The Key Exchange Problem

Suppose you want to establish a secure communication channel with someone you don’t know. We call this a situation of \textit{mutual suspicion}. This is extremely common.

- You submit your income tax on-line.
- You send your credit card information to a shopping website.
- You wish to exchange encrypted email with another party.

Once you agree on a shared secret (key) the communication can proceed. But how do you exchange the key? This is the \textit{key exchange problem}.

Key Exchange: Attempt 1

Suppose both parties \(S \) and \(R \) have a public / private RSA key pair for asymmetric communication. Say \(S \) chooses a new symmetric key \(K \) and sends to \(R \) the following message:

\[
\{K\}_{k_S^{-1}}.
\]

\(R \) can decrypt the message using \(S \)’s public key to retrieve \(K \).

\textit{What is wrong with this scheme?}

\textbf{Answer:} Any eavesdropper can intercept the message and decrypt it using \(S \)’s public key to retrieve \(K \).

Key Exchange: Attempt 2

Instead, suppose \(S \) sends to \(R \) the following message:

\[
\{K\}_{k_R}.
\]

Since only \(R \) can decrypt this message, confidentiality is assured. \textit{What’s wrong this time?}

Now \(R \) doesn’t have any assurance that the message actually came from \(S \). An intruder may be “spoofing” (pretending to be \(S \)) to obtain information that \(R \) intends only for \(S \).

\textit{Can we preserve both confidentiality and authentication with one transaction?}
A third attempt is for S to send R the following:

$$\{\{K\}_{K^{-1}_S}\}_{K_R}.$$

How does R extract K? What assurances does this provide?

- Since, no one but R can decrypt the message, confidentiality is assured.
- No one but S could have performed the inner encryption, so authentication is accomplished.

This notion of nested encryptions is very useful in a variety of cryptographic protocols. *Could you have done the encryptions in the other order?*

- Public key cryptosystems can be used for key exchange, but you have to do it carefully.
- Key exchange requires both confidentiality and authentication.

Next lecture: Diffie-Hellman Key Exchange