1. (6 points total) Consider the following declarations compiled for an x86-64 machine running Linux:

```c
struct node {
    char c[5];
    int i;
    short j;
    struct node *next;
} my_node;
```

(a) _____ How many bytes are allocated for each instance of `my_node`?

A. 8 B. 18 C. 20 D. 24 E. 32 F. none of these

(b) _____ How many bytes are in the smallest struct containing the same elements (but reordered) as `my_node`?

A. 8 B. 18 C. 20 D. 24 E. 32 F. none of these

(c) _____ Suppose `my_node` were a union instead of a struct. How many bytes would be allocated for each instance?

A. 8 B. 18 C. 20 D. 24 E. 32 F. none of these

2. (2 points) Suppose we invent a new technology that allows storing 3 states, not just 2. Instead of bits (0, 1), we have trits (-1, 0, +1). What’s the maximum number of integers we could represent in n trits?

A. 2^n B. $3n$ C. $3!$ (3 factorial) D. 3^n E. 2^{n+3}
3. ______ (2 points) Arguments passed to functions in x86-64 are passed via:
 A. main memory
 B. the stack
 C. registers
 D. a combination of stack and registers
 E. None of the above.

4. ______ (2 points) With respect to byte ordering, the x86 is
 A. little endian
 B. big endian
 C. has no “endianess”
 D. has “endianess” determined by the operating system

5. ______ (2 points) Assume that %rcx has value a and %rsi has value b. Under which of the following conditions is the branch to .L5 taken?
 - subq %rsi,%rcx
 - jg .L5
 A. a < b B. a ≤ b C. a > b D. a ≥ b

6. ______ (2 points) On an x86-64 Linux system, which of these take up the most bytes in memory?
 A. char a[7]
 B. float d
 C. short b[3]
 D. int *c

7. ______ (2 points) What is the C equivalent of movq 0x10(%rax, %rcx, 4), %rdx?
 A. rdx = *(rax + rcx*4 + 0x10)
 B. rdx = *(rax + rcx + 4 + 0x10)
 C. rdx = rax + rcx + 4 + 10
 D. *(rax + rcx + 4 + 10) = rdx

Page total: ______/10