Many existing protocols are derived from one proposed by Needham and Schroeder (1978), including the widely used Kerberos authentication protocol suite.

N-S is a *shared-key authentication protocol* designed to generate and propagate a *session key*, i.e., a shared key for subsequent symmetrically encrypted communication.

Note that there is no public key infrastructure in place.
Assumptions of Needham-Schroeder

There are three principals: A and B, two principals desiring mutual communication, and S, a trusted key server.

It is assumed that A and B already have secure symmetric communication with S using keys K_{as} and K_{bs}, respectively.
N-S uses *nonces* (short for “numbers used once”), randomly generated values included in messages.

If a nonce is generated and sent by A in one step and returned by B in a later step, A knows that B’s message is *fresh* and not a replay from an earlier exchange.

Note that a nonce *is not a timestamp*. The only assumption is that it has not been used in any earlier interchange, with high probability.
Two questions to ask of any step in any protocol:

- What is the sender trying to say with this message?
- What is the receiver entitled to believe after receiving the message?

The Needham-Schroeder protocol is:

1. \(A \rightarrow S : A, B, N_a \)
2. \(S \rightarrow A : \{N_a, B, K_{ab}, \{K_{ab}, A\}K_{bs}\}K_{as} \)
3. \(A \rightarrow B : \{K_{ab}, A\}K_{bs} \)
4. \(B \rightarrow A : \{N_b\}K_{ab} \)
5. \(A \rightarrow B : \{N_b - 1\}K_{ab} \)

Here \(N_a \) and \(N_b \) are nonces.
Needham-Schroeder is a shared-key authentication protocol that has been very important historically.

It illustrates:
- the overall structure of protocols;
- that some principals may have special roles to play;
- the usefulness of nonces.

Next lecture: Attacks on Needham-Schroeder