
Computer Architecture
CS 429, Fall 2014
Unique Numbers:

52915, 52920, 52935, 52940, 52945, 52960, 52965

Lab Assignment 0: Introduction to C
Assigned: Wednesday, September 3, 2014

Due: Wednesday, September 17, 2014, 9:00 am

Introduction

The purpose of this assignment is for students to gain basic familiarity with the C programming language.
Using a subset of C, this lab asks that you solve various programming problems.

Logistics

You are to work alone on this project, but you may discuss programing tricks and bit-manipulation code
with your peers. The entire “hand-in” will be electronic. Any clarifications and revisions to the assignment
will be posted on the course Web page.

Hand Out Instructions

You will find the file casm-handout.tar referenced on the homework page of the class
website. You will need to download this file so you can use its contents.

Start by copying casm-handout.tar to an empty, protected directory in which you will to do your
work. Make sure that your directory has permissions that restrict access to this directory to only yourself.
For example, you can create an empty directory by issuing the command mkdir -m 700 lab0, which
will create a new directory immediately in the directory where you are “standing.” Then, give the command:
tar xvf casm-handout.tar. This will cause several files to be unpacked. The only file you will be
modifying and submitting is problems.c.

1



By looking at the file problems.c you’ll notice a place to include your name and UTCS UserID into
which you should insert the requested identifying information. Do this right away so you don’t forget.

The problems.c file also contains a skeleton for your code. Your assignment is to implement the func-
tions described by adding code to the file problems.c. You are to use only straight-line code (i.e., no
loops, no IF statements) and a limited number of C arithmetic and logical operators. Specifically, you are
only allowed to use the following nine operators:

! ˜ & ˆ | + << >> <=

You are not allowed to use any constants longer than 8 bits. See the comments at the beginning of the file
problems.c for detailed rules and a discussion of the desired coding style. Compile the updated (by you)
version of the file problems.c with the command: gcc -O2 -m32 problems.c main.c

Coding Challenge

You have been given a number of templates for a variety of integer coding problems. In the main procedure,
you may wish to implement a specification for your code. We will certainly check your code on a very large
(likely exhaustive) number of tests. Also, for some of the problems, you are expected to include the number
of X86 instructions produced by the “gcc” compiler for each routine where there is a comment: “Number
of X86 instructions:”. To get the number of instructions, you need to compile problems.c with the -S
flag; that is, issue the gcc -S -O2 -m32 problems.c command and inspect the assembler produced,
which can be found in file problems.s.

Do not write lots of code! Pay attention to the maximum number of statements allowed. The main thing
you need to do is to think carefully about what is asked and then code it in a dense manner. These problems
should be fairly straightforward, but they will cause you to think carefully about using C to answer simple
questions. You will only submit the updated problems.c file – insert your code there.

The file dlc is a (binary) program that you can use to check your solutions for compliance with the coding
rules. Note, that this program does not check that your solution meets the number of steps nor that you have
used the specific operators listed.

In addition to the problems given, you are asked to create one problem of your own and extend file “prob-
lem.c” with this example. It shouldn’t be too tricky – but, it should be hard enough that when you give it to
a fellow student that it takes your colleague at least a few minutes to solve your problem. Note, the “dlc”
program checker does not have any rules for this problem, so you might get some error messages – just
ignore them.

Evaluation

Your code will be compiled with gcc and run and tested on one of the public Linux machines. Your score
will be computed out of a maximum of 100 points based on the following distribution:

90 Correctness of code running on one of the public Linux machines.

2



10 Style points, based on your grader’s subjective evaluation of the quality of your solutions and your
comments.

Regarding performance, our main concern at this point in the course is that you can get the correct answer.
However, we want to instill in you a sense of keeping things as short and simple as you can.

We have reserved 10 points for a subjective evaluation of the style of your solutions and comments. Your
solutions should be as clean and straightforward as possible. Your comments should be informative, but
they need not be extensive.

Advice

You are welcome to pursue your code development using any system or compiler you choose. Just make
sure that the version you turn in compiles and runs correctly on our UT CS public Linux machines. If it
doesn’t compile and run – we can’t grade it – and your score will reflect that.

Hand In Instructions

We are working on the hand-in instructions. UT is using a new system call Canvas. We will provide hand-in
instructions when we have a suitable procedure. Stay tuned to the class Webpage.

3


