We introduced the following rule, which appears to capture our intuition about when a subject can read an object.

The Simple Security Property: Subject S with clearance (L_S, C_S) may be granted *read* access to object O with classification (L_O, C_O) only if $(L_S, C_S) \geq (L_O, C_O)$.

Is it all we need? What about other types of access?
The Simple Security property codifies restrictions on *read* access to documents. What about *write* access?

Suppose someone with access to a Top Secret document copies the information onto a piece of paper and sticks it into an Unclassified folder.

Has Simple Security been violated? *No!* Has confidentiality been violated? *Clearly.*
In general, subjects in the world of military documents are *persons* trusted not to write classified information where it can be accessed by unauthorized parties.

Subjects in the world of computing are often *programs* operating on behalf of a trusted user (and with his or her clearance).

Some program I run may have embedded malicious logic (a “trojan horse”) that causes it to “leak” information without my knowledge or consent.
We restrict *write* access according to the following rule:

The *-Property: Subject \(S \) with clearance \((L_S, C_S)\) may be granted write access to object \(O \) with classification \((L_O, C_O)\) only if \((L_S, C_S) \leq (L_O, C_O)\).

This is pronounced “the star property.” *How does it help?*
Does this rule make sense? Is it too restrictive? Is it too lax?

- Can a commanding general with a Top Secret clearance email marching orders to a foot soldier with no clearance? *No!*
- Can a corporal with no clearance overwrite the war plan? *Nothing in our rules stops it, but that’s an integrity problem!*

Simple security and the *-property are sometimes characterized as “read down” and “write up,” respectively. Alternatively, they’re characterized as “no read up” and “no write down.”
Control over read and write operations is needed to prevent confidentiality breaches.

The *-property uses dominates to decide whether a write access should be allowed.

Controlling write access is especially crucial for computers because the accessing subject may be a program executing on behalf of a user. The user has been cleared; the program has not.

Next lecture: Tranquility and BLP