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Introduction 
Java’s synchronization model is based on another model, the Monitor.  Like Hoare’s (and 
Hansen’s) Monitor model, Java’s synchronization is used to protect shared resources 
from simultaneous access/manipulation in a multi-threaded environment.   
 
Synchronization has costs.  One component of which is the overhead of the 
synchronization implementation, e.g. acquiring/releasing a lock.  Another, less obvious 
one, is the level of interference between multiple computations that do not require mutual 
exclusion, but manage to prevent each other from otherwise executing some code 
“simultaneously”.  If two computations can safely take place simultaneously, but a  
mechanism for providing exclusion prevents this overlap, performance can be affected.  
If, for example, a single shared lock is used to control access to all critical sections, even 
safe combinations, then throughput can suffer. 
 
For this reason, critical sections are typically (logically) correlated with the data that each 
manipulates, and a lock is associated with that data.   The critical section is then protected 
by a protocol (an agreement) requiring that the specific lock related to the specific 
instance of data needing protected access is first acquired. 
 

Protecting Instance Variables 
If a section of code must modify the internal fields of a specific object of type T, then 
class T can be “given” a lock as an instance variable, and the critical sections operating 
on instances t1 of type T, first acquire t1.lock.  This allows different instances of T to 
be manipulated simultaneously by multiple threads, even by the same code. 
 
/* Some C/C++ code */ 
struct T { 
 /* data fields, including: */ 
 int count; 
 struct   Lock   t_lock; 
}; 
 
void foo(struct T * t) { 
 lock_acquire(t->t_lock); /* critical section entry */ 
 count += 2;    /* critcal section */ 
 lock_release(t->t_lock); /* critical section exit */ 
} 
 
Since each instance of T has a different Lock, function foo() can be executing 
simultaneously in its critical section provided its argument t is pointing to different 



instances of T.  But for those threads calling foo() with the same T instance, execution 
of the critical section will be serialized. 
 
It is critical to note that acquiring lock t_lock for some instance of T in no way protects 
the contents of that instance.  For example: 
 
void spam(struct T* t) { 
 t->count += 4; 
} 
 
Here, the spam() function will modify count for whatever instance it’s passed, even if 
some other thread has acquired the lock t->m_lock. 
 
So, critical sections are protected by a protocol, an “agreement” between programmers, 
that specifies a process that, if everyone follows, will ensure the coherence of shared 
data.  For instances of T, the protocol is that critical section entry requires acquiring lock 
m_lock; exit consists of releasing m_lock. 
 
Note that we could have achieved safety in our critical sections by using a single lock 
shared by all the T instances.  However, this would not have allowed different T  
instances to be accessed simultaneously, i.e. lock granularity would be too coarse. 
 

Synchronized Blocks 
The approach of defining a synchronization variable for each instance of a type is so 
common in multi-threaded environments, that Java does this automatically.  In Java, 
every object (remember that an object is an instance of some class or is an array) has a 
(unique) monitor associated with it.  We’ll talk more about Java’s monitors, but for now, 
think of a monitor as a lock (with a condition variable). 
Here’s the same code from above, this time using Java: 
 
class T { 
 /* data fields, including: */ 
 int count = 0; 
 //  Not needed:   struct   Lock   t_lock; 
 

void foo() { /* instance method – i.e. not static */ 
 synchronized(this) {  /* critical section entry */ 
  count += 2;  /* critical section */ 
 }     /* critical section exit */ 
} 

} 
 
The Java synchronized statement is of the general form: 
 
synchronized(object_handle) {  /* synchronized block */  } 
 



The synchronized block is not executed until the monitor associated with 
object_handle is acquired by the currently running Thread (only one Thread at a time 
can “own” the monitor).  When the synchronized block is exited (e.g. return, falling off 
the end, un-caught exception), then the monitor is automatically released. 
So Java synchronization is block-based; the monitor is acquired before the block is 
entered, and it’s released (always and only – there is no “un-synchronized” keyword) 
when the synchronized block is exited.  Unlike the lock model, there is no explicit 
mechanism for releasing a monitor. 
 
Like the lock model, there is nothing about acquiring an object’s monitor that in any way 
(other than programming protocol) protects the instance data of the object.  If we add this 
spam() method to T : 
 
 
void spam() { 
 count += 4; 
} 
 
Then our class instance methods are no longer thread-safe.  If some other Thread “owns” 
the monitor for some instance t1 of T , and another Thread invokes t1.spam(), both 
Threads can be modifying t1 simultaneously. 
 

Synchronized Instance Methods 
Using the synchronized(this) block is so common in instance methods that Java 
provides a shortened notation for specifying that an instance method is synchronized 
against its invoking object.  These are functionally equivalent definitions of instance 
method foo: 
 
synchronized void foo() {  void foo() { 
        synchronized(this) { 
 count += 2;       count += 2; 
        } 
}        } 
 
When a synchronized block is exited, another Thread can enter the monitor that’s now 
“free”.   If there had been Threads waiting for the monitor, exactly one is allowed in.  
Java does not specify an ordering, so the Thread waiting the longest may not be the one 
allowed into the monitor. 
 

Protecting Class Variables 
So far our examples have focused on protecting access to per-object data.  Sometimes 
there is data maintained per-class, rather than per-instance, that must be protected.   In 
Java, per-class data are static members (“class variables”), and per-instance data are non-
static (“instance variables”). 
 



Protecting class variables requires a protocol that ensures all critical sections synchronize 
against the same object.  It wouldn’t work if one critical section used one object instance, 
and another critical section synchronized against a different object instance. 
What’s needed is an object of which there is only one for our class.  As it turns out, every 
Java class has such an object, it’s the class’s java.lang.Class object.  For any class S, a 
handle to its Class object can be retrieved in various ways, but the compiler allows us to 
generate a handle to the Class object by using the “S.class” notation.  Here’s a class 
with class data (static data).  Note that changes to class data are protected by 
synchronizing against the class’ Class object: 
 
class S { 
 static int count = 0; 
 static void eggs() { 
  synchronized (S.class) { 
   count += 1; 
  } 
 } 
} 
 
 
Protecting class data in this way is so common that, once again, Java allows for a 
shorthand notation.  These implementations are identical: 
 
synchronized static void eggs() {  static void eggs() { 
         synchronized(S.class) { 
 count += 2;       count += 2; 
         } 
}         } 
 
We’ve already covered the notion that every object (including array “objects”), has an 
associated Monitor, and that entering/leaving the “monitor” is accomplished with the 
Java synchronized block.  The monitor is entered prior to beginning execution of the 
block; it is exited implicitly when the block is exited. 
 

Monitors – Condition Variables, Wait/Notify 
Like Hoare’s monitor model, Java’s monitors support the ability to (atomically) wait on a 
condition variable and release the monitor.  Every monitor has an associated Condition 
Variable (CV).  Although Hoare’s model allows for an unlimited number of named CVs, 
in Java, each monitor has only a single (nameless/anonymous) CV. 
 
Hoare’s Wait(cv) operation is represented in Java by the wait() method.  The wait() 
method is defined in class java.lang.Object (the root ancestor of every Java class), and is 
final (cannot be overridden.)  So, wait() (like all instance methods) is invoked on an 
object instance.   
 



In Java, as in Hoare’s monitor, a wait() operation can only be requested by a caller who 
is executing in (“owns”) the CV’s monitor.  So when x.wait() is executed, the invariant 
is that the calling thread must be executing in the monitor associated with x: 
 
class T { 

void foo(Object x) { 
  …. 
  synchronized (x) { 
   …. 
   x.wait(); // Note that a runtime exception would be 

     // thrown is we simply coded “wait()”, 
    //  which the compiler would ‘expand’ to  

//  this.wait(), because we’re not currently 
    //  executing in the monitor for “this” (unless by 
some strange coincidence this == x). 
  } 

} 
} 
 
As in Hoare’s Wait(), Java atomically blocks the caller and releases the monitor 
associated with x. 
 
Why doesn’t Java just let you code a ‘naked’ wait()?  Well, it’s because synchronized 
blocks can be nested, and you have to explicitly tell Java which monitor’s (anonymous) 
CV you’re going to wait on: 
 
void spam() { 
 Object y = new Object(); 
 Object z = new Object(); 
 synchronized (y) { 
  synchronized(z) { 
   z.wait(); // or y.wait() 
  } 
 } 
} 
 
You must, however, be very careful when you call wait() when you’re code is in nested 
synchronized blocks.  It turns out that Java only releases one of the monitors – the one on 
which you invoked wait().  The other monitors are still locked, which leads to quick 
deadlocks!  
 
Java’s Signal() counterpart is the Object.notify() method.  Again, notify() must be 
invoked on an object whose monitor is currently “owned” by the caller: 
 
 
 void bar(Object x) { 
 synchronized (x) { 
  x.notify(); 
  … 
 } 



} 
 
When notify() is called on an object, Java checks its monitor to see if there are any 
Threads that are blocked (by having called wait() on the object).  If so, one of them 
(which one is unspecified) is awaked and added to the list of Threads trying to execute in 
the monitor.  When that Thread does again “own” the monitor, it executes the next 
statement after its wait() call (if there are no waiting Threads, the notify() has no 
effect.)  Note that Java is implementing the Hansen version of Signal() where the Thread 
calling notify() continues to execute (still owning the monitor), and the awakened 
Thread has no opportunity to execute until the notify()ing Thread leaves the monitor 
(the awakened thread competes with any other Threads that are waiting to enter). 
 
Since Java uses the Hansen model, it’s critical for correctness that a “while” construct is 
used in your code that blocks: 
 
…. 
synchronized (x) { 

while( ! some_good_condition) {  
  x.wait(); 

} 
 // Ok – “some_good_condition” is now true 
} 
 
This is because the just-notified waiter isn’t guaranteed to be the next Thread that gets 
control of the monitor.  So, even though the interesting condition likely became true just 
prior to someone calling notify(), it may no longer be true by the time the waiter runs 
again. 
 
Java’s x.notifyAll() is the counterpart to Broadcast().   Like Broadcast, notifyAll() 
awakens all (if any) Threads that are waiting in the monitor for object x. 
 
You’ll often see synchronized instance methods coded on the left, which can be 
considered functionally equivalent to the implementation on the right: 
 
class T {                         class T { 
    boolean boiled = false;        boolean boiled =  false; 
    synchronized void eggs() {     void eggs() { 
                                      synchronized (this) { 
          while (! boiled) {             while (! boiled) { 
             wait();                       this.wait(); 
          }                              } 
          // OK it’s boiled now          // OK it’s boiled now 
                                      } 
    }                              } 
}                                } 
 
If you can mentally translate the version on the left to the version on the right,  
you’ll be miles ahead of the game (and most other Java programmers.) 
 


