Non-Interference Policies

Under BLP, the metapolicy for the system on the right is: information may flow from \(L \) to \(H \), but not vice versa.

The Non-Interference version is just:

\[L \mapsto H \]

Notice how closely the NI policy mimics the confidentiality metapolicy.

There are no rules about which subjects can read/write which objects. In fact, nothing about objects or actions at all.

Verifying NI

An NI policy is nicely abstract. But how could one show that a system satisfies it?

Suppose \(L \) and \(H \) were the only users in your system and you need to show that system satisfies the NI policy: \(L \mapsto H \).

In a system satisfying that policy, no actions by \(H \) should have any effect visible to \(L \).

Imagine an arbitrary interleaving of actions by the two subjects:

\[l_1, l_2, h_1, h_3, h_2, \ldots, l_k, h_j, \ldots \]

where \(l_i \) and \(h_i \) are the \(i^{th} \) actions by \(L \) and \(H \), respectively.

What \(L \) sees after this system runs should be exactly what \(L \) sees after the system runs the following instruction sequence:

\[l_1, l_2, l_3, \ldots, l_k, \ldots \]

This observation gives a way, at least conceptually, of verifying whether the NI policy is satisfied. If you could prove that \(L \)’s “view” of the two runs will always be identical, the policy holds.
Verifying NI

Anything L might “view” are things that H’s actions may not affect.

So, the policy can be made stronger by enlarging L’s “view.”
- Include within L’s view only the contents of files L could see under BLP, then you have exactly BLP.
- Include within L’s view the values of all system flags, then those can’t be used in any covert channel to L.
- Include the system clock, then that can’t be used in any timing covert channel to L.
- If you include everything L could ever observe, then there’s nothing H can use to send information to L.

So why not include everything L could ever observe within his view?

- Interferences are very common in real systems.
- Most involve low-level system attributes.
- Many “interferences” are benign, e.g., encrypted files.
Proving NI for realistic systems is extremely difficult.

Lessons

- Non-Interference is an expressive, intuitive policy that mimics the confidentiality metapolicy.
- There are methods of establishing that a system satisfies NI.
- However, realistic systems have many potential interferences.

Next lecture: What is Integrity?