic puz-
zles as a countermeasure to Denial-of-Service (DoS) attacks.

We propose simple new techniques that permit the out-
sourcing of puzzles—their distribution via a robust external
service that we call a bastion. Many servers can rely on
puzzles distributed by a single bastion. We show how a bas-
tion, somewhat surprisingly, need not know which servers
rely on its services. Indeed, in one of our constructions, a
bastion may consist merely of a publicly accessible random
data source, rather than a special purpose server. Our out-
sourcing techniques help eliminate puzzle distribution as a
point of compromise.

Our design has three main advantages over prior approaches.
First, it is more resistant to DoS attacks aimed at the puzzle
mechanism itself, withstanding over 80% more attack traf-
fic than previous methods in our experiments. Second, our
scheme is cheap enough to apply at the IP level, though it
also works at higher levels of the protocol stack. Third, our
method allows clients to solve puzzles offline, reducing the
need for users to wait while their computers solve puzzles.

We present a prototype implementation of our approach,
and we describe experiments that validate our performance
claims.

Categories and Subject Descriptors
E.3 [Data]: [Data Encryption]

General Terms
Security

Keywords
Denial-of-Service, DoS, Client Puzzles

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’04,October 25-29, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-961-6/04/0010 ...$5.00.

1. INTRODUCTION
Denial-of-service (DoS) attacks present a strong and well

established threat to the Internet and e-commerce. One pro-
posed countermeasure requires clients to commit resources
to an interaction by successfully solving a computational
problem known as a client puzzle [16, 23] before a server
will provide resources to the client. This prevents an at-
tacker from consuming a large portion of the resources of a
targeted server without commanding and investing consid-
erable resources himself.

1.1 Shortcomings of Existing Solutions
While the deployment of client puzzles in attack scenarios

seems promising, we have found that most proposed systems
of this type have two basic shortcomings.

The first is that the client puzzle mechanism itself can
become the target of a denial-of-service attack. In most sys-
tems either the puzzle creation or verification operation (or
both) require the server to perform a cryptographic hash
computation [23, 6, 13]. This opens the possibility that the
puzzle verification mechanism itself will be the target of a de-
nial of service attack, in which an attacker floods the server
with bogus puzzle solutions that the server has to process.
Thus existing client puzzle mechanisms replace one possible
DoS attack with another. Although the DoS attack on the
puzzle mechanism requires more attack resources than be-
fore, this is still not an ideal situation. The experiment we
present in Section 4.1 demonstrate that puzzle verification
increases the server’s processing time per new TCP con-
nection request by approximately 80 percent with existing
solutions.

A few systems [2] attempt to alleviate this problem by
outsourcing the hash computation to a designated gateway,
but this merely pushes the vulnerability to a different target.
Furthermore, a gateway in these systems needs to be aware
of each server it might service and thus will be difficult to
scale. Deploying a robust gateway service in this manner
seems infeasible.

The second shortcoming in current solutions is that clients
must, in practice, solve them in an on-line fashion. For
example, if a website employs client puzzles, then a user
who wants to visit the site has to wait for his computer to
solve a puzzle before accessing the site. Thus puzzles use up
not only computer time, but also users’ time, which is often
much more valuable. Since many users have little patience

246

for website delays, a site that imposes long puzzle delays can
drive away legitimate users.

This puts the adversary at a cost advantage. He is not
concerned with whether there are human operators at the
machines he employs for his attack. This means that a puz-
zle that costs the attacker some fixed price to solve will
cost legitimate clients much more, due to the higher cost of
human time for real clients. (Some sites require human in-
tervention, by using CAPTCHAs [35], but that raises other
issues.)

1.2 Our Solution
In this paper, we present a new way to use puzzles to

mitigate denial-of-service attacks. Our solution has three
main attributes:

• The creation of puzzles is outsourced to a secure entity
we call a bastion. An arbitrary number of servers can
use the same bastion, and can safely share the same
set of puzzles, due to special cryptographic properties
of the puzzles. Once constructed, the puzzles will be
digitally signed by the bastion so that they can be
redistributed by anyone.

• Verifying a puzzle solution requires very little work for
a server. In fact, it only requires a simple table lookup.

• Clients can solve puzzles off-line, so that users do not
have to wait for puzzles to be solved.

• Solving a puzzle gives a client access, for a time in-
terval, to a “virtual channel” on the server—i.e., to a
small slice of the server’s resources—and the server en-
sures no virtual channel uses more than its fair share
of available resources.

Previous schemes involve puzzle distribution on a per-
request or per-session basis. Our approach is more coarse-
grained in that it relies on virtual channels, which can be
used as an abstraction to protect different types of resources.
For example, a web server might limit the number of open
TCP connections per channel or a database server could
control the rate of database queries processed. When at
high risk of DoS attack (or in the midst of an attack) a host
in our system accepts communication only via a restricted
collection of channels.

To contact a host through one of these channels, a client
must provide a valid token. A token consists of the solution
to the client puzzle associated with a particular channel and
time interval. A client can easily attach tokens to every
packet it transmits. The host can enumerate in advance
the set of valid tokens, so the host can verify tokens and
filter channel traffic very efficiently. An adversary with lim-
ited computational resources can successfully attack only a
limited number of channels, and the remaining channels will
be available to support normal communications from benign
clients. We note that multiple clients can use the same chan-
nel for communication. The primary purpose of channels is
to segregate adversary requests from user requests.

We justify the use of tokens by the following observation.
In typical DoS attacks an attacker commandeers a cohort of
“zombie” machines on the edge of the network, but generally
does not compromise routers in the middle of the network.
Based on this observation, we consider an attack model that

assumes only limited eavesdropping by the adversary. (This
assumption is explored further in Section 5.3.)

As we have explained, puzzle-based DoS solutions provide
a newly attractive DoS target: the point of distribution of
puzzles. To address this problem, we propose a novel ap-
proach to client-puzzle distribution. We show how to out-
source puzzle distribution to a robust independent web ser-
vice such as a highly distributed content-serving network like
Akamai or a well-protected set of core servers like the root
DNS system. We refer to this service as a bastion. A bas-
tion will serve as a leverage point, reducing the robustness
requirements needed to defend a server against DoS.

We present three methods for outsourcing puzzle distri-
bution, each with different requirements for the bastion and
defending servers. Our preferred “D-H” construction, which
is based on the Diffie-Hellman problem, has two important
properties that allow it to avoid the shortcomings of previ-
ous client puzzle systems. The first is that a server’s puzzle
solutions are made from a combination of the server’s pub-
lic key and the solution to a puzzle posed by the bastion.
When publishing a puzzle, the bastion does not need to
know which servers will use that puzzle. Since servers can
effectively share puzzle challenges, only a constant number
of puzzles need to be published for each time interval, and
these puzzles can be distributed and replicated widely. This
property, along with the ability to quickly check token so-
lutions, insulates the puzzle distribution mechanism from
attack.

The second property is that when a client solves a puzzle
for a particular channel, the solution can be used at any
server. The solution for a particular channel is combined
with the public key of a server to produce a token solution
specialized for that server. This means the client machine
can compute solutions ahead of time and adapt them on the
fly to whatever servers the user chooses to contact. The user
will then experience no extra delay once he decides to go to
a site.

We show our methods to be both theoretically sound and
practical to implement using existing Internet protocols (with
the addition of new client-side and server-side components).
Our method also maintains compatibility for unmodified
clients, although their traffic does not receive the benefit
of DoS resistance. We describe a prototype implementation
of our system that protects TCP connections in a manner
that is transparent to client and server applications.

1.3 Organization
The paper is organized as follows. We describe our puzzle

construction and distribution methods in Section 2. In Sec-
tion 3 we describe how a system can be built using our D-H
puzzle construction, and we discuss some extensions to our
scheme in Section 5. We follow by describing our TCP-level
implementation along with experimental results in Section
4. Then we discuss a few ways in which our basic results can
be extended in Section 5. Finally, in Section 6 we describe
related work, and we conclude in Section 7.

2. PUZZLE CONSTRUCTION
In this section we present our main Diffie-Hellman based

puzzle construction scheme, which will be the construction
of choice for the rest of the paper. We begin by enumerating
the goals we would like our puzzle construction to meet.
Next, we present our D-H based construction along with an

247

identity-based variant. Finally, we present two other puzzle
constructions that prove interesting to examine.

Lack of space forbids our including formal definitions and
security proofs here; thus what is presented are construc-
tion sketches only and heuristic hardness claims. This is
not to discount the importance of a formal model. On the
contrary, formal definitions for puzzle hardness [22, 15] are
only incipient in the literature and would naturally require
extension to the outsourcing scenario as a prerequisite for
security analysis. This is beyond the scope of our present
investigation.

Let us introduce some notation. Let fk : {0, 1}∗ → {0, 1}k

be a one-way hash function whose range consists of k-bit
strings. It is convenient to model f as a random oracle.
The value k is a security parameter; we drop this superscript
where appropriate for visual clarity. A parameter l serves to
govern the hardness of the puzzle constructions we describe.

For a channel c, a timeslot τ , and a defending server, I,
let πI,c,τ denote a published and authenticated puzzle. Let
σI,c,τ denote the corresponding solution (which we assume
to be unique).

We let yI denote the public key associated with a partic-
ular defending server I, while xI denotes the corresponding
private key; we let y and x be the respective keys of the
bastion. We omit the subscript I where context makes it
clear.

2.1 Goals for our scheme
Puzzle outsourcing for our purposes introduces a new set

of constraints and requirements.
Recall that every timeslot and channel in our solution has

only one associated puzzle. Hence, for any given timeslot
the total number of puzzles is equal to the number of valid
channels—perhaps on the order of thousands, according to
the parameterizations we envision and describe below. In
strict contrast to previous puzzle-based DoS systems, the
defending server in our scheme can afford to invest fairly
considerable computational resources in puzzle construction
and solving. Even the computation of a modular exponen-
tiation per puzzle is acceptable. This provides us the flexi-
bility to introduce puzzle constructions based on public-key
cryptography.

At the same time, outsourcing imposes a new set of goals
for puzzle construction. We enumerate the most important
of these here:

1. Unique puzzle solutions: The practicality of our
solution depends on the ability of a defending server to
precompute puzzle solutions prior to their associated
timeslot, and subsequently to check their correctness
via table lookup. Consequently, it is important that
puzzles have unique solutions (or a very small number
of correct ones).

2. Per-channel puzzle distribution: We want the bas-
tion to be able to compute and disseminate puzzle in-
formation on a per-channel basis. In other words, the
bastion should be able to publish information for a par-
ticular channel number c that may be used to deduce
the corresponding puzzle for any defending server. (Dif-
ferent servers should have different puzzle solutions,
though, so that one server’s ability to enumerate its
own puzzle solutions does not expose other servers to
attack.)

With this property, the bastion does not even need
to know which servers it is helping to defend. This
reduces the amount of information the bastion must
compute and publish, and it removes the need for ex-
plicit relationships or coordination between defending
servers and bastions.

3. Per-channel puzzle solution: Another desirable prop-
erty is for the work done by a client to apply on a
per-channel basis, rather than a per-puzzle basis. In
particular, we would like a client that has solved a
puzzle for a particular channel to be able to efficiently
compute the token for the same channel number on
any server.

As we have already noted, this does not mean that
tokens should be identical across servers—only that
there should be considerable overlap in the brute-force
computation needed to solve the puzzle for a given
channel-number across servers. In particular, it is not
desirable for one server to be able to use its shortcut
to compute the tokens associated with another server,
as this would result in a diffusion of trust across all
participating servers rather than in the bastion alone.

The per-channel puzzle solution property is useful be-
cause it allows a client to begin solving puzzles before
deciding which server to visit.

4. Random-beacon property: Sometimes it is pos-
sible to achieve a property even stronger than per-
channel puzzle distribution. Ideally, puzzles might not
require explicit calculation and publication by a bas-
tion. Instead they might be derived from the emissions
of a random beacon.

We use the term random beacon to refer to a data
source that is: (1) unpredictable, i.e., dependent on a
fresh source of randomness; (2) highly robust, i.e., not
subject to manipulation or disruption; and (3) easily
accessible on the Internet. A puzzle construction based
on a random beacon would eliminate the need for ex-
plicit bastion services. (Apart from the architectural
advantages, this could have the benefit in some cir-
cumstances of eliminating any point of legal liability
for reliable puzzle distribution.) Hashes of financial-
market data or even of Internet news sources, which
both can be obtained from numerous locations, would
be candidate random beacons.

Surprisingly, under this construction not only would
the bastion (random beacon) not have to know what
defending servers were relying on its services, but in
fact it wouldn’t even need to know its data was being
used to construct puzzles!

5. Identity-based key distribution: When puzzles
are based on the public key of a defending server, the
public key itself must be distributed via a robust di-
rectory. A desirable alternative is identity-based dis-
tribution, wherein the public-key of a particular de-
fending server can be derived from the server name
and a master key known to all defending servers. This
is closely analogous to the well-known primitive of
identity-based encryption [10].

6. Forward security: A final desirable property is for-
ward security. Specifically, that time-limited passive

248

compromise of a bastion should not undermine the
DoS protection it confers.

2.2 A D-H based construction
We now describe a puzzle construction based on Diffie-

Hellman key agreement [14]. It has all of the properties
above except the random-beacon property (i.e., it has prop-
erties 1,2,3,5 and 6).

Let G be a group of (prime) order q. Let g be a published
generator for the group and l be a parameter denoting the
hardness of puzzles for this construction. (As explained be-
low, we require a strong, generic-group assumption on G.)

We propose a simple solution in which the bastion selects
a random integer rc,τ ∈R Zq and a second random integer
ac,τ ∈R [rc,τ , (rc,τ + l) mod q]. (Recall that l is the hardness
parameter for the puzzle.) Let f ′ in this case be a one-way

permutation on Zq, and let gc,τ = gf ′(ac,τ).
The intuition is as follows. The value gc,τ may be viewed

as an ephemeral Diffie-Hellman public key. A puzzle solution
for defending server I is the D-H key that derives from its
public key yI = gxI (xI is the secret key) and the ephemeral
key gc,τ . Solving a puzzle means solving the associated D-H
problem. To render the problem tractable via brute force,
the bastion specifies a small range [rc,τ , (rc,τ + l) mod q] of
possible seed values for its ephemeral key. In other words,
the bastion publishes πc,τ = (gc,τ , rc,τ).

For a client (or attacker) to solve the puzzle requires brute-
force testing of all of the seed values. In particular, for a
given candidate value a′, the client tests whether gc,τ =

gf ′(a′). For a particular defending server I, the solution to

the puzzle is σI = yI
f ′(ac,τ).

Of course, a defending server can use its private key xI

as a shortcut to the solution of the puzzle. The defending

server can compute σI = yI
f ′(ac,τ) = gc,τ

xI . In other words,
it essentially computes a Diffie-Hellman key. For a defend-
ing server, solution of a puzzle essentially requires just one
modular exponentiation.

On average, puzzle solution by a client (or attacker) re-
quires l/2 modular exponentiations over G.

Since puzzle hardness needs to be precisely characterized,
we believe that any concrete computational hardness claim
would have to depend on a random-oracle assumption on
f ′ and also a generic-model assumption for the underly-
ing group G [31]. Thus it is important to choose G ap-
propriately. (Several common types of algebraic groups are
believed to have the ideal properties associated with the
generic model, e.g., most elliptic curves and the order-q sub-
group G of the multiplicative group Z∗

p , where p = kq + 1
for small k [31].)
Remark on application of f ′: Applying f ′ in the com-

putation of ephemeral key gc,τ = gf ′(ac,τ) is a requirement
to break algebraic structure among seed-to-key mappings. If
we chose gc,τ = gac,τ , for example, then it would be possible
to cycle through candidate seed values by computing grc,τ

and repeatedly multiplying by g.

2.2.1 Identity-based public keys
Here we briefly and informally sketch a technique for dis-

tributing the public keys {yI} of defending servers in an
identity-based manner. In other words, we show how yI can
be derived from a string representing the identity I (e.g., a
domain name) and a master private key. A trusted dealer
can distribute individual private keys to servers using the

master key. This technique can be viewed as a variant of
our D-H based construction.

Employing the notation of Boneh and Franklin [10] (with
which we assume familiarity here for the sake of brevity),
let ê : G×G → G′ be an admissible bilinear mapping in the
sense defined in [10] where G and G′ are two groups of large
prime order q. For G suitably chosen as a subgroup of the
additive group of points of an elliptic curve E/Fp for prime
p, ê may be constructed using the Weil pairing. Recall that
when the system is correctly parameterized it is believed
that the Bilinear (Computational) Diffie-Hellman (BCDH)
Assumption holds. This is an essential hardness property
for our proposal here. Roughly stated, given P ∈R G and
points aP, bP, and cP for a, b, c ∈R Zq, it is hard to compute
ê(P, P)abc.

Let x′ be the private key of the trusted dealer, and let y′ =
x′g be an associated public key. Finally, let d : {0, 1}∗ → G
be a one-way function mapping identifier strings to group
elements in G.

In this scheme, the public key of defending server with
identifying string I is computed simply as yI = d(I). The
associated private key, computable by the trusted dealer, is
x′yI .

As before, we let ac,τ ∈R [rc,τ , (rc,τ + l) mod q]. The
ephemeral key computed by the bastion assumes the form
gc,τ = f ′(ac,τ)g. The bastion publishes πc,τ = (gc,τ , rc,τ),
just as it does in the D-H puzzle.

The difference for the identity-based variant lies in the
form of the puzzle solution. This is defined here to be

σI,c,τ = ê(yI , g)x′f ′(ac,τ). (This solution may be hashed
for compactness.) After solving for ac,τ , a client may com-

pute this as ê(yI , y′)f ′(ac,τ). The defending server may use

its knowledge of xI as a shortcut. In particular, σ
(I)
c,τ =

ê(xI , gc,τ) = ê(yI , g)x′f ′(ac,τ).
By analogy with our D-H construction, the work for brute-

force solution here is on average l/2 multiplications over the
elliptic-curve based group G.

2.3 Other Schemes
We now discuss two other interesting puzzle construc-

tions. The first is a hash-function-inversion construction.
This construction is worth examining since its basic meth-
ods are closest to previous work on client puzzles. However,
the construction does not meet properties 2, 3, 4, or 5. Its
most serious limitation is that it does not meet property 2.
Therefore, the bastion must compute a set of puzzles for
each participating server.

The other construction we present is based upon time-lock
puzzles. The most interesting property of this construction
is that it meets property 4 in that puzzles challenges can
be made from a random beacon. However, it does not meet
property 3, so the client must compute puzzle solutions par-
ticular to the server it is contacting.

2.3.1 Hash-function-inversion puzzle construction
It is possible to perform outsourcing by means of partial

hash-function inversion problems like those employed in pre-
vious puzzle-based anti-DoS schemes (e.g. [2, 23]).1 Let σc,τ

1A related inversion-based puzzle construction is employed
in [18]. In general, this construction does not have a unique
solution for a given puzzle, so it cannot be used conveniently
for our purposes, as explained below.

249

be the j-bit secret key for j > l. A puzzle is computed as
f(σc,τ). To calibrate the hardness of the problem so as to
require 2l−1 hash-function computations on average, all but
l bits of σc,τ are revealed. For example, a puzzle might take
the form πc,τ = (f(σc,τ), σ′c,τ), where σ′c,τ consists of all but
the first l bits of σc,τ .

To outsource the construction of such puzzles, we let xI

be shared between the defending server and bastion. (The
secret xI might be computed as a function of y and yI via
D-H key agreement.) We let σI,c,τ = f(c, τ, xI). With this
approach, the defending server can quickly compute the set
of solutions to puzzles for a given timeslot τ without com-
municating with the bastion.

2.3.2 Time-lock puzzle construction
We now propose a puzzle construction that has properties

1, 2, 4, and 6 above. It achieves the random-beacon prop-
erty, but it lacks the per-channel puzzle solution property.
Thus, this solution requires explicit distribution of public
keys for defending servers, and a client cannot start solving
puzzles prior to determining which server to access.

This construction is a simple adaptation of the time-lock
puzzle scheme proposed by Rivest, Shamir, and Wagner [29].
A public key yI consists of an n-bit RSA modulus NI . (See
[29] for discussion of restrictions on the choice of N .)

In the original RSW construction, a random value a ∈R

Zn serves as a basis for the puzzle. Solving a puzzle requires

the computation of a secret value b = a2l

mod n. Here, b
serves essentially as a key to the puzzle. The parameter l
governs the hardness of the puzzle; in particular, a solver
must perform l modular squarings in order to compute b
and “unlock” the puzzle.

Knowledge of the factorization of n provides a shortcut
to compute the secret b. For large l, computation of e =
2l mod φ(n) and then ae mod n is much faster than brute-
force squaring.

As explained above, the original RSW construction aims
at creating a kind of digital time capsule—a cryptogram
solvable only in the distant future thanks to advances in
computing power. RSW propose that the puzzle constructor
determine how hard the puzzle should be, use the shortcut
in order to create an encryption key associated with the
puzzle, and then erase all data associated with the shortcut,
sealing the time capsule.

The main goal in the RSW design was to render the so-
lution process difficult to parallelize, so that the ability to
unlock the puzzle would truly depend upon raw advances in
computing power. This property is achieved thanks to the
sequential nature of the modular squarings required for the
solution. By contrast, a puzzle based on hash-function in-
version would not achieve this goal, since it could be divided
among many different computing devices.

We exploit an altogether different property of the RSW
construction (one probably not explicitly designed by its in-
ventors). We observe that a time-lock puzzle may be derived
simply from a random string (used to derive a) and an RSA
modulus. This means no explicit computation by the bastion
is required to create a valid time-lock puzzle. Our D-H solu-
tion above, on the other hand, requires the bastion to com-
pute an ephemeral D-H key, and our hash-function-inversion
puzzle scheme requires the hashing of a secret value.

Given this observation, the puzzle construction is straight-
forward. Let rτ be a suitably long random string emit-

ted by a random beacon in timestep τ (say, n + k bits in
length for security parameter k ≈ 128). We let rI,c,τ =
fn+k(I, c, τ, rτ). We then compute πI,c,τ = ac,τ = rI,c,τ

modNI .

The solution σI,c,τ to this puzzle is just (ac,τ)2
l

mod NI .
A client (or attacker) must compute this by repeated squar-
ings. Yet the defending server can compute it quickly using
its shortcut.

Note that a single random value can be used to compute
puzzles for an arbitrarily large number of channels. The
security parameter l may be set by a defending server as
desired. For the defending server, the work to solve a puzzle
only requires a modular reduction (whose size is parame-
terized by l) and an RSA exponentiation. For a client (or
attacker), solving the puzzle requires l modular squarings.

3. SYSTEM DESCRIPTION
In this section we describe how a system using our puz-

zle constructions operates in practice, and we analyze the
effectiveness of our scheme. To be concrete, we use the D-
H puzzle construction (but without the identity-based vari-
ant). First we describe the system parameters and opera-
tion. Then we give a practical example where we consider
parameter values that might be used in practice.

In our scheme each server will have n virtual channels.
The solutions to channels will be valid for a time period
of length t. Typically, the period will be coarse grained so
that t will be on the order of several minutes. We use Ti to
denote the i-th time period.

At the beginning of the period Ti, the bastion will publish
puzzle challenges having solutions that will be valid during
Ti+1. The clients solve the puzzles distributed at the be-
ginning of Ti during the rest of Ti and use these solutions
during Ti+1. The server will correspondingly populate its
token list for time period Ti+1 during Ti.

For simplicity we will assume that all client machines have
the same processing power to devote to puzzle solving and
we view an attacker as a compromised client machine. We
let s denote the average number of puzzles a client can solve
during a period. The puzzle difficulty (determined by the
range of possible puzzle solutions) will be set low enough
that every client machine will be guaranteed to solve at least
one puzzle. To ensure this we need to have s ≥ 2.2 Dur-
ing each cycle, each client will choose a random channel for
which to solve a puzzle.

When a client initially contacts a specified server, it fol-
lows these steps. First the client obtains the public key for
the server (for the denial-of-service system). Then the client
adapts the solutions it has computed to this public key. The
extra amount of computation to customize a solution for a
particular public key—and thus server—is just one expo-
nentiation. The token corresponding to the solution for the
particular server and a given channel will be attached to
requests made by the client.

If the server is not under attack, it will just ignore the
tokens and operate normally. Yet suppose now that an at-
tacker who controls A attacker machines begins a Denial-

2In reality, some machines will have more processing power
to devote to puzzle solving than others. The choice of pa-
rameters will need to strike a balance between accommodat-
ing slower legitimate clients and making the puzzles difficult
enough to defend against attackers.

250

of-Service attack. Assuming the attacker machines are well-
coordinated, the attacker will be able to solve A · s puzzles
per time period on average. If the attacker focuses an at-
tack on time period Ti+1 by solving puzzles for Ti+1 over two
time periods Ti and Ti+1, then at one point the attacker can
get 2A · s solutions.

One strategy for the attacker is to request as many re-
sources as possible using its legitimate channels. Under this
attack, the server will need to have a policy for how it divides
resources among channels. For example, if the TCP layer
is being protected, the server might limit the rate of SYN
packets processed per channel. Observe that our abstract
conception of the channel is the unit by which resources are
allocated. Developing effective resource allocation policies,
while important, is beyond the scope of this paper.

When the attacker machines are aggressive in requesting
resources they can potentially collect all the resources allo-
cated to the channels for which they have solutions. In this
case a client that solves for one of these channels will not
be able to obtain any resources. If an adversary focuses an
attack on one particular time period it can occupy a fraction
2A·s

n
of the channels.

If a client makes a request on a channel that is not occu-
pied by an adversary and the allocation policy permits the
request, then the server can process the request immediately.
Since the puzzles were solved in the previous period the user
will not experience any delay due to the client puzzle sys-
tem. The rate control mechanism, we note, is a function
of the policy for allocating resources to each channel, not
the difficulty of the client puzzles as in traditional schemes.
Thus our scheme can change the resource allocation without
adversely affecting user latency.

The attacker might decide to attack the puzzle defense
mechanism itself, for instance by flooding the server with
requests. If the requests have fake token solutions, then the
overhead associated with our scheme is that of performing
a memory lookup to check the token’s validity. In contrast,
other schemes require a hash computation at this step. (In
our scheme, the server is also required to generate the list
of tokens for each time period, but this effort is related to
the number of channels rather than the number of requests
that an attacker can make.)

In a different kind of flooding attack, the adversary makes
repeated requests using a single valid token. In this case,
the overhead associated with our scheme is that of checking
the resources allocated to a particular channel, which again
should be minimal.

We summarize the client and server operations as follows.
Client

• During period Ti, downloads random puzzles from the
bastion service and solves them with spare computa-
tional resources.

• During time period Ti+1, uses the solutions that were
solved during the previous period Ti.

• When initiating a request from a certain server, the
client machine checks to see if the server has a public
key for DoS prevention. If so, the client combines its
puzzle solution and the server’s public key to make a
token for a particular channel on the server. The token
is appended to the request.

• If the client has multiple puzzle solutions for multiple

channels and one is not working on a particular server,
the client may retry the request using a different token
for a different channel.

• A client that has just booted up and stated solving
puzzles may have to wait up to an entire time period
before it has a solution that can be used. However,
once the client is in the cycle of solving puzzles it will
always have a valid solution.

Server

• During time period Ti, downloads all the puzzles for
the channels and computes a token list from them us-
ing its private key. The list is used during the next
period, Ti+1.

• If the system load is low and there is no DoS attack,
then the server ignores the tokens and processes re-
quests as though there were no DoS prevention sys-
tem.

• During an attack the server only accepts requests that
have valid tokens for solutions. The request tokens
for a particular channel is quickly checked against the
table of valid tokens. The amount of resources granted
will be limited on a per channel basis.

3.1 An Example
To make our ideas more concrete, we present an example

of how the parameters for our scheme might be chosen in
practice.

The length of a time cycle, t, will typically be on the order
of minutes. Larger values of t will allow the server more time
to compute more tokens and thus offer more channels. Since
the number of channels an attacker can occupy can be con-
trolled by adjusting the puzzle difficulty, as t becomes larger,
the portion of channels an adversary can control shrinks.

A large value of t has the disadvantage that a machine
that has just joined the network will need to wait longer be-
fore it can have a valid solution. However, once the machine
starts solving puzzles, it will solve them for the proceeding
cycle, so there will be no delay after the second period fol-
lowing startup. Additionally, if all the channels for which a
client has solutions are occupied by an adversary, then the
client will need to wait for a full cycle before it can try new
channels.

Using a large number of channels is advantageous in that
the more channels there are, the less likely it will be that a
legitimate client will solve a puzzle for the same channel as
an adversary. In general, the number of channels a server
can offer is limited by both the server’s memory (for stor-
ing token lists and resource bookkeeping information) and
the computational resources that the server can devote to
solving. In our D-H solution, the computational resources
of the server will be the limiting factor. As a rough esti-
mate, a 2.1GHz Pentium processor was measured to be able
to compute a 1024-bit DH key agreement in 3.7ms [11]. As-
suming t is 20 minutes, if such a server was able to devote
1 minute or 5 percent of processing power for every cycle,
then it could populate tokens for about n = 16, 000 chan-
nels. (If we used the identity-based variant the time to com-
pute a pairing would be around an order of magnitude more
than the exponentiation, so we would have around an order
of magnitude fewer channels. Therefore, the identity-based

251

variant is currently not as practical, but it might become so
in the near future as processing power increases.)

Using these parameters, we now want to determine the
liklihood that a client will solve a puzzle that is not occupied
by an adversary. If we set s = 2 then every client will solve
at least one puzzle (since it can search the whole range of
possible solutions for one puzzle) and half the clients will
solve at least 2 puzzles. If a attack is made with 50 zombie
machines then the attack, at its peak, will occupy 2×50×2 =
200 puzzles and will occupy 200

16,000
× 100 = 1.25 percent of

the channels. The chances of a legitimate client not having
any solutions unoccupied channels is at most (.5 × .0125 +
.5× .01252)× 100 ∼ .625 percent.

3.2 Projections
One important feature of our client puzzle scheme is that

its ability to handle a large number of adversaries will in-
crease as the CPU power of machines increases. As we have
discussed above, the limiting resource in our scheme is the
number of channels for which a server is able to compute
tokens.

When the cost of public key operations decreases, a typical
server will be able to support more tokens, and the cost of
solving a puzzle can be adjusted such that the difficulty for
the adversary stays about the same over time. In this way,
technological advances will allow our scheme to efficiently
handle more adversaries. Alternatively, some of the server’s
added power can be sifted to decreasing the initial delay, t,
when a client first starts solving puzzles for the system.

Our future outlook contrasts sharply with those of tra-
ditional client puzzle schemes [23, 6, 13], which derive no
obvious benefit from increases in technology (other than the
server having more resources to handle requests).

4. IMPLEMENTATION
We have constructed a functioning prototype implemen-

tation of our design as it is described in section 3. The im-
plementation consists of a suite of programs that run on the
Linux operating system. They use the GNU MP Bignum li-
brary [28] for multiple precision arithmetic and the Netfilter
framework [27] for network packet mangling.

Our system protects against attacks at the TCP level by
regulating the rate at which new TCP connections may be
established. To accomplish this, each client inserts tokens
derived from its puzzle solutions into an option field of the
TCP SYN packet (the first packet sent in the connection
establishment process). Servers check for the presence of a
valid token and use the token to separate connections into
channels for rate limiting. Each channel will only accept
one new connection every n seconds, where n is set by the
server operator. This policy is appropriate for protecting
services that use a roughly constant amount of resources for
the duration of each connection.

The first program in our suite is the bastion, which cre-
ates new sets of puzzles at a regular interval. The number
of puzzles in each generation, their hardness, and the time
between new generations are configured by the bastion op-
erator. Our bastion writes a set of puzzle files that are
distributed by a normal web server using HTTP. We chose
this design because it can be easily scaled to serve large
numbers of clients by using multiple web servers or existing
high-availability content distribution schemes. In each time
period, the bastion creates a separate file for each puzzle, so

clients only need to download the puzzle they have selected
to solve, as well as a digest file containing all the puzzles,
so servers only need to make one HTTP request to retrieve
the entire set of puzzles.

The next program is a packet-tagging application that
runs on client machines. It runs two threads: a puzzle solver
and a packet rewriter. The puzzle solver waits for the bas-
tion to post a new puzzle generation then randomly selects a
puzzle and computes its solution. The packet rewriter tags
outgoing SYN packets with tokens that prove the client has
solved a puzzle.

The client processes packets with the Netfilter ip queue
library, which allows it to run entirely in user space. When
the client detects an outgoing SYN packet, it appends a
20-byte option to the TCP header. The option consists of
two tokens computed from puzzle solutions and the server’s
public key, along with the index of each solved puzzle in the
bastion’s puzzle set. We use two tokens – one solution from
each of the previous two generations – to ensure that the
server will accept the connection even if it has switched to
a new generation somewhat sooner or later than the client.
The tokens consist of the first 48 bits of the puzzle solutions.
Their size is sufficiently large to prevent guessing of tokens
during the time period when each puzzle is valid, yet short
enough to fit in the TCP header.

Finally, we have a pair of applications that run on each
server. They consist of a user space program that precom-
putes puzzle solutions and a kernel module that filters in-
coming packets. The server’s user space program monitors
the bastion for a new generation of puzzles and retrieves the
complete set of puzzles when it is available. Then it precom-
putes the solution to each puzzle using the server’s private
key. When a subsequent generation of puzzles is posted by
the bastion, the user space application transfers the previous
set of solutions to the kernel module, which begins requiring
that clients send solutions to puzzles from this generation.

We implemented server side packet filtering as a kernel
module for speed and robustness. The module receives in-
coming IP packets using a hook into the Netfilter framework.
We receive each packet immediately after the network sub-
system has routed the packet and determined that it is des-
tined for the local machine, and before the packet reaches
higher-level protocol subsystems like TCP. If a packet is a
SYN, the module begins to filter it by scanning the header
for our option field and extracting the tokens and their in-
dexes. Each token is validated by comparing it to the entry
in the table of precomputed tokens corresponding to the sup-
plied index. If either token matches, its index becomes the
number of the connection’s channel, and the rate limiting
mechanism is applied to determine whether the connection
will be accepted. Packets that exceed the rate limit or have
bad tokens are immediately dropped.

4.1 Experiment
As stated before, a potential pitfall of Denial-of-Service

prevention mechanisms is that they themselves will become
the targets of DoS attacks. In puzzle-based solutions, if
the overhead of checking puzzle solutions is too great, an
attacker can overwhelm the server with a flood of packets
containing bad solutions. To see how well our implementa-
tion fared against such an attack, we performed tests com-
paring it to two related anti-DoS mechanisms: conventional
client hash puzzles and Linux’s syncookies.

252

In our experiment we measured the load on a test server
that was the target of TCP SYN flood attacks of varying
intensity. The server was an 866MHz Pentium III running
Redhat Linux 9.2 (kernel version 2.4.20-31.9). It was con-
nected to three attacker machines via a 100-megabit Eth-
ernet switch. The attack strength was modulated by em-
ploying combinations of attackers with different CPU power.
Each SYN packet was tagged with an invalid puzzle token.

Our mechanism requires processor time to precompute the
puzzle solutions for each generation, but exactly how much
time is required depends on the puzzle parameters set by the
bastion. To account for this, we measured our system in two
configurations: a scenario where the server needed to calcu-
late its tokens for 10,000 channels over a time period of 20
minutes, and a baseline configuration specially compiled to
disable any token calculations. (The latter scenario rejects
all TCP connections, so it is only useful for benchmarking.)

To determine system load, we counted how many loop it-
erations per second were performed by a process set to the
lowest scheduling priority, both when the system was idle
and during the attacks. In most scenarios we took the av-
erage load over a three minute period. However, to account
for the uneven CPU load during token calculation in our
solution, we took the average over the entire 20 minute time
period when tokens were being computed.

To simulate a conventional (non-outsourced) client puz-
zle mechanism, we modified our kernel module to replace
the puzzle verification code with a SHA-1 hash computa-
tion on 56-bytes of arbitrary data. After this computation
the module drops the packet. To test syncookies we per-
formed no filtering of our own and allowed Linux to send an
ACK packet containing a cookie in response to each SYN.

The results of our experiment are plotted in Figure 1 to-
gether with a linear regression for each series. At almost all
rates of attack, our solution outperformed both the SHA-
based puzzles and syncookies, which had nearly equal per-
formance. 3

We found syncookies contributed an average of 1% load
for every 541 packets per second. For the same cost, the
SHA-based puzzle mechanism processed about 530 packets
per second, and our method processed about 1014 pack-
ets per second. However, precomputing puzzle solutions for
our scheme added a constant load of about 2.5%, regard-
less of attack strength. Extrapolating from this data, our
scheme (with precomputing) can withstand approximately
87% more attack packets per second than SHA-based puz-
zles before reaching full system load, and 83% more than
syncookies.

5. EXTENSIONS

5.1 Flexible number of channels
To this point we have assumed that all servers will use the

same number of channels. In reality we would like to give
some more flexibility to the servers. Some servers might
want to tradeoff more processing time in order to provide
more channels and thus handle more attackers. The primary
challenge is to allow this, but in such a way that our D-H

3It may seem curious that the SHA-based puzzles and syn-
cookies follow nearly identical load profiles. The reason is
that the dominant cost of syncookies is also a SHA-1 hash
computation for every packet.

construction still has the property that a solution can be
applied to any server.

We can do this in the following manner. Suppose that the
maximum number of channels that a server might solve is n
and that the bastion publishes n puzzles as before. We will
refer to these as the primary puzzles. Clients will randomly
choose puzzles to solve from among this group. Now sup-
pose we want to allow for a server to have n

d
solutions for

some d that divides n. The bastion can then create n
d

new
puzzles except that instead of giving a range hint for the so-
lutions it will encrypt these secondary puzzle solutions with
the solutions of the primary puzzles. For example, if yj de-
notes the solution to puzzle j in the secondary set and zi the
solution to puzzle i in the primary set then we would pro-
duce d encryption of yj with the keys zd×j , . . . , zd×(j+1)−1.
Using this technique the solutions for primary channels can
effectively be combined to allow for a server to have a lower
number of channels.

5.2 Challenges in IP-Level Deployment
Although our implementation applies clients puzzles at

the TCP level, regulating the creation of new TCP con-
nections, the same method could be applied at other levels
of the protocol stack, including the IP level. This is not
true of previous puzzle-based approaches: since their puz-
zle solutions are more expensive to verify, a server or router
could not afford to perform a puzzle verification for each IP
packet. Our approach, by contrast, would require only a
table lookup per packet, and so would be feasible at the IP
level.

The biggest challenge we face in deploying our method at
the IP level is where in the IP packet to put the token (i.e,
the puzzle solution). There aren’t enough unused bits in the
IP header, so the logical way to attach the token is to make it
an IP header option. (This approach is feasible in both IPv4
and IPv6, but it is a bit more natural in IPv6.) A header
option will be ignored by routers that do not understand it;
but any router or end host will be able to extract it and
check it against the list of acceptable tokens.

To make this feasible for a high-capacity site, the extrac-
tion and checking of the token would have to be included in
the fast-path mechanism of a router. Whether this is feasible
depends on the details of how the router is designed. Space
does not permit us to delve deeply into this issue, except to
say that it appears to be possible on some routers but dif-
ficult on others. We leave the construction of a high-speed
IP-level implementation for future work.

5.3 Eavesdropping attacks
As stated in the introduction we use an attack model

where we assume that eavesdropping on the Internet is dif-
ficult for typical DoS attackers. However, it is still useful
to consider what happens if eavesdropping occurs, in what
situations it might occur, and measures that can be used by
a client to prevent being eavesdropped upon.

If an attacker is able to eavesdrop on packets sent by a
client to the server under attack, then he effectively converts
the client into a drone that solves puzzles for him. This
will have two repercussions. First, the attacker will be able
to get another channel and consume more resources on the
system as a whole. Second, the attacker will occupy the
same channel as the client from which he steals tokens and
that client will likely be shut out of that channel. Therefore,

253

Figure 1: Graph showing the number of attack packets per second that yield a given system load using
syncookies, traditional hash puzzles, and our approach.

there is a special incentive for clients not to have their tokens
eavesdropped upon.

Since core routers on the Internet are difficult to compro-
mise, the the most likely source for eavesdropping attacks
are on the edge of the Internet such as a local LAN. If a client
suspects that his packets are being eavesdropped upon, then
it could send them securely to some part of the net that it
believes to be uncorrupted. One way of doing this is to tun-
nel packets through IPsec [32]. We do not recommend for
the server itself (or a nearby router) to act as an endpoint
for such a tunnel, as the IPsec protocol could become a DoS
vulnerability itself.

6. RELATED WORK
Our proposal in this paper focuses on the use of puzzles

as a countermeasure to DoS attack. Dwork and Naor [16]
were the first to propose puzzles for this purpose – in partic-
ular, for mitigating spam. Briefly stated, successful delivery
of a piece of e-mail in their scheme requires that the sender
attach a valid puzzle solution. A would-be spammer there-
fore faces the deterrent of a large and expensive amount of
computation.

Since computational time costs money (directly or indi-
rectly), the Dwork and Naor scheme may be thought of as
akin to a micropayment system for postage. Back [7] inde-
pendently devised and implemented a similar system known
as Hash Cash.

The Dwork-Naor and Back systems permit pre-computation
of puzzles, namely the solution of puzzles at a time arbitrar-

ily antedating the sending of the e-mail they are associated
with. This may be effective against spam, but not against
the common form of DoS in which an attacker seeks to dis-
able a server by overwhelming its resources during some re-
stricted period of time. This common real-world DoS attack
is often referred to as a flooding attack. It is our main focus
in this paper.

Juels and Brainard [23] addressed the problem of puz-
zle precomputation permitting flooding with an idea they
termed “client puzzles”; these are puzzles based on session-
specific parameters, that can be applied to interactive pro-
tocols like TCP and SSL. Aura, Nikander, and Leiwo [6]
propose variants aimed specifically at DoS attacks against
authentication protocols. Dean and Stubblefield [13] focus
on the application of client puzzles to SSL (or TLS), and in-
vestigate surrounding deployment issues. Wang and Reiter
[36] also consider puzzle deployment for DoS protection in
authentication. They devise a system in which clients bid
for resources by solving puzzles of appropriate difficulty.

More recently, researchers have proposed a few variants on
basic puzzle constructions. Abadi et al. [1] describe a new
puzzle construction aiming at a levelling effect among com-
putational platforms (i.e., at permitting more equal resource
allocation among fast and slow machines). The puzzles they
propose rely primarily on the resource of high speed memory,
which tends to be more equally distributed among comput-
ing platforms than raw computational power. Dwork et al.
[15] propose some improved constructions in follow-up work.
Finally, CAPTCHAs [35] are a kind of puzzle that depend

254

upon human work, rather than machine computation, for
their solution. All of these puzzle variants may be adapted
to our proposal in this paper.

We omit discussion here of many cryptographic and other
uses of puzzles apart from combatting DoS, e.g., [17, 20, 22,
26].

6.1 Approaches to IP-layer DoS
Puzzles represent only one approach to DoS mitigation,

and they have previously seen use mainly at the application
or session-establishment level, rather than at lower protocol
levels. As explained above, a goal of our proposal is to pro-
vide techniques efficient enough to be deployed to help low
protocol layers, such as TCP, as our prototype demonstrates
– or even IP, in principle. We discuss some of the existing
techniques for IP-layer protection here.

One of the best known approaches to addressing IP-layer
attacks is referred to as traceback. This involves the supple-
mentation of packet data to permit tracing of the origins of
an attack [3, 9, 12, 30, 33]. Pushback [25] and Path Identifi-
cation (Pi) [37] are related IP-level approaches to DoS. They
facilitate gathering of forensic data, but suffer from the need
for modifications to the routing infrastructure. Anomaly
detection [8, 21] is another actively researched approach to
IP-level DoS that involves classification and suppression of
suspicious network traffic.

A very practical approach to attacks against certain pro-
tocols (and used in real-world systems to protect the TCP
SYN protocol) is known as a syncookie. In order to validate
the claimed IP address of a client, a server transmits a (cryp-
tographically computed) cookie to the address. The client
must transmit this cookie to the server in order to have its
service request completed. Thus, while not aimed at IP-
layer DoS, syncookies exploit low-level network services to
achieve their protection.

An important emerging thread of research on DoS that
underlies our work involves redirection of potentially hostile
traffic to robust loci capable of withstanding attack and pro-
viding filtering services, as in Stone [34], Andersen [4], and
Keromytis et al. [24]. Recently Adkins, Lakshminarayanan,
Perrig, and Stoica [2] show how to combine this approach
with puzzles; among other ideas, they advocate leverag-
ing the (proposed) Internet Indirection Infrastructure (i3)
in such a way that a challenge puzzle is issued for each con-
nection request. Our proposal is similar in flavor, but more
lightweight and consequently coarser in nature. A key dif-
ference is that we advocate outsourcing from the defending
server only the process of puzzle distribution, rather than
broad management of incoming traffic.

In this respect, our proposal is similar to that of Anderson,
Roscoe, and Wetherall [5]. They propose that a client use a
token in order to validate a path to a server; this token serves
as a packet-level nonce employable for purposes of filtering
by “verification points.” A token in the ARW approach
serves essentially the same function as a puzzle solution in
our own. The security model is similar as well: Anderson et
al. assume that adversaries do not eavesdrop extensively on
network links. A key difference is the way in which tokens
are distributed. ARW propose incremental deployment of
an infrastructure of “Request-to-Send” (RTS) servers (and
do not detail the critical policy question of how transmitters
are authorized to obtain tokens from RTS servers). Bastions
in our proposal are analogous to RTS servers. Indeed, our

proposal may be viewed as a more practical alternative to
RTS servers: Bastions dispose of the need both for an in-
frastructure of actively intercommunicating servers and for
explicit policies about token distribution.

Gligor [19] also considers the problem of the overhead
of conventional client puzzle schemes and proposes an out-
sourcing scheme. However, his scheme relies on a third party
that is positioned to verify the source IP address of the re-
quester. We do not suppose the existence of such a party.

7. CONCLUSION
We have examined the problem of defending a server against

Denial-of-Service attacks using a new technique based on
client puzzles. We observe that since puzzle distribution it-
self can be subject to attack, any viable system must have a
robust puzzle distribution mechanism. We developed a new
model for puzzle distribution using a robust service that we
call a bastion. The bastion distributes puzzles, and solutions
to the puzzles allow clients to access communication chan-
nels. Within this model we develop different cryptographic
techniques for puzzle dispersement. Our primary method,
the D-H puzzle construction, has the advantages that the
bastion does not need to be aware of the server’s using the
system and that solutions to puzzles can be computed of-
fline, resulting in minimal user delay. Finally, we imple-
mented a prototype of our system that works on today’s
Internet and experimentally demonstrated the advantages
of our solution. While our implementation was directed at
TCP, our hope is that future work might even demonstrate
our techniques efficient enough to work for lower-layer pro-
tocols such as IP.

8. REFERENCES
[1] M. Abadi, M. Burrows, M. Manasse, and T. Wobber.

Moderately hard, memory-bound functions. In NDSS
’03, pages 107–121. Internet Society, 2003.

[2] D. Adkins, K. Lakshminarayanan, A. Perrig, and
I. Stoica. Taming IP packet flooding attacks. In
HotNets-II. ACM Press, 2003.

[3] M. Adler. Tradeoffs in probabilistic packet marking
for IP traceback. In STOC ’02, pages 407–418. ACM
Press, 2002.

[4] D. G. Andersen. Mayday: Distributed filtering for
Internet services. In USENIX Symposium on Internet
Technologies and Systems (USITS), 2003.

[5] T. Anderson, T. Roscoe, and D. Wetherall. Preventing
Internet denial-of-service with capabilities. In
HotNets-II. ACM Press, 2003.

[6] T. Aura, P. Nikander, and J. Leiwo. DoS-resistant
authentication with client puzzles. In 8th International
Workshop on Security Protocols, pages 170–181.
Springer-Verlag, 2000.

[7] A. Back. Hashcash - a denial-of-service
countermeasure, 2002. Original system developed in
1997. Manuscript. Referenced 2004 at
http://www.hashcash.org/hashcash.pdf.

[8] P. Barford, J. Kline, D. Plonka, and A. Ron. A signal
analysis of network traffic anomalies. In Internet
Measurement Workshop, 2002.

[9] S. Bellovin, M. Leech, and T. Taylor. ICMP traceback
messages, 2003. Internet Draft.

255

[10] D. Boneh and M. Franklin. Identity based encryption
from the Weil pairing. SIAM J. of Computing,
32(3):586–615, 2003.

[11] Wei Dai. Crypto 5.1 benchmarks. Web site at
http://www.eskimo.com/ weidai/benchmarks.html.

[12] D. Dean, M. Franklin, and A. Stubblefield. An
algebraic approach to IP traceback. Information and
System Security, 5(2):99–137, 2002.

[13] D. Dean and A. Stubblefield. Using client puzzles to
protect TLS. In 10th USENIX Security Symposium,
pages 1–8, 2001.

[14] W. Diffie and M.E. Hellman. New directions in
cryptography. IEEE Transactions on Information
Theory, 22:644–654, 1976.

[15] C. Dwork, A. Goldberg, and M. Naor. On
memory-bound functions for fighting spam. In
D. Boneh, editor, CRYPTO ’03, pages 426–444.
Springer-Verlag, 2003.

[16] C. Dwork and M. Naor. Pricing via processing or
combatting junk mail. In Ernest F. Brickell, editor,
CRYPTO ’92, pages 139–147. Springer-Verlag, 1992.

[17] M.K. Franklin and D. Malkhi. Auditable metering
with lightweight security. In R. Hirschfeld, editor,
Financial Cryptography ’97, pages 151–160.
Springer-Verlag, 1997.

[18] E. Gabber, M. Jakobsson, Y. Matias, and A. Mayer.
Curbing junk e-mail via secure classification. In
R. Hirschfeld, editor, Financial Cryptography ’98.
Springer-Verlag, 1998.

[19] Virgil D. Gligor. Guaranteeing access in spite of
service-flooding attacks. In Security Protocols
Workshop, 2003.

[20] D. Goldschlag and S. Stubblebine. Publicly verifiable
lotteries: Applications of delaying functions. In
R. Hirschfeld, editor, Financial Cryptography ’98.
Springer-Verlag, 1998.

[21] A. Hussain, J. Heidemann, and C. Papdopolous. A
framework for classifying denial-of-service attacks. In
ACM SIGCOMM, 2003.

[22] M. Jakobsson and A. Juels. Proofs of work and bread
pudding protocols. In Communications and
Multimedia Security, pages 258–272. Kluwer
Academic, 1999.

[23] A. Juels and J. Brainard. Client puzzles: A
cryptographic countermeasure against connection
depletion attacks. In Proceedings of the 1999 ISOC
Network and Distributed System Security Symposium,
pages 151–165, 1999.

[24] A. D. Keromytis, V. Misra, and D. Rubenstein. SOS:
Secure overlay services. In ACM SIGCOMM, pages
61–72. ACM Press, 2002.

[25] R. Mahajan, S.M. Bellovin, S. Floyd, J. Ioannidis,
V. Paxons, and S. Shenker. Controlling high
bandwidth aggregates in the network. ACM Computer
Communication Review, 32(3):62–73, 2002.

[26] R. Merkle. Secure communications over insecure
channels. Communications of the ACM,
21(8):294–299, April 1978.

[27] The Netfilter/Iptables Project. Web site at
http://www.netfilter.org.

[28] The GNU MP Project. Web site at
http://www.gnu.org/software/gmp/gmp.html.

[29] R.L. Rivest, A. Shamir, and D. Wagner. Time-lock
puzzles and timed-release crypto. Technical Report
MIT/LCS/TR-684, MIT, 1996.

[30] S Savage, D. Wetherall, A. Karlin, and T. Anderson.
Practical network support for IP traceback. In ACM
SIGCOMM 2000, pages 295–306, 2000.

[31] C.-P. Schnorr and M. Jakobsson. Security of discrete
log cryptosystems in the random oracle and generic
model. In The Mathematics of Public-Key
Cryptography. The Fields Institute, 1999.

[32] IP Security Protocol Charter. Web site at
http://www.ietf.org/html.charters/ipsec-charter.html.

[33] D. X. Song and A. Perrig. Advanced and
authenticated marking schemes for IP traceback. In
IEEE INFOCOM, pages 878–886, 2001.

[34] R. Stone. CenterTrack: An IP overlay network for
tracking DoS floods. In USENIX Security ’00, 2000.

[35] L. von Ahn, M. Blum, N.J. Hopper, and J. Langford.
CAPTCHA: Using hard AI problems for security. In
E. Biham, editor, Eurocrypt ’03, pages 294–311.
Springer-Verlag, 2003.

[36] X. Wang and M. K. Reiter. Defending against
denial-of-service attacks with puzzle auctions. In
IEEE Symposium on Security and Privacy, pages
78–92, 2003.

[37] A. Yaar, A. Perrig, and D. Song. Pi: A path
identification mechanism to defend against DDoS
attacks. In IEEE Symposium on Security and Privacy,
pages 93–109, 2003.

256

