Foundations of Computer Security
Lecture 64: The BAN Logic

Dr. Bill Young
Department of Computer Sciences
University of Texas at Austin
The BAN (Burrows, Abadi, and Needham) logic is a modal logic of belief. It has several modal operators including:

- \(P \equiv X \): \((P \text{ believes } X)\) P is entitled to act as though X is true.
- \(A \triangleright X \): \((A \text{ sees } X)\) someone has sent a message to A containing X so that he can read X and repeat it.
- \(A \sim K \): \((A \text{ once said } K)\) at some time, A used key K.
- \(A \sim X \): \((A \text{ once said } X)\) at some time, A uttered a message containing X.
- \(A \iff X \): \((A \text{ has jurisdiction over } X)\) A is an authority on X and can be trusted on X.
- \(A \leftarrow K \rightarrow B \): \((A \text{ and } B \text{ share key } K)\) A and B can use key K to communicate. The key is unknown to anyone else.
BAN Operators Continued

#(X): *(X is fresh)* meaning that X has not been sent before in any run of the protocol.

$\overset{K}{\rightarrow} B$: *(B has_public_key K)* B has a published public key K and corresponding private key K^{-1}.

$A \leftrightarrow^X B$: *(A and B share secret X)* X is a secret known only to A, B and possibly some trusted associates.
There are numerous rules of inference for manipulating the protocol to generate a set of beliefs. For example,

Message meaning: If A believes (A share(K) B) and A sees \{X\}_K then A believes(B said X).

\[A \models (A \leftrightarrow^K B), A \triangleright \{X\}_K \]

\[A \models (B \mid \sim X) \]
Nonce verification: If A believes X is fresh and A believes B once said X, then A believes B believes X.

\[A \models (\#(X)), A \models (B \not\sim X) \]
\[\frac{}{A \models (B \models X)} \]

Jurisdiction: If A believes B has jurisdiction over X and A believes B believes X, then A believes X.

\[A \models (B \rightarrow X), A \models (B \models X) \]
\[\frac{}{A \models X} \]
To get from protocol steps to logical inferences, we have a process called *idealization*. This attempts to turn the message sent into its intended semantics. For example, given the protocol step:

\[A \rightarrow B : \{A, K_{ab}\}K_{bs} \]

If B knows the key \(K_{bs} \), this tells us that \(K_{ab} \) is a key to communicate with A. An idealized version is:

\[A \rightarrow B : \{A \xleftrightarrow{K_{ab}} B\}K_{bs} \]

One purpose of idealization is to omit parts of the message that do not contribute to the beliefs of the recipients. *In BAN all plaintext is omitted since it can be forged.*

Idealization of the protocol is not defined unambiguously. It depends on the interpretation of the meaning of some steps.
The BAN logic has been an important tool for reasoning about protocols.

It is a modal logic of belief with 10 primitives and a number of inference rules.

Next lecture: The BAN Logic: Needham-Schroeder