
Computer Architecture
CS 429, Fall 2014

52915, 52920, 52935, 52940, 52945, 52960, 52965

Lab Assignment 1: Manipulating Bits
Assigned: Wednesday, September 17, 2014
Due: Wednesday, October 8, 2014, 2:00 pm

Introduction

The purpose of this assignment is to become more familiar with bit-level representations and manipulations.
You’ll do this by solving a series of programming “puzzles.” Many of these puzzles are quite artificial, but
you’ll find yourself thinking much more about bits in working your way through them.

Logistics

You are to work alone on this project, but you may discuss programing tricks and bit-manipulation code
with your peers. The entire “hand-in” will be electronic. Any clarifications and revisions to the assignment
will be posted on the course Web page.

Hand Out Instructions

You will find the file datalab-handout.tar referenced on the homework page of the class
website. You will need to download this file so you can use its contents.

Start by copying datalab-handout.tar to a (protected) directory in which you plan to do your work.
Then give the command: tar xvf datalab-handout.tar. This will cause a number of files to be
unpacked in the directory. The only file you will be modifying and turning in is bits.c.

The btest program allows you to evaluate (by testing) the functional correctness of your code. Below is
the help output from the btest program.

1



./btest -h
Usage: ./btest [-v 0|1] [-hag] [-f <func name>] [-e <max errors>]

-e <n> Limit number of errors to report for single function to n
-f <name> Check only the named function
-g Print compact grading summary (implies -v 0 and -e 0)
-h Print this message
-v <n> Set verbosity to level n

n=0: Only give final scores
n=1: Also report individual correctness scores (default)

Use the command make btest to generate the test code and run it with the command ./btest. The
file dlc is a compiler binary that you can use to check your solutions for compliance with the coding rules.
The remaining files are used to build btest.

Looking at the file bits.c you’ll notice a C structure team into which you should insert the requested
identifying information about yourself. Do this right away so you don’t forget.

The bits.c file also contains a skeleton for each of the programming puzzles. Your assignment is to
complete each function skeleton using only straight-line code (i.e., no loops or conditionals) and a limited
number of C arithmetic and logical operators. Specifically, you are only allowed to use the following eight
operators:

! ˜ & ˆ | + << >>

A few of the functions further restrict this list. Also, you are not allowed to use any constants longer than 8
bits. See the comments in bits.c for detailed rules and a discussion of the desired coding style.

Evaluation

Your code will be compiled with GCC and run and tested on one of the public Linux machines. Your score
will be computed out of a maximum of 100 points based on the following distribution:

76 Correctness of code running on one of the class machines.

19 Performance of code, based on number of operators used in each function.

5 Style points, based on your instructor’s or grader’s subjective evaluation of the quality of your solutions
and your comments.

Each of the 19 problems are worth five points: 4 for its correctness and 1 for it performance. For the 19
problems assigned, this sums to 95 points, with five points left to the grader’s subjective evaluation of your
solutions.

We will evaluate your functions using the test arguments in btest.c. You will get full credit for a puzzle
if it passes all of the tests performed by btest.c, half credit if it fails one test, and no credit otherwise.

2



Name Description Rating Max Ops
bitAnd(x,y) (x&y) using only | and ˜ 1 8
bitXor(x,y) ˆ using only & and ˜ 2 14
isEqual(x,y) x = y? 2 5
evenBits() Return word with all even-numbered bits set to 1 2 8
fitsBits(x,n) Return 1 if x fits in n bits 2 15
bitMask(x,y) Generate a mask consisiting of 1’s 3 16
conditional(x,y,z) Compute x ? y : z 3 16
reverseBytes(x) Reverse the bytes of x 3 25
bang(x) Compute !x without using ! operator 4 12
bitCount(x) Count number of 1’s in x 4 40

Table 1: Bit-Level Manipulation Functions.

Regarding performance, our main concern at this point in the course is that you can get the right answer.
However, we want to (continue to) instill in you a sense of keeping things as short and simple as you can.
Furthermore, some of the puzzles can be solved by brute force, but to satisfy the limitation it may require
you to be more clever. Thus, for each function we’ve established a maximum number of operators that you
are allowed to use. This limit is (usually) generous and is designed only to catch egregiously inefficient
solutions. You will receive points for each function that satisfies the operator limit.

Finally, we’ve reserved 5 points for a subjective evaluation of the style of your solutions and your com-
menting. Your solutions should be as clean and straightforward as possible. Your comments should be
informative, but they need not be extensive.

Part I: Bit manipulations

Table 1 describes a set of functions that manipulate and test sets of bits. The “Rating” field gives the
difficulty rating for the puzzle, and the “Max ops” field gives the maximum number of operators you are
allowed to use to implement each function.

Function bitAnd computes the AND function. That is, when applied to arguments x and y, it returns
(x&y). You may only use the operators | and ˜. Function bitXor should duplicate the behavior of the
bit operation ˆ, using only the operations & and ˜.

Function isEqual compares x to y for equality. As with all predicate operations, it should return 1
if the tested condition holds and 0 otherwise. Function evenBits should generate a constant with all
even-numbered bits set to 1 and the odd-numbered bits set to 0.

Function fitsBits should return 1 if its input can be represented as a n-bit two’s complement in-
teger. Function bitMask generates a mask consisting of 1’s from the two positions specified. The
conditional function implements the C conditional function, and reverseBytes reverses the bytes
in its input.

Function bang computes the C ! without using the ! operator. Function bitCount returns a count of the

3



Name Description Rating Max Ops
isZero(x) x = 0 1 2
isNegative(x) x < 0? 3 6
multFiveEights(x) Multiplies by 5/8 rounding toward 0 3 12
sum3(x,y,z) x+y+z using only a single ’+’ 3 16
addOK(x,y) Does x+y overflow? 3 20
isLess(x,y) Is x < y ? 3 24
abs(x) find the absolute value of x 4 10
isNonZero(x) Is x not zero ? 4 10
tc2sm(x) Two’s complement to sign-magnitude 4 15

Table 2: Arithmetic Functions

number of 1’s in the argument.

Part II: Two’s Complement Arithmetic

Table 2 describes a set of functions that make use of the two’s complement representation of integers.

Function isZero decides if its input is zero. Function isNegative determines whether x is less than 0.
Function multFiveEights multiplies its input by 5/8’s rounding the result toward 0.

Function sum3 adds its three inputs only using the ’+’ operator at most once. Function addOK determines
whether its two arguments can be added together without overflow.

Function isLess determines whether x is less than y. Function abs returns the absolute value of its argu-
ment, except in the case of the most negative number where it returns its argument. Function isNonZero
determines whether x is not equal to 0. Function tc2sm converts its input from twos-complement repre-
sentation to sign-magnitude representation.

Advice

You are welcome to do your code development using any system or compiler you choose. Just make sure
that the version you turn in compiles and runs correctly on our UT CS public Linux machines. If it doesn’t
compile, we can’t grade it.

The dlc program, a modified version of an ANSI C compiler, will be used to check your programs for
compliance with the coding style rules. The typical usage is

./dlc bits.c

Type ./dlc -help for a list of command line options. The README file is also helpful. Some notes on
dlc:

4



• The dlc program runs silently unless it detects a problem.

• Don’t include <stdio.h> in your bits.c file, as it confuses dlc and results in some non-intuitive
error messages.

Check the file README for documentation on running the btest program. You’ll find it helpful to work
through the functions one at a time, testing each one as you go. You can use the -f flag to instruct btest
to test only a single function, e.g., ./btest -f bitXor.

Hand In Instructions

We will use the Canvas electronic submission system – stay tuned to the class Webpage for submission
details.

5


