
Proof of Non-Interference

Unwinding Theorem
William D. Young

University of Texas at Austin

Assume a deterministic system with a set A of agents (subjects), a set S of states, and a set I

of instructions. Transitions in the system are defined in terms of the function step : I × S →

S. Another function, agent : I → A, associates with each instruction the agent executing that
instruction.

The system security policy is defined in terms of a boolean-valued binary “interference” relation:
7→: A × A. The intended interpretation of this is: agent a is allowed to communicate1 with b iff
a 7→ b. Finally, define another set SA that is those collections of system components visible to a
given agent. The function view : A×S → SA is intended to associate with an agent and state pair,
the portion of state visible to that agent.

The following is the definition of non-interference security for such a system:

Definition 1: The system is non-interference secure iff:

∀a ∈ A,∀S0 ∈ S,∀I ∈ I∗ : view (a, run (I, S0)) = view (a, run (purge (I, a), S0))

The definitions of functions run and purge are provided in the appendix.

The following two definitions constitute sufficient unwinding conditions for non-interference security
in such a system.

Definition 2: The system locally respects the interference relation 7→ iff:

∀a ∈ A,∀s ∈ S,∀i ∈ I : [agent (i) 67→ a] ⇒ [view (a, step (i, s)) = view (a, s)]

Definition 3: The system is step consistent iff:

∀a ∈ A,∀s1, s2 ∈ S,∀i ∈ I :
[view (a, s1) = view (a, s2)] ⇒ [view (a, step (i, s1)) = view (a, step (i, s2))]

1More precisely, information is allowed to flow from the domain of a to the domain of b. Whether that flow is by

action of a, action of b, or both is not specified.



Non-Interference proof 2

What it means for these to be unwinding conditions is expressed in the following theorem.

Theorem: A deterministic system with transitive interference relation 7→ and in which locally
respects and step consistency both hold is non-interference secure.

Proof: Assume an arbitrary agent a, initial state S0, and instruction sequence I. We need to show
that:

view (a, run (I, S0)) = view (a, run (purge (I, a), S0)).

The proof is by structural induction on the instruction sequence I.

Base case: (I = nil). By the definitions of run and purge, both sides reduce to view (a, S0).

Induction step: (I = I ′ ◦ i). Assume agent (i) = b. By the induction hypothesis we assume that,

view (a, run (I ′, S0)) = view (a, run (purge (I ′, a), S0)).

Working on the left hand side of our theorem:

view (a, run (I, S0)) = view (a, run (I ′ ◦ i, S0)) = view (a, step(i, run (I ′, S0))

by the definition of run.

At this point, we need to consider two possibilities: either b is allowed to interfere with a or is not.

Case 1: (b 67→ a) In this case, by locally respects, the final form above is equal to:

view (a, run (I ′, S0)).

Working on the right hand side of our theorem,

view (a, run (purge (I, a), S0)) = view (a, run (purge (I ′ ◦ i, a), S0)).

But since b 67→ a, by the definition of purge this becomes:

view (a, run (purge (I ′, a), S0))

which is then equal to the left hand side by the induction hypothesis.

Case 2: (b 7→ a) Again, working on the right hand side of our theorem:

view (a, run (purge (I, a), S0)) = view (a, run (purge (I ′ ◦ i, a), S0)).



Non-Interference proof 3

In this case since b 7→ a, by the definition of purge, this becomes:

view (a, run (purge (I ′, a) ◦ i, S0)).

Then, by the definition of run, this is equal to:

view (a, step (i, run (purge (I ′, a), S0))).

But by the induction hypothesis, we know that:

view (a, run (I ′, S0)) = view (a, run (purge (I ′, a), S0)).

According to step consistency, if two states are view-identical for any agent a, then executing the
same instruction in both will result in states that are view-identical for a. Consequently,

view (a, step (i, run (I ′, S0))) = view (a, step (i, run (purge (I ′, a), S0)))

which proves our theorem.

Appendix

Below are the definitions of the functions run and purge.

Definition A1: The function run : I∗ × S → S maps an instruction sequence and a state to a
state as follows.

run (nil, a) = a

run (l ◦ i, a) = step (i, run (l, a))

Here nil denotes the empty sequence, and l ◦ i denotes the concatenation of element i to the right
end of sequence l.

Definition A2: The function purge : I∗ ×A → I∗ maps a sequence of instructions and an agent
to a sequence of instructions as follows.

purge (nil, a) = nil

purge (l ◦ i, a) =

{

purge (l, a) ◦ i, if agent (i) 7→ a

purge (l, a), otherwise


