Some Terminology

Encryption and decryption are functions which transform one text into another. In functional notation:

\[C = E(P) \quad \text{and} \quad P = D(C) \]

where \(C \) denotes ciphertext, \(E \) is the encryption rule, \(D \) is the decryption rule, \(P \) is the plaintext. In this case, we also have:

\[P = D(E(P)) \]

It is obviously important to be able to recover the original message from the ciphertext.

Keyed Algorithms

Often the encryption and decryption algorithms use a key \(K \). The key selects a specific algorithm from the family of algorithms defined by \(E \).

We write this dependence as:

\[C = E(P, K_E) \quad \text{and} \quad P = D(C, K_D) \]

If \(K_E = K_D \), then the algorithm is called symmetric. If not, then it is called asymmetric. In general,

\[P = D(E(P, K_E), K_D) \]

An algorithm that does not use a key is called a keyless cipher.

Some Notation

Often the notation \(E(P, K) \) and \(D(C, K) \) becomes cumbersome. An alternative notation is often used, particularly in cryptographic protocols.

We’ll often use \(\{P\}_K \) to denote \(E(P, K) \), and sometimes to denote \(D(P, K) \). For example,

\[P = D(E(P, K_E), K_D) = \{\{P\}_{K_E}\}_{K_D}. \]

This is usually appropriate since, in many important commercial cryptosystems, the same algorithm is used for both encryption and decryption (i.e., the algorithm is its own inverse).
Cryptanalysis Tasks

A cryptanalyst may attempt to do any or all of the following:
- to break a single message;
- to recognize patterns in encrypted messages;
- to infer some meaning without breaking the algorithm;
- to deduce the key;
- to find weaknesses in the implementation or environment or the use of encryption;
- to find weaknesses in the algorithm, without necessarily having intercepted any messages.

Cryptanalysis Tools

The analyst works with:
- encrypted messages,
- known encryption algorithms,
- intercepted plaintext,
- data items known or suspected to be in a ciphertext message,
- mathematical and statistical tools and techniques,
- properties of languages,
- computers,
- ingenuity and luck.

Lessons

- Encryption is designed to obscure the meaning of text.
- Redundancy is the enemy of secure encryption because it provides leverage to the attacker.

Next lecture: Properties of Ciphers