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Abstract. We give a short constant-size group signature scheme, which
we prove fully secure under reasonable assumptions in bilinear groups, in
the standard model. We achieve this result by using a new NIZK proof
technique, related to the BGN cryptosystem and the GOS proof system,
but that allows us to hide integers from the full domain rather than
individual bits.

1 Introduction

Group signatures, introduced by Chaum and van Heyst [18], allow any mem-
ber of a certain group to sign a message on behalf of the group, but the signer
remains anonymous within the group. However, in certain extenuating circum-
stances an authority will have the ability to revoke the anonymity of a signer
and trace the signature. One of the primary motivating use scenarios of group
signatures is in anonymous attestation, which has practical applications such
as in building Trusted Platform Modules (TPMs). Group signatures have also
attracted much attention in the research community where several constructions
have been proposed [2, 3, 15, 14, 13, 28, 8, 24, 26, 6, 5, 12, 1].

The most efficient group signature constructions given only have a proof
of security in the random oracles model and either are based on the Strong-
RSA assumption in Zn [2, 3, 15] or use bilinear groups [8, 10, 16]. Solutions in
the standard model can be derived from general assumptions as first shown by
Bellare et. al. [5].

Recently, two efficient group signature schemes were respectively proposed
both by Boyen and Waters [12] and Ateniese et. al. [1] that did not use random
oracles. The two solutions took different approaches and have different features.

The Boyen-Waters construction used a two-level hierarchical signature, where
the first level corresponds to the signer’s identity and the second level is the
message to be signed. The scheme hides the actual identity in the first level by
using bilinear groups of composite order and applying a mechanism from the
recent Non-Interactive Zero-Knowledge (NIZK) result of Groth, Ostrovsky, and
Sahai [22]. The two drawbacks of the Boyen-Waters result are that the number
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of group elements in the signature are logarithmic in the number of signers in the
group and that the anonymity property is only secure against chosen-plaintext
attacks, as opposed to chosen-ciphertext attacks. The need for a logarithmic
number of group elements results from the fact that a signer must prove that
the blinded first level identity was computed correctly. The authors needed to
use the model for CPA attacks because the tracing authority used the knowledge
of the factorization of the order to trace members.

The Ateniese et. al. scheme works in asymmetric bilinear groups. Their
scheme has signatures with a constant number of group elements and has chosen-
ciphertext security. However, its proofs of security rely on interactive assump-
tions where the adversary has access to an oracle; therefore, these assumptions
are inherently non-falsifiable [27]. In addition, the scheme has the drawback
that if a user’s private key is compromised then it can be used to revoke the
anonymity of that user’s past signatures. Although, it should be pointed out
that some schemes have used this property as an advantage in Verifier-Local
Group signatures [10].

Groth [20] also gave a recent group signature scheme that was proven CCA-
secure in the standard model under the decisional-linear assumption [8]. Signa-
tures in his scheme technically consist of a constant number of group elements,
however, as noted by the author the constant is too large for real systems and in
practice his constant will be much more than lg(n) for any reasonable number
of n signers. The result does though, give a feasibility result under a relatively
mild assumption.

In this paper we give a new construction of a group signature scheme that ad-
dresses some of the drawbacks of the Boyen-Waters [12] solution. Following their
scheme we use a two-level hierarchical signature as the basis for our signatures,
where the first level specifies the identity. However, we use a new signature on
the first level based off an assumption related to Strong Diffie-Hellman (SDH) [7]
that we call the Hidden Strong Diffie-Hellman, which like SDH and Strong-RSA
has the property that the adversary has flexibility in what he is allowed to return
to the challenger. The signature has the property that if the signer gives a signa-
ture on an arbitrary group element this can be used to break our assumption. We
provide efficient proofs of well-formmess that use techniques beyond those given
in [22], including proofs of encrypted Diffie-Hellman tuples. One disadvantage of
this approach is that it uses a stronger assumption for unforgeability than CDH,
which was used in the Boyen-Waters [12] scheme. However, we emphasize that
this assumption is falsifiable.

2 Preliminaries

We review a number of useful notions from the recent literature on pairing-based
cryptography, which we shall need in later sections. First, we briefly review the
properties that constitute a group signature scheme and define its security.

We take this opportunity to clarify once and for all that, in this paper, the
word “group” by default assumes its algebraic meaning, except in contexts such



as “group signature” and “group manager” where it designates a collection of
users. There should be no ambiguity from context.

2.1 Group Signatures

A group signature scheme consists of a pentuple of PPT algorithms:

– A group setup algorithm, Setup, that takes as input a security parameter 1λ

(in unary) and the size of the group, 2k, and outputs a public key PK for
verifying signatures, a master key MK for enrolling group members, and a
tracing key TK for identifying signers.

– An enrollment algorithm, Enroll, that takes the master key MK and an
identity ID, and outputs a unique identifier sID and a private signing key KID

which is to be given to the user.
– A signing algorithm, Sign, that takes a group member’s private signing key
KID and a message M , and outputs a signature σ.

– A (usually deterministic) verification algorithm, Verify, that takes a message
M , a signature σ, and a group verification key PK, and outputs either valid
or invalid.

– A (usually deterministic) tracing algorithm, Trace, that takes a valid sig-
nature σ and a tracing key TK, and outputs an identifier sID or the failure
symbol ⊥.

There are four types of entities one must consider:

– The group master, which sets up the group and issues private keys to the
users. Often, the group master is an ephemeral entity, and the master key
MK is destroyed once the group is set up. Alternatively, techniques from dis-
tributed cryptography can be used to realize the group master functionality
without any real party becoming in possession of the master key.

– The group manager, which is given the ability to identify signers using the
tracing key TK, but not to enroll users or create new signing keys.

– Regular member users, or signers, which are each given a distinct private
signing key KID.

– Outsiders, or verifiers, who can only verify signatures using the public key
PK.

We require the following correctness and security properties.

Consistency. The consistency requirements are such that, whenever, (for a group
of 2k users)

(PK,MK,TK)← Setup(1λ, 2k),

(sID,KID)← Enroll(MK, ID), σ ← Sign(KID,M),

we have, (except with negligible probability over the random bits used in Verify
and Trace)

Verify(M,σ,PK) = valid, and Trace(σ,TK) = sID.



The unique identifier sID can be used to assist in determining the user ID from
the transcript of the Enroll algorithm; sID may but need not be disclosed to the
user; it may be the same as ID.

Security. Bellare, Micciancio, and Warinschi [5] characterize the fundamental
properties of group signatures in terms of two crucial security properties from
which a number of other properties follow. The two important properties are:

Full Anonymity which requires that no PPT adversary be able to decide (with
non-negligible probability over one half) whether a challenge signature σ on
a message M emanates from user ID1 or ID2, where ID1, ID2, and M are
chosen by the adversary. In the original definition of [5], the adversary is given
access to a tracing oracle, which it may query before and after being given
the challenge σ, much in the fashion of IND-CCA2 security for encryption.
Boneh, Boyen, and Shacham [8] relax this definition by withholding access
to the tracing oracle, thus mirroring the notion of IND-CPA security for
encryption. We follow [8] and speak of CCA2-full anonymity and CPA-full
anonymity for the respective notions.

Full Traceability which requires that no coalition of users be able to generate,
in polynomial time, a signature that passes the Verify algorithm but fails to
trace to a member of the coalition under the Trace algorithm. According to
this notion, the adversary is allowed to ask for the private keys of any user
of its choice, adaptively, and is also given the secret key TK to be used for
tracing—but of course not the enrollment master key MK.
It is noted in [5] that this property implies that of exculpability [4], which is
the requirement that no party should be able to frame a honest group mem-
ber as the signer of a signature he did not make, not even the group manager.
However, the model of [5] does not consider the possibility of a (long-lived)
group master, which leaves it as a potential framer. To address this problem
and achieve the notion of strong exculpability, introduced in [2] and formal-
ized in [25, 6], one would need an interactive enrollment protocol, call Join,
at the end of which only the user himself knows his full private key; the same
mechanism may also enable concurrent dynamic group enrollment [6, 26].

We refer the reader mainly to [5] for more precise definitions of these and related
notions.

2.2 Bilinear Groups of Composite Order

We review some general notions about bilinear maps and groups, with an empha-
sis on groups of composite order which will be used in most of our constructions.
We follow [9] in which composite order bilinear groups were first introduced in
cryptography.

Consider two finite cyclic groups G and GT having the same order n, in
which the respective group operation is efficiently computable and denoted
multiplicatively. Assume that there exists an efficiently computable function
e : G × G → GT , called a bilinear map or pairing, with the following prop-
erties:



– (Bilinearity) ∀u, v ∈ G, ∀a, b ∈ Z, e(ua, vb) = e(u, v)ab, where the product
in the exponent is defined modulo n;

– (Non-degeneracy) ∃g ∈ G such that e(g, g) has order n in GT . In other words,
e(g, g) is a generator of GT , whereas g generates G.

If such a bilinear map can be computed efficiently, the group G is called a
bilinear group. We remark that the vast majority of cryptosystems based on
pairings assume for simplicity that bilinear groups have prime order. In our
case, it is important that the pairing be defined over a group G containing
|G| = n elements, where n = pq has a (ostensibly hidden) factorization in two
large primes, p 6= q.

2.3 Complexity Assumptions

We shall make use of a few complexity assumptions: computational Diffie-Hellman
(CDH) in the prime-order bilinear subgroup Gp, Subgroup Decision in the group
G of composite order n = pq, and a new assumption in Gp related to Strong
Diffie-Hellman (SDH) that we call HSDH.

CDH in Bilinear Groups. The CDH assumption states that there is no proba-
bilistic polynomial time (PPT) algorithm that, given a triple (g, ga, gb) ∈ G3

p for
random exponents a, b ∈ Zp, computes gab ∈ Gp with non-negligible probability.
Because of the pairing, CDH in Gp implies a “Gap DH” assumption [23] and
should not be confused with the vanilla CDH assumption in usual non-pairing
groups. It is also subsumed by the HSDH assumption we describe later.

The Subgroup Decision Assumption. Our second tool is the Subgroup Decision
assumption introduced in [9]. It combines features of bilinear pairings with the
hardness of factoring, which is the reason for working with bilinear groups of
composite order.

Informally, the Subgroup Decision assumption posits that for a bilinear group
G of composite order n = pq, the uniform distribution on G is computationally
indistinguishable from the uniform distribution on a subgroup of G (say, Gq, the
subgroup of order q). The precise definition is based on the subgroup decision
problem, which we now define.

Consider an “instance generator” algorithm GG that, on input a security
parameter 1λ, outputs a tuple (p, q,G,GT , e), in which p and q are independent
uniform random λ-bit primes, G and GT are cyclic groups of order n = pq with
efficiently computable group operations (over their respective elements, which
must have a polynomial size representation in λ), and e : G × G → GT is a
bilinear map. Let Gq ⊂ G denote the subgroup of G of order q. The subgroup
decision problem is:

On input a tuple (n = pq,G,GT , e) derived from a random execution of
GG(1λ), and an element w selected at random either from G or from Gq,
decide whether w ∈ Gq.



The advantage of an algorithm A solving the subgroup decision problem is de-
fined as A’s excess probability, beyond 1

2 , of outputting the correct solution. The
probability is defined over the random choice of instance and the random bits
used by A.

The HSDH Assumption. Last, we need to introduce a new assumption we call
Hidden SDH by analogy to the SDH assumption [7] from which it descends. We
present it in the next section.

3 The Hidden Strong Diffie-Hellman Assumption

We introduce a new assumption in the prime-order bilinear group Gp. It is a
variant of the Strong Diffie-Hellman (SDH) assumption proposed in [7]. It is
slightly stronger, but retains the attributes of the original assumption of being
non-interactive, falsifiable, and provably true in the generic bilinear group model.

The Strong Diffie-Hellman assumption in bilinear groups states that there
is no probabilistic polynomial time (PPT) adversary that, given a (`+ 1)-tuple
(g, gω, gω

2
, . . . , gω

`

) ∈ G`+1
p for a random exponent ω ∈ Z∗

p, outputs a pair
(c, g1/(ω+c)) ∈ Z∗

p × Gp with non-negligible probability. (The parameter ` is
defined externally.) What makes the SDH assumption useful is that it implies
the hardness of the following problem:

On input two generators g, gω ∈ Gp, and `−1 distinct pairs (ci, g1/(ω+ci)) ∈
Z∗
p×Gp, output an additional pair (c, g1/(ω+c)) ∈ Z∗

p×Gp such that c 6= ci
for all i = 1, . . . , `− 1.

This argument was used by Boneh and Boyen [7] as the basis of their secure signa-
ture constructions. In particular, Boneh and Boyen’s primordial “weakly secure
signature” on a message c is nothing more than the group element g1/(ω+c).
Much of their paper is concerned with securing these signatures against adaptive
chosen message attacks, but for our purposes this is unnecessary.

However, an inherent trait of the general notion of signature is that ver-
ification requires knowledge of the message. Since in our group signature the
first-level “message” is the identity of the user, we would like to keep it as hid-
den as possible, since at the end of the day we need to blind it. To facilitate this
task, we build a modified version of the Boneh-Boyen “weak signature” above
that does not require knowledge of c in order to verify. It is based on the Hidden
SDH assumption, a straightforward extension to the SDH assumption where the
“message” c is not given in the clear.

The Hidden Strong Diffie-Hellman Problem. We first define the `-HSDH problem
as follows:

On input three generators g, h, gω ∈ Gp, and ` − 1 distinct triples
(g1/(ω+ci), gci , hci) ∈ G3

p where ci ∈ Zp, output another such triple
(g1/(ω+c), gc, hc) ∈ G3

p distinct of all the others.



Observe that the well-formedness of a triple (A,B,C) = (g1/(ω+c), gc, hc) can
be ascertained without knowing c by verifying that e(A, gωB) = e(g, g) and
that e(B, h) = e(C, g). In these verifications, the Diffie-Hellman relationship
(g, h, gc, hc) serves as a discrete-log NIZK proof of knowledge of c. Notice that
contrary to the SDH problem statement [7], here we allow c or some ci to be
zero.

We define the advantage of an HSDH adversary A as its probability of out-
putting a valid triple. The probability is taken over the random choice of instance
and the random bits used by A.

Definition 1. We say that the `-HSDH assumption holds in a family of prime
order bilinear groups generated by GG, if there is no PPT algorithm that, for suf-
ficiently large λ ∈ N, solves the HSDH problem in the bilinear group (p,Gp, e)←
GG(1λ) with non-negligible probability. Here, ` may be either an explicit param-
eter to the assumption, or some polynomially bounded function of the security
parameter λ.

It is easy to see that for any ` ≥ 1, hardness of the `-HSDH problem implies
hardness of the `-SDH problem in the same group, which itself requires the CDH
problem to be hard in that group. To bolster our confidence in the new com-
plexity assumption, we can prove an Ω(

√
p/`) lower bound on the complexity

of solving the HSDH problem in generic bilinear groups, provided that ` < 3
√
p.

Notice that HSDH does not rely on the composite order n, so the generic group
model can apply. The proof will appear in the full paper.

4 Anonymous Hierarchical Signatures

As our first step toward short group signatures, we build a hierarchical signature
with the signer identity at the first level and the message being signed at the
second level, such that the whole signature can be verified without revealing the
identity.

In a hierarchical signature, a message is a tuple comprising several atomic
message components. The crucial property is that a signature on a message
(m1, . . . ,mi), also acts as a restricted private key that enables the signing of any
message extension (m1, . . . ,mi, . . . ,mj) of which the original message is a prefix.
In some schemes, the hierarchy has a maximum depth d, in which case we must
have i ≤ j ≤ d. Here, we shall only consider 2-level hierarchical signatures, in
which the first level is concerned with user identities, and the second level with
messages proper. Notice that 2-level hierarchical signatures and identity-based
signatures are equivalent notions: the identity-based key is just a fancy name for
a signature on a first-level atomic component.

We use the HSDH assumption to construct a short two-level hierarchical
signature that can be verified without knowing the user identity at the first
level. Our construction makes a hybrid of two schemes, one at each level.



First Level. At the first level, we devise a variant of the “primary” determinis-
tic Boneh-Boyen signatures from [7, §3.2]. Recall that Boneh-Boyen signatures
are constructed in two stages, beginning with a primary “weak” deterministic
signature, which is subsequently hardened with a sprinkle of randomness. The
primary signature is weaker for the reason that in the forgery game, the oppo-
nent must submit all the signing queries up front, rather than adaptively as in
the full Boneh-Boyen signature.

In the context of group signatures, this up-front attack model is perfectly ad-
equate for signatures on user identities, since, in group signatures, user identities
are not subject to adaptive attacks. Indeed, since there are only polynomially
users in a group, their identities can be assigned from a polynomially sized set
of integers. Furthermore, these unique identifiers can all be selected in advance
by the group manager, and assigned to the users as they enroll in the system.

We shall make one modification to the primary Boneh-Boyen signatures.
The modification will allow them to be verifiable without knowledge of the user
identity. This is where our new HSDH assumption will come into play.

Second Level. At the second level, where the actual messages are signed, we can
work with any secure signature scheme that can be meshed into an upward hi-
erarchy. Hierarchical identity-based encryption schemes with “adaptive-identity
security” make good candidates, since we can turn them into signatures schemes
that are existentially unforgeable against adaptive chosen message attacks. We
shall use a signature based on Waters’ IBE scheme [29] for this purpose.

4.1 Hybrid Scheme

Let thus λ be the security parameter. User identities will be modeled as inte-
gers taken from a (non-public) polynomially sized random set {s1, . . . , s2k} ⊂
Zp where k = O(log(λ)). For convenience, we use sequential identifiers ID =
1, . . . , 2k to index the hidden identities sID, which are kept secret. Messages will
be taken as binary strings of fixed length m = O(λ). In the description that
follows, g is a generator of the prime order subgroup Gp; therefore all group
elements in the basic hierarchical signature scheme will have prime order p in G
and GT .
Setup(1λ): To setup the system, first, secret integers α, ω ∈ Zp are chosen

at random, from which the values Ω = gω and A = e(g, g)α are calculated.
Next, two integers y, z′ ∈ Zp and a vector z = (z1, . . . , zm) ∈ Zmp are selected
at random. The public parameters and master key are

PP =
(
g, Ω = gω, u = gy, v′ = gz

′
, v1 = gz1 , . . . , vm = gzm , A = e(g, g)α

)
∈ Gm+5 ×GT

MK =
(
ω, gα, s1 , . . . , s2k

)
∈ Zp ×G× Z2k

p

The public parameters, PP, also implicitly include k, m, and a description
of (p,G,GT , e). The master key, MK, is assumed to contain the secret list of
user identities, {s1, . . . , s2k} ⊂ Zp.



Extract(PP,MK, ID): To create a private key for the identity sID associated with
the user of index 1 ≤ ID ≤ 2k, return

KID =
(

(gα)
1

ω+sID , gsID , usID

)
∈ G3

Sign(PP,KID,M): To sign a message represented as a bit stringM = (µ1 . . . µm) ∈
{0, 1}m, using a private key KID = (K1,K2,K3) ∈ G3, select a random
s ∈ Zp, and output

S =
(
K1, K2, K3 ·

(
v′

m∏
j=1

v
µj
j

)s
, g−s

)
∈ G4

Verify(PP,M, σ): To verify that a signature S = (S1, S2, S3, S4) ∈ G4 is valid
for a message M = (µ1 . . . µm) ∈ {0, 1}m, check whether

e
(
S1 , S2Ω

) ?= A and e
(
S2 , u

) ?= e
(
S3 , g

)
· e
(
S4 , v

′
m∏
j=1

v
µj
j

)
It the equality holds, output valid; otherwise, output invalid.
Notice that in this case we did not verify the signer’s identity, ID, only the
message, M . However, signatures remain linkable because S2 and S3 are
invariant for the same user.

4.2 Existential Unforgeability

The hybrid scheme is existentially unforgeable against adaptive chosen message
attacks, and is anonymous at the first level. We shall now state and prove the
unforgeability property, which will be needed later on when building group sig-
natures.

Theorem 1. Consider an adversary A that existentially forges the hybrid two-
level signature scheme in an adaptive chosen message attack. Assume that A
makes no more that `−1� p signature queries and produces a successful forgery
with probability ε in time t. Then there exists an algorithm B that solves the `-
HSDH problem with probability ε̃ ≈ ε/(4m`2) in time t̃ ≈ t.

The proof of this theorem uses a two-prong strategy, one for each level. At the
first level, we give a reduction based on the `-HSDH assumption, where ` = 2k

is the number of secret user identities in the master key list (or the number that
we have actually used). At the second level, we construct a reduction from the
CDH assumption in the bilinear group Gp, but since CDH is implied by HSDH,
we get a single reduction from HSDH for both levels at once. All reductions are
in the standard model.

Proof. The proof may be found in Appendix A.



5 Constant-Size Group Signatures

We now describe the actual group signature scheme, based on the hierarchical
signature scheme above. It is obtained from by obfuscating the user identity, and
replacing it by a NIZK proof of it being well formed. We also need to incorporate
a tracing mechanism, which is achieved by using a trapdoor into the NIZK proof.

5.1 Related Schemes

The group signature we describe invites comparison with two earlier schemes that
also feature compact signatures and provable security without random oracles.
One of the earlier schemes is due to Boyen and Waters [11, 12], the other to
Ateniese et al. [1].

The key difference with the earlier Boyen-Waters group signature scheme [11,
12], is that the earlier scheme relied on an all-purpose bit hiding technique due to
Groth, Ostrovsky, and Sahai [22] to conceal the user identity. Unfortunately, each
bit had to supply its own NIZK proof in the final signature, which resulted in a
logarithmic-size group signature. The present scheme manages to give a single
short proof for the entire identity at once. This makes the resulting signature
much shorter, comprising only a small, constant number of group elements.

One of the main differences with the Ateniese et al. [1] scheme, is that the
latter relied on very strong, interactive complexity assumptions in order to im-
plement the corresponding NIZK proofs. The present scheme is simpler, and
arguably rests on firmer ground.

5.2 Core Construction

The group signature scheme is described by the following algorithms.

Setup(1λ): The input is a security parameter in unary, 1λ. Suppose we wish to
support up to 2k signers in the group, and sign messages in {0, 1}m, where
k = O(λ) and m = O(λ).
The setup algorithm first chooses n = pq where p and q are random primes
of bit size dlog2 pe, dlog2 qe = Θ(λ) > k. From this, it builds a cyclic bilinear
group G of order n. Denote by Gp and Gq the cyclic subgroups of G of
respective order p and q. The algorithm also selects a generator g of G
and a generator h of Gq. Next, the algorithm picks two random exponents
α, ω ∈ Zn, and defines A = e(g, g)α ∈ GT and Ω = gω ∈ G. Finally, it draws
m+ 2 random generators, u, v′, v1, . . . , vm ∈ G.
The public information consists of the bilinear group, (n,G,GT , e), and the
public values,

PP =
(
g, h, u, v′, v1, . . . , vm, Ω = gω, A = e(g, g)α

)
∈ G×Gq ×Gm+3 ×GT



The master enrollment key, MK, and the group manager’s tracing key, TK,
are, respectively,

MK =
(
gα, ω

)
∈ G× Zn TK = q ∈ Z

Enroll(PP,MK, ID): Suppose we wish to create a signing key for user ID, where
0 ≤ ID < 2k < p. Upon enrollment in the group, the user is assigned a secret
unique value sID ∈ Zn, to be later used for tracing purposes. This value
must be chosen so that ω + sID lies in Z×

n , the multiplicative group modulo
n. Based on the hidden identity sID, the signing key to be given to the user
is constructed as,

KID = (K1,K2,K3) =
(

(gα)
1

ω+sID , gsID , usID

)
∈ G3

Here, K1 is essentially a deterministic Boneh-Boyen signature on sID, which
is not disclosed. Rather, K2 and K3 provide a NIZK proof of knowledge of
sID by the issuing authority. There is also a supplemental constant exponent
α that will matter at the second level. The newly enrolled user may verify
that the key is well formed by checking that (cfr. Section 4),

e(K1,K2Ω) ?= A and e(K2, u)
?= e(K3, g).

Sign(PP, ID,KID,M): To sign a message M = (µ1 . . . µm) ∈ {0, 1}m, a user with
a signing key KID proceeds as follows.
First, KID is used to create a two-level hybrid signature with the message
M at the second level. To do so, the user chooses a random s ∈ Zn and
computes the (randomized but unblinded) hybrid signature,

θ = (θ1, θ2, θ3, θ4) =

(
K1, K2, K3 ·

(
v′

m∏
i=1

vµii

)s
, g−s

)
Notice that this initial signature satisfies the regular verification equations:
e(θ1, θ2Ω) = A, and e(θ2, u) = e(θ3, g) · e(θ4, v′

∏m
i=1 v

µi
i ).

Next, θ must be turned into a blinded signature that is both verifiable and
traceable, but remains unlinkable and anonymous to anyone who lacks the
tracing key. To proceed, the signer picks four random exponents t1, t2, t3, t4 ∈
Zn and sets,

σ1 = θ1 · ht1 , σ2 = θ2 · ht2 , σ3 = θ3 · ht3 , σ4 = θ4 · ht4 .

Additionally, it computes the two group elements,

π1 = ht1t2 · (θ1)t2 ·
(
θ2Ω

)t1
, π2 = ut2 · g−t3 ·

(
v′

m∏
i=1

vµii

)t4
.

The final signature is output as:

σ =
(
σ1, σ2, σ3, σ4, π1, π2

)
∈ G6.



Verify(PP,M, σ): To validate a group signature σ on a message M , the verifier
first calculates,

T1 = A−1 · e(σ1, σ2Ω), T2 = e(σ2, u) · e(σ3, g)−1 · e(σ4, v
′
m∏
i=1

vµii )−1.

Then it checks whether,

T1
?= e(h, π1), T2

?= e(h, π2).

If both equalities hold, the verifier outputs valid; otherwise, it outputs
invalid.
These tests show that (σ1, σ2, σ3, σ4) is a valid 2-level hybrid signature once
the random blinding factors are removed; the extra elements (π1, π2) serve
to convince the verifier that the blinding factors were affixed correctly.

Trace(PP,TK, σ): Let σ = (. . . , σ2, . . .) be a signature assumed to pass the
verification test for some message M , which will not be needed here. To
recover the identity of the signer, the tracing authority first calculates (σ2)q

using the tracing key TK. Then, for each auspicious identity IDi, it tests
whether,

(σ2)q
?= (gsIDi )q.

The tracer outputs the recovered identity, ID = IDi, upon satisfaction of the
above equation.
Remark that tracing can be done in constant time — the time to compute
(σ2)q — with the help of a lookup table of associations (gsIDi )q 7→ IDi for all
users in the group. Since the value (gsIDi )q can be calculated once and for all
for each user IDi, for instance upon a user’s initial enrollment, the amortized
cost of tracing is indeed essentially constant.

5.3 Security Properties

We now state the security properties of our constant-size group signature scheme.

Full Anonymity (under CPA attack) We prove the security of our group
signature scheme in the anonymity game against chosen plaintext attacks. First,
we show that an adversary cannot tell whether h is a random generator of Gq
or G. Next, we show that if h is chosen from G then the identity of a signer is
perfectly hidden, in the information theoretic sense.

Theorem 2. Suppose no t-time adversary can solve the subgroup decision prob-
lem with advantage at least εsd. Then for every t′-time adversary A where t′ ≈ t
we have that AdvA < 2 εsd.

Proof. We use a game switching argument where Γ0 is the real group signature
anonymity game, and Γ1 is a game in which the public parameters are the same



as in the original game except that h is chosen randomly from G instead of Gq.
We denote the adversary’s advantage in the original game by AdvA, and in the
modified game by AdvA,Γ1 .

First, in Lemma 1, we show that the two games are essentially indistinguish-
able, unless the Decision Subgroup assumption is easy. Second, in lemma 2, we
use an information-theoretic argument to prove that in the game Γ1 the adver-
sary’s advantage must be zero. The theorem follows from these results.

Lemma 1. For all t′-time adversaries as above, AdvA −AdvA,Γ1 < 2 εsd.

Lemma 2. For any algorithm A, we have that AdvA,Γ1 = 0.

Proof (Proofs.). The proofs of these two lemmas are given in Appendix B.1.

Full Traceability We reduce the full traceability of the group signature scheme
to the existential unforgeability of the underlying hybrid signature construction
of Section 4.

Theorem 3. If there exists a (t, ε) adversary for the full traceability game against
the group signature scheme, then there exists a (t̃, ε) adaptive chosen message ex-
istential unforgeability adversary against the two-level hybrid signature scheme,
where t ≈ t̃.

Proof. We prove this theorem in Appendix B.2.

6 CCA-Security

In the introduction we stated that the two primary drawbacks of the Boyen-
Waters [12] scheme are that the signature grew logarithmically with the number
of signers and that the scheme was not CCA secure. In this work we addressed
the first limitation, but left the second one open. Here we explain some of the
challenges in achieving CCA security while using the subgroup paradigm for
proofs.

In both this paper and the Boneh-Waters scheme the authority uses knowl-
edge of the factorization of the group order in order to trace. In order to achieve
CCA security we will clearly need to take a different approach since all known
CCA proof techniques depend upon a simulation knowing partial decryption in-
formation (e.g. consider the two key paradigm of Dolev, Dwork and Naor [19]).

One tempting direction is to provably encrypt (in a simulation sound man-
ner) the identity of the signer in one of the recent bilinear map based CCA-secure
cryptosystems derived from the techniques of Canetti, Halevi, and Katz [17] .
Then we could allow the tracer have the decryption key for this system, but
not know the group’s factorization. However, there is one large problem with
this technique. The subgroup-based NIZK techniques only prove soundness in
one subgroup. It is easy to see that a corrupt signer can provably encrypt his
identity and then randomize the encryption in one subgroup. Since the decryp-
tion authority will not know the factorization, his view of the identity will be



indistinguishable from random. Therefore, it seems more complex techniques
are necessary to achieve CCA-security will using subgroup based proofs. This
might also be an argument for basing future group signature schemes on the
decisional-linear [8] assumption proofs [21].
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A Security of the Anonymous Hybrid Signature

We reduce the HSDH problem to the existential forgery of the signature scheme
of Section 4.



Proof (Proof of Theorem 1.). The adversary may make requests for signatures
at the first and second level. Since these two are constructed differently, we need
to consider two types of forgeries. Let IDi and (IDi,Mi) be the first- and second-
level queries made by A, and let (ID∗,M∗) be the second-level target of A’s
eventual forgery (clearly, if A chooses a first-level target, it is easy to turn it into
a second-level one). In a type-1 forgery, ID∗ is distinct from all IDi. In a type-2
forgery, (ID∗,M∗) is distinct from all (IDi,Mi) though ID∗ = IDi for some i. We
first give reductions for both cases in lemmas 3 and 4; then we shall conclude
the proof of the theorem.

Lemma 3. If there exists an algorithm A that makes `−1 signature queries and
outputs a type-1 forgery with probability ε in time t, then there exists an algorithm
B that solves the `-HSDH problem with probability ε̃1 ≥ ε− (`− 1)/p ≈ ε in time
t̃1 ≈ t.

Proof. The simulator B is given an instance (g, u, gω, (Ai = g1/(ω+ci), Bi =
gci , Ci = uci)i=1,...,`−1) of the HSDH problem, for some undisclosed ω. To pre-
pare the simulation, B first selects random exponents α, z′, z1, . . . , zm ∈ Zp. It
gives A the public key, PP = (g,Ω = gω, u, v′ = gz

′
, v1 = gz1 , . . . , vm = gzm , A =

e(g, g)α). B also maintains a table, initially empty, of mappings from identities
ID to indices i ∈ {1, . . . , `− 1}.

To answer a signature query on ID or (ID,M), B proceeds as follows. Suppose
this is the j-th query, for 0 < j < `. If ID has been seen in a previous query, let
i be the index previously associated with it. If ID is new, B associates to ID the
index i = j. In all cases, B lets KID = (Aαi , Bi, Ci). If the query was first-level
(on ID), it simply responds with KID. If instead the query was second-level, on
(ID,M), the response is S ← Sign(PP,KID,M).

After at most ` − 1 total queries, A outputs a forgery S∗ = (S1, S2, S3, S4)
on (ID∗,M∗), where S2 = gc

∗
for some c∗ ∈ Zp chosen by the forger. In a type-1

forgery, ID∗ never appeared in any query, which means that S2 = gsID∗ must be
distinct from all values Bi = gci used by the simulator; a random collision with
an unused Bi is possible, but only with negligible probability (`− 1)/p ≈ 0. The

simulator outputs its own answer as, (S1/α
1 , S2, S3 · S

z′+
Pm
j=1 zjµj

4 ).

Lemma 4. If there exists an algorithm A that makes ` − 1 signature queries
and outputs a type-2 forgery with probability ε in time t, then there exists an
algorithm B that solves the `-HSDH problem with probability ε̃2 = ε/(4m`2) in
time t̃2 ≈ t.

Proof (Proof of Lemma 4.). The simulator B is given an instance (g, u, gω, (Ai =
g1/(ω+ci), Bi = gci , Ci = uci)i=1,...,`−1) of the HSDH problem. To set up the
simulation, B first guesses the index i∗ ∈ {1, . . . , ` − 1} of the identity that
the adversary will choose to attack. It also chooses a random k ∈ {0, . . . ,m}.
Next, the simulator chooses random numbers x′, x1, . . . , xm independently and
uniformly at random in the interval {0, . . . , 2` − 1}. It also chooses random
numbers α, z′, z1, . . . , zm ∈ Zp. Last, it selects t ∈ Zp and lets f = Ω−1gt. The



simulator gives to A the public key,

PP =
(
g, Ω = gω, u, v′ = fx

′−2k`gz
′
, v1 = fx1gz1 , . . . , vm = fxmgzm , A = e(g, g)α

)
.

It also maintains a table, initially empty, of mappings from identities ID to indices
i ∈ {1, . . . , `− 1}.

To answer signature queries of the form ID or (ID,M), the first task is to
associate an index i to the identity ID. If ID appeared in a previous query, the
old index is used. Otherwise, a new index is assigned sequentially, starting from
1. Note that 1 ≤ i ≤ `− 1. The rest depends of the index.

Whenever i 6= i∗, the simulator lets KID = (Aαi , Bi, Ci) from the HSDH
instance. If the query was first-level, B returns KID as the answer. If the query
was second-level on a message M , then B responds with the signature given by
running Sign(PP,KID,M) as in the real protocol.

Whenever i = i∗, the simulator eschews (Aαi , Bi, Ci); instead, it pretends
to build its answer(s) on the private key partially simulated by (gα/t, f, . . .),
which corresponds to (gα/(ω+s∗), gs

∗
, us

∗
) for the unknown integer s∗ = t − ω.

Concretely, if the query is first-level, then B cannot proceed and aborts. For
a second-level query on M = (µ1 . . . µm) ∈ {0, 1}m, define F = −2k` + x′ +∑m
j=1 xjµj and J = z′ +

∑m
j=1 zjµj . In case F ≡ 0 (mod p), then B aborts the

simulation. Otherwise, B picks a random r ∈ Zp, and returns the signature,

S = (S1, S2, S3, S4) =
(
gα/t, Ω−1gt, u−J/F (v′

m∏
j=1

v
µj
j )r, u1/F g−r

)
.

For r̃ = r−dlogg(u)/F and s∗ = t−ω, we find that S3 = u−J/F (v′
∏m
j=1 v

µj
j )r =

u−J/F (fF gJ)r = u−J/F (fF gJ)r̃fdlogg(u)uJ/F = (Ω−1gt)dlogg(u)(v′
∏m
j=1 v

µj
j )r̃ =

us
∗
(v′
∏m
j=1 v

µj
j )r̃, and, similarly, that S4 = u1/F g−r = u1/F g−r̃u−1/F = g−r̃.

This leaves us with a correctly distributed signature,

S =
(
gα/(ω+s∗), gs

∗
, us

∗
(v′

m∏
j=1

v
µj
j )r̃, g−r̃

)
.

Eventually, the adversary outputs a valid type-2 forgery S∗ = (S∗1 , S
∗
2 , S

∗
3 , S

∗
4 )

on a message M∗ = (µ∗1 . . . µ
∗
m) ∈ {0, 1}m. If S∗2 6= f , the simulator must abort,

having incorrectly guessed which identity would be targeted. Otherwise, let F ∗ =
−2k`+x′+

∑m
j=1 xjµ

∗
j and J∗ = z′+

∑m
j=1 zjµ

∗
j . If F ∗ 6≡ 0 (mod p), the simulator

also aborts, having received a useless forgery. Otherwise, the forgery must be of
the form,

S∗ =
(
gα/(ω+s∗), gs

∗
, us

∗
(f0gJ

∗
)r, g−r

)
.

To solve the HSDH instance, our algorithm B outputs the triple (S1/α
1 , S2, S3 ·

SJ
∗

4 ).
To conclude the proof, we must find the probability that B completes the

simulation without aborting. First, the guess on i∗ must be correct, which has



probability 1/(`− 1). Second, for each query with i = i∗, the conditional proba-
bility that F 6≡ 0 (mod p) given that it has made it so far is at least 1− 1/(2`);
and since there are less than ` such queries, the total probability of not aborting
through all of them is greater than 1/2. Last, the conditional probability that
F ∗ ≡ 0 (mod p) upon reaching the challenge stage is at least 1/(2m`). Since
A succeeds with probability ε when the simulation is not aborted, we conclude
that B succeeds with probability ε̃2 ≥ ε/(4m`(`− 1)) ≥ ε/(4m`2).

We can now finish our proof of Theorem 1.
Let B1 and B2 be the HSDH algorithms shown in the two lemmas above. To

prove the theorem, it suffices to let B run B1 or B2 with probability 1/(4m`2 +
1) and 1 − 1/(4m`2 + 1) respectively. Since both simulations are perfect, the
adversary cannot distinguish either simulator from a real attack environment,
and outputs either a type-1 or type-2 forgery with the same probability in each
case. It follows that B solves `-HSDH with probability ε̃ ≈ ε/(4m`2 + 1) in time
t̃ = max(t̃1, t̃2) ≈ t.

B Security of the Constant-Size Group Signature

We prove the security properties of the constant-size group signature scheme of
Section 5.

B.1 Full Anonymity (under CPA attack)

Proof (Proof of Lemma 1.). Consider an algorithm B that plays the subgroup
decision problem. Upon receiving a subgroup decision challenge (n,G,GT , e, w)
the algorithm B first creates public parameters for the group signature scheme
by setting h = w and then choosing the remaining public parameters exactly
as in the group signature scheme. It then sends the public information to A
and plays the anonymity game with it. If w is randomly chosen from Gq then
the game being played is the normal anonymity game; otherwise, if w is chosen
randomly from G, then the game being played is a different game we call Γ1.
In either case, the algorithm B will be able to answer all queries—namely, issue
private signing keys for, and sign any message on behalf of, any user—, since it
knows the master key.

At some point the adversary will choose a message M and two identities ID1

and ID2 it wishes to be challenged upon, under the usual constraints that it had
not previously made a signing key query on IDx or a signature query on (IDx,M).
The simulator B will create the requisite challenge signature on M , and A will
guess the identity of the signer. If A answers correctly, then B outputs b = 1, to
signify that w ∈ Gq; otherwise it outputs b = 0, to signify that w ∈ G.

Denote by AdvB the advantage of the simulator B in the subgroup decision
game. As we know that Pr[w ∈ G] = Pr[w ∈ Gq] = 1

2 , we deduce that,

AdvA −AdvA,Γ1 = Pr[b = 1|w ∈ Gq]− Pr[b = 1|w ∈ G]
= 2Pr[b = 1, w ∈ Gq]− 2 Pr[b = 1, w ∈ G] = 2 AdvB < 2 εsd,



since by our hardness assumption AdvB must be lesser than εsd, given that B
runs in time t ≈ t′.

Proof (Proof of Lemma 2.). We show that when h is chosen uniformly at ran-
dom from G, instead of Gq in the real scheme, then the challenge signature
is statistically independent of the challenge signer identity, ID, and thus sID,
in the adversary’s view. First, observe that only the challenge signature could
possibly be dependent on ID, in the sense that all queries happen before the ad-
versary announces ID1 and ID2 between which ID is to be chosen. However, since
the tracing value sID may have been used to answer previous signing queries on
(ID1,M) or (ID2,M), we have to show that the challenge signature is statistically
independent of sID.

To proceed, we consider what a computationally unbounded adversary might
deduce from the challenge signature,

σ =
(
σ1, σ2, σ3, σ4, π1, π2

)
.

A priori, all components of σ except σ4 depend on sID and could thus reveal
it to an unbounded adversary. In addition we must assume that the following
discrete logs are known to the computationally unbounded adversary,

y = dlogg(u), η = dlogg(h), α, ω, dlogg(v
′), ∀i : dlogg(vi)

We define V = v′
∏m
i=1 v

µi
i , which is also a known quantity given the message

M .
To show that σ reveals no information about the value sID, we shall prove

that σ is compatible with any hypothesis s̃ID that the adversary might make
about it. Observe that any value s̃ID such that ω + s̃ID ∈ Z×

n is a priori possible
for sID, before the adversary is given σ. We need to show that the same set
remains possible a posteriori, conditionally on σ. We proceed in three steps.

1. The first step is to note that the four values σ1, . . . , σ4 by themselves reveal
nothing about sID, as they are perfectly blinded by the four uniform and
independent random factors ht1 , . . . , ht4 ∈ G. In particular, regardless of
the hypothesis s̃ID contemplated by the adversary, there exists exactly one
assignment to t1 and t2 that explains the values of σ1 and σ2 in the challenge
signature for that hypothesis. (Note that the values of t3 and t4 depend on
an additional hypothesis by the adversary about the value of s.)

2. For the second step, we show that the value of π2 reveals t4, and thus also
s and t3, but contains no additional information. To see this, notice that π2

can be expressed as a linear combination of σ2, σ3, and V , whose coefficients
are all constant except for t4. To wit, we have,

(π2)η = (ut2g−t3V t4)η = (ht2)y(ht3)−1V t4η = (gsIDht2)y(usIDht3)−1V t4η = (σ2)y(σ3)−1V t4η.

Since π2, σ2, and σ3 are given, V is implied, and η and y are constant given
the system parameters, the only variable in the above equation is t4. The
equation always has a solution in the non-degenerate case where V η 6= 1.



With t4 thus determined, s follows (from σ4), and so does t3 (from σ3). Since
all of the foregoing holds regardless of the adversary’s hypothesis, s̃ID, we
deduce that none of the candidate values for sID can be ruled out, so far.

3. In the third step, we show that the remaining component, π1, brings no new
information to the adversary, which will conclude this argument. Let s∗ID be
the actual value of the hidden identifier used to create the challenge signature
(recall that ω+s∗ID ∈ Z×

n ); similarly, let t∗1 and t∗2 be the actual randomization
exponents used by the challenger. Recall that σ1 = gα/(ω+s∗ID) ht

∗
1 and σ2 =

gs
∗
ID ht

∗
2 . Thus, π1 can be written,

π1 = ht
∗
1t
∗
2
(
gω+s∗ID

)t∗1(g α
ω+s∗

ID

)t∗2
.

It suffices to show that the value of π1 is consistent with the rest of σ in
the adversary’s view, and in particular that it does not contradict that view
regardless of the hypothesis on sID that the adversary may have been enter-
taining. Again, let s̃ID be the adversary’s hypothesis, and let t̃1 and t̃2 be
the values of t1 and t2 that are consistent with it (per our earlier argument
in Steps 1 and 2). For notational convenience, we define,

ξ =
ω + s∗ID
ω + s̃ID

(mod n).

By expanding the expression of σ1 per the challenger’s and the adversary’s
views, we find that,

σ1 = g
α

ω+s∗
ID ht

∗
1 = g

α
ω+s∗

ID
+ηt∗1 , and σ1 = g

α
ω+s̃ID ht̃1 = g

αξ
ω+s∗

ID
+ηt̃1

,

and thus,

t̃1 = t∗1 +
α (1− ξ)
η (ω + s∗ID)

(mod n).

By applying an analogous argument on the expression of the product Ω σ2,
we also find that,

Ω σ2 = gω+s∗ID ht
∗
2 = gω+s∗ID+ηt∗2 , and Ω σ2 = gω+s̃ID ht̃2 = g

ω+s∗ID
ξ +ηt̃2 ,

and thus,

t̃2 = t∗2 +
ξ − 1
ξ
· ω + s∗ID

η
(mod n).

Now, we need to show that the given value of π1 is equal to what the adver-
sary would expect based on its hypothesis. Taking the adversary’s view, we



work out the value of π1 that it expects to be,

π̃1 = ht̃1 t̃2
(
gω+s̃ID

)t̃1(
g

α
ω+s̃ID

)t̃2
=
(
gω+s̃ID

)t̃1(
g

αξ
ω+s∗

ID
+ηt̃1

)t̃2
=
(
gω+s̃ID

)t̃1(
g

αξ
ω+s∗

ID
+ηt∗1+

α (1−ξ)
ω+s∗

ID

)t̃2
=
(
gω+s̃ID

)t̃1(
g

α
ω+s∗

ID
+ηt∗1

)t̃2
=
(
gω+s̃ID

)t̃1(
g

α
ω+s∗

ID ht
∗
1

)t∗2(
g

α
ω+s∗

ID
+ηt∗1

) ξ−1
ξ ·ω+s∗ID

η

=
(
g
ω+s∗ID
ξ
)t∗1g α (1−ξ)

ξη

(
g

α
ω+s∗

ID ht
∗
1

)t∗2
g
α (ξ−1)
ξη

(
gt

∗
1

) ξ−1
ξ ·(ω+s∗ID)

=
(
gω+s∗ID

)t∗1(g α
ω+s∗

ID ht
∗
1

)t∗2
= ht

∗
1t
∗
2
(
gω+s∗ID

)t∗1(g α
ω+s∗

ID

)t∗2
= π1.

The value, π̃1, expected by the adversary is seen to be equal to the actual
value of π1, regardless of the adversary’s initial hypothesis sID. It follows
that π1 does not help the adversary to remove the uncertainty about sID.

The foregoing shows shows that the challenge signature, σ, is statistically
independent of sID and thus ID, and hence that the advantage of any adversary
in the anonymity game Γ1 must necessarily be zero.

B.2 Full Traceability

Proof (Proof of Theorem 3.). Suppose there exists an algorithm A that is suc-
cessful in the tracing game of our group signature scheme with advantage ε. Then
we can create a simulator B that existentially forges signatures in an adaptive
chosen message attack against the two-level signature scheme, with advantage ε.

The simulator will be given the factorization n = pq of the group order
|G| = n. As usual, denote by Gp and Gq the subgroups of G of respective order
p and q, and by analogy let GTp and GTq be the subgroups of GT of order p and
q. The simulator begins by receiving from its challenger the public parameters
of the signature game, all in subgroups of order p,

P̃P =
(
g̃ , Ω̃ = g̃ω, ũ = g̃y, ṽ′ = g̃z

′
, ṽ1 = g̃z1 , . . . , ṽm = g̃zm , Ã = e(g̃, g̃)α

)
∈ Gm+4

p ×GTp.

The simulator then picks random generators (h, f, γ, ν′, ν1, . . . , νm) ∈ Gm+4
q and

two random exponent β, ψ ∈ Zq. The simulator publishes the group public pa-
rameters as,

PP =
(
g = g̃ f , h , u = ũ γ , v′ = ṽ′ ν′ , v1 = ṽ1 ν1 , . . . , vm = ṽk νm , Ω = Ω̃·fψ , A = Ã·e(f, f)β

)
.



The distribution of the public key is the same is in the real scheme. The simulator
also gives the tracing key to the adversary,

TK = q.

Suppose the adversary asks for the private key of user ID. To answer the
query, the simulator first asks the challenger for a first-level signature on message
ID, and receives back K̃ID = (K̃1, K̃2, K̃3) ∈ G3

p. Next, the simulator internally
associates a persistent random rID ∈ Zq to ID, recalling the value previously
associated to ID from storage as needed. It then creates the requested key as,

KID =
(
K1 = K̃1 · (fβ)

1
ψ+rID , K2 = K̃2 · frID , K3 = K̃3 · γrID

)
.

This is a well formed key in our scheme. Indeed, since g̃ ∈ Gp and h ∈ Gq, it
follows that e(g̃, h) = 1 in GT , and hence,

e(K1,K2Ω) = e(g̃
α

ω+sID f
β

ψ+rID , g̃ω+sIDfψ+rID) = e(g̃, g̃)α e(f, f)β = A,

and similarly, e(K2, u) = e(K3, g).
Suppose the simulator is asked for a signature on message M = (µ1 . . . µm) ∈

{0, 1}m from user ID. The simulator requests a two-level signature on (ID,M)
and gets back a signature S = (S1, S2, S3, S4) ∈ G4

p. Next, the simulator creates
or recalls the persistent random value rID ∈ Zq associated to ID, as described
above. It also chooses an ephemeral random exponent r0 ∈ Zq. It then creates
an unblinded signature, θ = (θ1, θ2, θ3, θ4) as,

θ =
(
θ1 = S1·(fβ)

1
ψ+rID , θ2 = S2·frID , θ3 = S3·γrID ·(ν′

m∏
i=1

νµii )r0 , θ4 = S4·f−r0
)
.

This is a valid unblinded signature in our scheme. The simulator can next simply
apply the blinding procedure exactly as in the actual scheme, by multiplying the
θi by powers of h and constructing the associated NIZK proof, and then give the
resulting signature to the adversary.

Finally, the adversary gives the simulator a forgery σ on message M∗. The
simulator first checks that the signature verifies, otherwise the adversary is not
successful and the simulator can abort. Next, it sets out to trace the identity,
ID∗, of the forgery. Let σ = (. . . , σ2, . . .). For each identity IDi that was the
object of an earlier query by the adversary—whether to request a private key
for IDi or a signature on (IDi,M)—, the simulator recalls from the transcript of
its interaction with the challenger the corresponding value K̃2 or S2, as the case
may be. Let us denote by χIDi the value in question, which in both cases equals
g̃sIDi . For each such IDi, the simulator tests whether,

(σ2)q
?= (χIDi)

q.

If the equality holds for some IDi, we let ID∗ = IDi be the traced identity. If
either the key for ID∗ or a signature on M∗ by ID∗ was previously requested



by the adversary, the simulator can safely abort since the adversary produced a
disqualifying signature. Otherwise, including the case where no identity ID∗ could
be determined, the adversary was successful and the simulator must proceed with
its own forgery.

Since T1 = e(h, π1), we know that the value T1 defined in the Verify algo-
rithm has order q in GT . Let then δ ∈ Zn be an integer such that δ ≡ 0 (mod q)
and δ ≡ 1 (mod p). It follows that,

e(σ1, σ2Ω)δ = Aδ = e(g̃, g̃)αδ e(f, f)βδ = e(g̃, g̃)α = Ã,

and hence, since it all happens in subgroups of order p at this point,

e(σδ1, σ
δ
2 Ω) = Ã.

By an analogous reasoning, we also deduce that T2 ∈ GTq, and thus,

e(σ2, u)δ·e(σ3, g)−δ·e(σ4, v
′
m∏
i=1

vµii )−δ = e(σ2, ũ)δ·e(σ3, g̃)−δ·e(σ4, ṽ
′
m∏
i=1

ṽµii )−δ = 1,

which leaves us with a second equality,

e(σδ2, ũ) = e(σδ3, g̃) · e(σδ4, ṽ′
m∏
i=1

ṽµii ).

We have just shown that σ∗ = (σδ1, σ
δ
2, σ

δ
3, σ

δ
4) satisfied the verification condi-

tions of the hybrid signature scheme in Zp, for message M∗ and some unspecified
(possibly unknown) identity ID∗. Thus, it suffices for the simulator to output σ∗

as the forgery to win its own game with the challenger. This shows that our
simulator will be successful whenever the adversary is.


