
CS361: Introduction to Computer Security
Covert Channels and Non-Interference

Dr. Bill Young
Department of Computer Sciences

University of Texas at Austin

Last updated: February 10, 2020 at 15:22

CS361 Slideset 2b: 1 Policies and Channels



Access Control

The Bell and LaPadula Model (BLP) is an example of an Access
Control Policy. This is a popular way of conceptualizing and
implementing security.

The basic idea is to introduce rules that control what accesses
system subjects have to system objects.

CS361 Slideset 2b: 2 Policies and Channels



Access Control

Access control is an important aspect of security.

The problem is that there may be information channels in the
system that don’t involve the access of subjects to objects.

CS361 Slideset 2b: 3 Policies and Channels



Levels of Concern

For any secure system, we have to consider the following different
areas of concern:

Policy: What is the notion of security
that is being enforced?

Mechanism: How is that policy enforced in
the system?

Assurance: How certain are we that the
policy is enforced by the
mechanisms?

BLP mixes policy and mechanism.

CS361 Slideset 2b: 4 Policies and Channels



An Aside: Firewalls

What is a firewall? Essentially, it’s just an access control
mechanism applied by structuring the system in a particular way.

It applies access control checks at the system boundary before
accepting any command, perhaps on a separate processor.

CS361 Slideset 2b: 5 Policies and Channels



Some Questions

1 Can our system satisfy BLP’s security properties and still be
intuitively non-secure?

2 Are there ways in which a high level subject could pass
information to a low level subject without violating our
security property?

3 What about instructions beyond READ and WRITE? Can
they be added securely?

4 How should we handle exceptions? Eg., what should happen if
ill-formed instructions are included in the instruction stream?

5 Is there a “stronger” security policy that we might apply?

CS361 Slideset 2b: 6 Policies and Channels



The Metapolicy

The real security goal (metapolicy) of any MLS scheme is to
control the flow of information in the system. I.e., sensitive
information should not flow “down” in the system, from a high
level to a low level.

More precisely, information must flow through the lattice only
along upward arrows.

Is BLP adequate to ensure this metapolicy? What would a
counterexample look like? What would it mean?

CS361 Slideset 2b: 7 Policies and Channels



A Simple BLP System

Consider an MLS system that has READ and WRITE operations
that follow the BLP rules. Just to be concrete, suppose we define
the semantics as follows:

READ (subj name, obj name): if object exists and subject has
read access to it, return its current value; otherwise,
return a zero.

WRITE (subj name, obj name, value): if object exists and the
subject has write access to it, change its current
value to value; otherwise, do nothing.

Ordinarily, the subject would be an implicit parameter to the
operation; we’re just making it explicit to simplify matters.

CS361 Slideset 2b: 8 Policies and Channels



A BLP System (Cont.)

Now, suppose we want to add the following operations to our
simple secure system:

CREATE (subject_name, object-name)

DESTROY (subject_name, object-name)

Under what conditions would these operations be secure? I.e.,
what should be the semantics of these operations, if they are not
to violate our intuitive notions of confidentiality?

What is the level of a created object? What if an object by that
name already exists? What if we try to destroy an object that
doesn’t exist?

CS361 Slideset 2b: 9 Policies and Channels



A BLP System (Cont.)

Now, suppose we want to add the following operations to our
simple secure system:

CREATE (subject_name, object-name)

DESTROY (subject_name, object-name)

Under what conditions would these operations be secure? I.e.,
what should be the semantics of these operations, if they are not
to violate our intuitive notions of confidentiality?

What is the level of a created object? What if an object by that
name already exists? What if we try to destroy an object that
doesn’t exist?

CS361 Slideset 2b: 10 Policies and Channels



A BLP System (Cont.)

Suppose we define these operations as follows:

CREATE (subject, object-name): if no object with name
object-name exists, create a new object at the
subject’s level; otherwise, do nothing.

DESTROY (subject, object-name): if an object with name
object-name exists and the subject has write access
to it, destroy it; otherwise, do nothing.

These rules seem to satisfy BLP, but are they “secure” from the
standard of the metapolicy? Why or why not?

CS361 Slideset 2b: 11 Policies and Channels



Covert Channel Example

In this system, a high level subject H can signal one bit of
information to a low level subject L as follows:

H Signals 0 H Signals 1
Create (H, F0) do nothing
Create (L, F0) Create (L, F0)
Write (L, F0, 37) Write (L, F0, 37)
Read (L, F0) Read (L, F0)
Destroy (L, F0) Destroy (L, F0)

Some questions:
1 Could there be a covert channel if L didn’t see any difference?
2 What difference does L see in the two cases?
3 Are any pre-conditions required for this to work?
4 Why must L do the same thing in both columns?
5 Why is the Destroy needed?
6 Where does the bit of information “reside”?

CS361 Slideset 2b: 12 Policies and Channels



Covert Channel Example

H Signals 0 H Signals 1
Create (H, F0) do nothing
Create (L, F0) Create (L, F0)
Write (L, F0, 37) Write (L, F0, 37)
Read (L, F0) Read (L, F0)
Destroy (L, F0) Destroy (L, F0)

1 If L sees no difference, no information flows.

2 Left: L sees a value of 0. Right: L sees a value of 37.

3 F0 doesn’t exist initially; they’ve agreed on the encoding.

4 L doesn’t know what bit H is sending.

5 They need to reset the state to repeat the channel.

6 In the level of the F0.

CS361 Slideset 2b: 13 Policies and Channels



Covert Channels

One flaw in BLP (and most access control schemes) is that it only
controls the flow of information via objects that are explicitly
recognized by the security policy as carrying information.

But information can be carried in other ways as well. Such
information paths are called covert channels.

CS361 Slideset 2b: 14 Policies and Channels



Covert Channel

Some sources define a covert channel as any channel in violation of
the security policy; that’s too broad to be useful. A better
definition is:

Definition: A covert channel is a path for the flow of information
between subjects within a system, utilizing system resources that
were not designed to be used for inter-subject communication.

Where did the bit of information reside in the previous channel?
Was it the contents of any object?

CS361 Slideset 2b: 15 Policies and Channels



Covert Channel

Note the important features of this definition:

Information flows from one subject to another, presumably in
violation of the security metapolicy though not necessarily in
violation of the policy.

The flow is within the system; two human users talking over
coffee is not a covert channel.

The flow occurs via system resources (file attributes, flags,
clocks, etc.) that were not intended as communication
channels.

A system can satisfy an access control policy (such as BLP) and
still contain multiple covert channels.

CS361 Slideset 2b: 16 Policies and Channels



Sample Covert Channel 1

Process p cannot communicate with process q directly. However, p
can create and delete files in a directory. q cannot read or modify
files in the directory, but can list them. To send a bit of
information, process p deletes any file named *bit, and then
creates a file called either 0bit or 1bit in the directory. Process q
detects it. This repeats until the message has been delivered.

This is a classic storage covert channel.

Note: If q could read files in the directory that wouldn’t be a
covert channel. Also, why doesn’t p just name his file
the-attack-is-at-dawn for higher bandwidth? Would that work?

CS361 Slideset 2b: 17 Policies and Channels



Sample Covert Channel 2

The KVM/370 operating system isolated processes on separate
virtual machines. They shared the processor on a time-sliced basis.
Processes alternated using the CPU, with each allowed t units of
processing time. However, a process could relinquish the CPU
early.

Process p could send a bit to process q by either using its total
allocation or reliquishing the processor immediately. Process q
reads the bit by consulting the system clock to see how much time
has elapsed since it was last scheduled.

This is a classic timing covert channel.

CS361 Slideset 2b: 18 Policies and Channels



Sample Covert Channel 3

Suppose two processes share a disk. Process p either accesses
cylinder 140 or 160. Process q requests accesses on cylinders 139
and 161. The scanning algorithm services requests in the order of
which cylinder is currently closest to the read head. Thus, q
receives values from 139 and then 161, or from 161 and then 139,
depending on p’s most recent read.

Is this a timing or storage channel? Neither? Both?

CS361 Slideset 2b: 19 Policies and Channels



An Implicit Channel

An implicit channel is one that uses the control flow of a program.
For example, consider the following program fragment:

h := h mod 2;

l := 0;

if h = 1 then l := 1 else skip;

The resulting value of l depends on the value of h.

There are sophisticated language-based information flow tools that
check for these kinds of dependencies in programming languages.

CS361 Slideset 2b: 20 Policies and Channels



Taxonomy of Covert Channels

Some possible types of covert channels:

Implicit flows: signal information through the control structure of
the program.

Termination channels: signal information through termination or
non-termination of a computation.

Timing channels: signal via the amount of time a computation
takes.

Probabilistic channels: signal by changing the probability
distribution of observable data.

Resource exhaustion channels: signal via possible exhaustion of a
finite shared resource, such as memory or disk space.

Power channels: embed information in the power consumed (useful
for smartcards where the energy is supplied by the
host computer).

CS361 Slideset 2b: 21 Policies and Channels



Taxonomy of Covert Channels

In practice, most researchers distinguish only storage and timing
channels.

Storage channel: bit is encoded as data in
the system state; no clock is
required.

Timing channel: bit is encoded in the
timing/sequence of events in
the system; clock may be
needed.

CS361 Slideset 2b: 22 Policies and Channels



One More

Jeremiah Denton, a prisoner of war during the Vietnam War, used
a covert channel to communicate without his captors’ knowledge.
Denton was interviewed by a Japanese TV reporter, and eventually
a videotape of the interview made its way to the United States.

As American intelligence agents viewed
the tape, one of them noticed Denton
was blinking in an unusual manner.
They discovered he was blinking letters
in Morse code. The letters were
T-O-R-T-U-R-E, and Denton was
blinking them over and over. This is a
real-world example of how a covert
channel can be used to send a
communication message undetected.

CS361 Slideset 2b: 23 Policies and Channels



Covert Channels: Who Cares

It might seem that these covert channels
would be so slow that you wouldn’t really care.

That’s not true. Covert channels on real
processors operate at thousands of bits per
second with no appreciable impact on system
processing.

CS361 Slideset 2b: 24 Policies and Channels



Covert Channels

The two important attributes of covert channels are existence and
bandwidth.

It is usually infeasible for realistic systems to eliminate every
potential covert channel. However it is important to identify those
that can be used to advantage and to close them or restrict them in
such a way that the bandwidth is reduced to a negligible amount.

CS361 Slideset 2b: 25 Policies and Channels



Noisy vs. Noiseless Channels

A characteristic of any communication channel that affects
bandwidth is whether it is noiseless or noisy. Information theory
provides a very precise definition; the following is an intuitive
approximation.

Definition: A noiseless channel is one where the message can be
transmitted without distortion or loss of information.

Definition: A noisy channel is one where there is distortion or loss
of information.

CS361 Slideset 2b: 26 Policies and Channels



Noisy vs. Noiseless Channels

For covert channels, a noiseless
channel might be one where the
shared resource is only available to
the two colluding parties.

A noisy channel might be one where
there are other users potentially
accessing the resource.

CS361 Slideset 2b: 27 Policies and Channels



Dealing with Covert Channels

Once a potential covert channel is identified, several responses are
possible.

We can eliminate it by modifying the system implementation.

We can reduce the bandwidth by introducing noise into the
channel.

We can monitor it for patterns of usage that indicate someone
is trying to exploit it. This is intrusion detection.

The solution could introduce other problems. For example, one
might eliminate a covert channel on a shared resource by always
giving priority to the low process (and possibly terminating the high
process). This obviously introduces a denial of service vulnerability.

CS361 Slideset 2b: 28 Policies and Channels



Dealing with Covert Channels

In the early 1990’s the U.S. Government published guidelines for
covert channels in secure systems they certified:

“Covert storage channels shall be treated as follows:

1 There shall be no covert storage channels with a
capacity exceeding 100 bits/second;

2 All covert storage channels with capacities exceeding
10 bits/second shall be auditable;

3 All covert storage channels with capacities exceeding
1 bit/second shall be described in the product’s
covert channel analysis.”

These numbers are hopelessly out of date, but note that this
presumes that it is possible to find all covert channels in the
system. How might you do that?

CS361 Slideset 2b: 29 Policies and Channels



Using a Covert Storage Channel

For a sender and receiver to use a covert storage channel, what
must be true?

1 Both sender and receiver must have access to some attribute
of a shared object.

2 The sender must be able to modify the attribute.
3 The receiver must be able to reference (view) that attribute.
4 A mechanism for initiating both processes, and sequencing

their accesses to the shared resource, must exist.

CS361 Slideset 2b: 30 Policies and Channels



Using a Covert Storage Channel

For a sender and receiver to use a covert storage channel, what
must be true?

1 Both sender and receiver must have access to some attribute
of a shared object.

2 The sender must be able to modify the attribute.
3 The receiver must be able to reference (view) that attribute.
4 A mechanism for initiating both processes, and sequencing

their accesses to the shared resource, must exist.

CS361 Slideset 2b: 31 Policies and Channels



Using a Covert Timing Channel

What’s required for a covert timing channel?
1 Sender and receiver must have access to some attribute of a

shared object.
2 Both have access to a time reference (real-time clock, timer,

ordering of events).
3 Sender must be able to control the timing of the detection of

a change in the attribute of the receiver.
4 A mechanism for initiating both processes, and sequencing

their accesses to the shared resource, must exist.
CS361 Slideset 2b: 32 Policies and Channels



Detecting Covert Channels

Richard Kemmerer (UC Santa Barbara)
introduced the Shared Resource Matrix
Methodology (SRMM).

The idea is to build a table for each
command and its potential effect on shared
attributes of objects.

SRMM doesn’t tell you where covert channels are, only where to
look.

CS361 Slideset 2b: 33 Policies and Channels



SRMM Example

readFile writeFile deleteFile createFile
file existence R R R, M R, M
file owner R, M M
file name R R R, M M
file size R M M M

An R in the matrix means the operation References (provides
information about) the attribute under some possible
circumstances. An M means the operation Modifies (affects the
value of) the attribute under under some possible circumstances.

Under what possible conditions would you have the matrix values
above?

CS361 Slideset 2b: 34 Policies and Channels



Working with the SRMM

The only resources/attributes that are potential channels are those
with both R and M in a row. Why is that?

Building the matrix requires detailed knowledge of the system
architecture.

Any shared resource matrix is for a specific system. Other systems
may have different semantics for the operations.

CS361 Slideset 2b: 35 Policies and Channels



A Subtlety of SRMM

Suppose you have the following operation:

CREATE: if no object with name obj name exists, create a new
object at the subject’s level; otherwise, do nothing.

For the attribute file existence, should you have an R or not for
this operation? Consider this: you know that the file exists after
this operation. Why?

But that’s not enough. It’s not important that you know
something about the attribute; what’s important is that the
operation tells you something about the attribute. A low-level
process couldn’t use CREATE to get the information it would need
to carry out its part of a covert channel.

CS361 Slideset 2b: 36 Policies and Channels



Using the SRMM: Exercise

Build a Shared Resource Matrix for each of the covert channel
examples on the previous slides.

Channel 1: Process p cannot communicate with process q
directly. However, both can list files in a common directory.
Process p creates a file called either 0bit or 1bit in the directory.
Process q detects it and deletes it. This repeats until the message
has been delivered.

Read Write Create Delete ListFiles
file existence R R R, M R, M R
file label R R R, M M R

Now try a similar exercise for samples 2 and 3.

CS361 Slideset 2b: 37 Policies and Channels



Covert Channels and System Analysis

One approach to secure system design is to use an access control
security model like Bell and LaPadula, and then to use a separate
technique (such as SRMM) to find and close covert channels.

The question arises, is it possible to define a security model that is
strong enough to cover access control and covert channels. That is
one goal of information flow policies such as non-interference.

CS361 Slideset 2b: 38 Policies and Channels



Non-Interference

An alternative to access control policies is a class of policies called
information flow policies. The best known is non-interference.

The policy of the system is a binary relation (a 7→ b) over the
subjects of the system that says which subjects are permitted to
“interfere with” which other subjects.

You can think of “can interfere with” as meaning “can
communicate to” or “can direct information to.” In the types of
systems we have been discussing, (a 7→ b) means that a can write
into b’s view, or b can read from a’s view. But there is no
distinction between these two.

CS361 Slideset 2b: 39 Policies and Channels



Non-Interference (Cont.)

It is possible to take any MLS policy and turn it into a
non-interference policy, but not vice versa.

Consider a BLP system with three subject’s:

A at (Secret: {Crypto, Nuclear}),

B at (Secret: {Crypto}), and

C at (Unclass: { }).

What is the corresponding NI policy? Suppose you add D at (Top
Secret: {Crypto, Nuclear})?

In general, given a BLP system, how do you compute the
corresponding NI policy?

CS361 Slideset 2b: 40 Policies and Channels



Non-Interference (Cont.)

Intuitively, the idea of non-interference is that a low-level user’s
“view” of the system should not be affected by anything that a
high-level user does.

Though strictly speaking, talk of “high” and “low” here is
misleading. There is only a notion of who is allowed to interfere
with whom.

CS361 Slideset 2b: 41 Policies and Channels



Levels of Concern

Recall that we considered the following different areas of concern:
policy, mechanism, and assurance.

Non-interference is another policy, more abstract than BLP. The
enforcement mechanisms may be anything, including the BLP
rules. In this context, enhancing our level of assurance could mean
formulating and proving a theorem about the system.

The policy of the system is a binary relation (a 7→ b) over the
subjects of the system that says which subjects are permitted to
“interfere with” which other subjects. What would this look like
for a BLP system?

CS361 Slideset 2b: 42 Policies and Channels



Non-Interference

One way to formalize non-interference is as follows. Suppose L is a
subject in the system. Now suppose you:

1 run the system normally, interleaving the operations of all
users;

2 run the system again after deleting all operations requested by
subjects which should not be able to pass information to
(interfere with) L.

Assuming the system is non-interference secure, what should L see
differently in the two runs?

CS361 Slideset 2b: 43 Policies and Channels



Non-Interference

From L’s point of view, there should be no visible difference.

The system is non-interference secure if this is true of every subject
in the system under every possible program. Explain this.

CS361 Slideset 2b: 44 Policies and Channels



Non-Interference Formalization

Non-Interference Property: A system is non-interference secure
iff:

∀s ∈ Subjects, ∀S0 ∈ States,∀I ∈ InstructionList,
view (s, run (I , S0)) = view (s, run (purge (I , s),S0))

where:

run (I, S): is our system interpreter of instruction sequence I
from initial state S.

purge (I, s): removes from I any instruction on behalf of any
subject s1 such that ¬(s1 7→ s).

view (s, S): is everything in state S that s can reference.

CS361 Slideset 2b: 45 Policies and Channels



Non-Interference

Note: this assumes that the system is deterministic and that the
policy is transitive. Why?

It is possible to formulate a related theorem for a non-deterministic
system and/or intransitive policy. Think about what that would
look like?

CS361 Slideset 2b: 46 Policies and Channels



Non-Interference View

The policy can be made as strong as you like by characterizing
“view.” The more things that you consider to be within the view
of the user, the stronger the policy.

For example, if you include within a
subject’s view the values of system
flags, then they could not be used in
a covert channel.

If you include the system clock, then
you could not use that in a covert
channel.

What is the “view” for BLP?

CS361 Slideset 2b: 47 Policies and Channels



Unwinding Theorem

Note that the non-interference formal definition refers to all
subjects, all states, and all instruction sequences and requires an
induction that touches every reachable state of the system. This
may seem very difficult to carry out.

Instead prove an unwinding theorem:

1 Identify an invariant on the
system state.

2 Prove that each instruction
preserves the invariant.

3 Correctness follows
automatically.

CS361 Slideset 2b: 48 Policies and Channels



Unwinding Theorem

It happens that the global non-interference property follows from
two local properties. Let (a 7→ b) mean that “a can permissibly
interfere with b” and let ia denote an instruction executed on
behalf of a.

The system locally respects the interference relation iff:

∀a, b ∈ Subjects,∀s ∈ States,∀ia ∈ Instruction,
¬(a 7→ b) ⇒ view (b, step (ia, s)) = view (b, s)

The system is step consistent iff:

∀a, b ∈ Subjects,∀s1, s2 ∈ States,∀ia ∈ Instruction,
view (b, s1) = view (b, s2)

⇒ view (b, step (ia, s1)) = view (b, step (ia, s2))

Exercise: Try to prove that locally respects and step consistent
imply the non-interference property.

CS361 Slideset 2b: 49 Policies and Channels



Generalizing Non-Interference

The previous idea of non-interference assumes that the “interferes”
relation is transitive and possibilistic and that the system is
deterministic.

It is possible to define related notions that allow for an intransitive
interference relation, probabilistic notion of security, and
non-deterministic systems.

What do these mean? Can you intuit what changes need to be
made for these various different system models?

CS361 Slideset 2b: 50 Policies and Channels



Non-Interference

How does non-interference address the problem of covert channels?

Answer: By adding to a subject’s view elements of the system
state other than files, it makes visible changes in those elements
that might convey information.

Note that this is a very powerful approach, but it has some
limitations. Ideally, a non-interference approach requires no
separate covert channel analysis.

CS361 Slideset 2b: 51 Policies and Channels



Limitations of Non-Interference

Complete non-interference is very difficult to achieve for realistic
systems.

It requires identifying within the “view” function all potential
channels of information.

Realistic systems have many such channels.

Modeling must be at very low level to capture most channels.

Dealing with timing channels is possible, but difficult.

Very few systems are completely deterministic.

Some “interferences” are benign, e.g., encrypted files.

CS361 Slideset 2b: 52 Policies and Channels


