What is Good Encryption?

The following are suggested as tests of worth for current cryptographic practice:

- is based on sound mathematics;
- has been analyzed by competent experts and found to be sound;
- has stood the test of time.
An encryption algorithm is called *breakable* if, given enough time and data, an analyst can recover the plaintext.

Most encryption algorithms are breakable since the analyst can try all keys systematically. Being breakable doesn’t mean that it’s feasible to break.

The analyst must be able to recognize success. For that reason, having plaintext/ciphertext pairs available is often required.
A cryptosystem is *strong* if there is no analytic approach that is substantially faster than brute force—i.e., trying all of the keys one by one. *Most strong algorithms are still breakable.*

The larger the *keyspace*, the longer to find the key by search. How do you compute the size of the keyspace?

Many ciphers use a n-bit string as key. Given a small number of plaintext/ciphertext pairs encrypted under key K, K can be recovered by exhaustive search in an expected time on the order of 2^{n-1} operations. *Why?*
The simplest building blocks of encryption are:

substitution: in which each symbol is exchanged for another (not necessarily uniformly), and

transposition: in which the order of symbols is rearranged.

It might seem that these are too naive to be effective. *But almost all modern commercial symmetric ciphers use some combination of substitution and transposition for encryption.*
Two things an encryption step can provide are:

Confusion: transforming information in plaintext so that an interceptor cannot readily extract it.

Diffusion: spreading the information from a region of plaintext widely over the ciphertext.

Substitution tends to be good at confusion; transposition tends to be good at diffusion.
Lessons

- An encryption algorithm is *breakable* if a systematic process will permit extracting the message.
- It is *strong* if there is not better attack that brute force.
- Most symmetric encryption algorithms use some combination of substitution and transposition to accomplish both confusion and diffusion.

Next lecture: Substitution Ciphers