
CS429: Computer Organization and Architecture
Linking I & II

Dr. Bill Young
Department of Computer Sciences

University of Texas at Austin

Last updated: April 5, 2018 at 09:23

CS429 Slideset 23: 1 Linking I

A Simplistic Translation Scheme

p

m.c

m.s

Compiler

Assembler

ASCII source file

Binary executable object file
(memory image on disk)

Problems:

Efficiency: small change
requires complete
re-compilation.

Modularity: hard to share
common functions (e.g.,
printf).

Solution: Static linker (or
linker).

CS429 Slideset 23: 2 Linking I

Better Scheme Using a Linker

Compiler

Assembler

a.c

a.s

a.o

m.c

m.s

Compiler

Assembler

m.o

Linker (ld)

p
Executable object file
(code and data for all functions

defined in m.c and a.c)

relocatable object files

Separately compiled

ASCII source files

Linking is the process of
combining various pieces
of code and data into a
single file that can be
loaded (copied) into
memory and executed.

Linking could happen at:

compile time;

load time;

run time.

Must somehow tell a

module about symbols

from other modules.

CS429 Slideset 23: 3 Linking I

Linking

A linker takes representations of separate program modules and
combines them into a single executable.

This involves two primary steps:

1 Symbol resolution: associate each symbol reference
throughout the set of modules with a single symbol definition.

2 Relocation: associate a memory location with each symbol
definition, and modify each reference to point to that location.

CS429 Slideset 23: 4 Linking I

Translating the Example Program

A compiler driver coordinates all steps in the translation and
linking process.

Typically included with each compilation system (e.g., gcc).

Invokes the preprocessor (cpp), compiler (cc1), assembler
(as), and linker (ld).

Passes command line arguments to the appropriate phases

Example: Create an executable p from m.c and a.c:

> gcc −O2 −v −o p m. c a . c
cpp [a r g s] m. c /tmp/ cca07630 . i
cc1 /tmp/ cca07630 . i m. c −O2 [a r g s] −o /tmp/ cca07630 . s
as [a r g s] −o /tmp/ cca076301 . o /tmp/ cca07630 . s
< s i m i l a r p r o c e s s f o r a . c>
l d −o p [system ob j f i l e s] /tmp/ cca076301 . o /tmp/

cca076302 . o
>

CS429 Slideset 23: 5 Linking I

Role of the Assembler

Translate assembly code (compiled or hand generated) into
machine code.

Translate data into binary code (using directives).

Resolve symbols—translate into relocatable offsets.

Error checking:

Syntax checking;
Ensure that constants are not too large for fields.

CS429 Slideset 23: 6 Linking I

What Does a Linker Do?

Merges object files

Merges multiple relocatable (.o) object files into a single
executable object file that can be loaded and executed.

Resolves external references

As part of the merging process, resolves external references.

External reference: reference to a symbol defined in another
object file.

Relocates symbols

Relocates symbols from their relative locations in the .o files
to new absolute positions in the executable.

Updates all references to these symbols to reflect their new
positions.

References can be in either code or data:

code: a(); /* reference to symbol a */

data: *xp = &x; /* reference to symbol x */

CS429 Slideset 23: 7 Linking I

Why Linkers?

Modularity

Programs can be written as a collection of smaller source files,
rather than one monolithic mass.

Can build libraries of common functions shared by multiple
programs (e.g., math library, standard C library)

Efficiency

Time:

Change one source file, recompile, and then relink.
No need to recompile other source files.

Space:

Libraries of common functions can be aggregated into a single
file.
Yet executable files and running machine images contain only
code for the functions they actually use.

CS429 Slideset 23: 8 Linking I

Example C Program

m.c

i n t e = 7 ;

i n t main ()
{

i n t r = a () ;
}

a.c

e x t e r n i n t e ;

i n t ∗ep = &e ;
i n t x = 15 ;
i n t y ;

i n t a ()
{

r e t u r n ∗ep + x + y ;
}

CS429 Slideset 23: 9 Linking I

Merging Relocatable Object Files

Relocatable object files are merged into an executable by the
Linker. Both are in ELF (Executable and Linkable Format).

.text

.data

.bss

system code

system data

main()

int e = 7

a()

int *ep = &e

int x = 15

int y

.text

.text

.data

.data

headers

system code

main()

a()

more system code

.text

system data

int e = 7

int *ep = &e

int x = 15

uninitialized data

.symtab

.debug

.data

.bss

CS429 Slideset 23: 10 Linking I

Relocating Symbols and Resolving External References

Symbols are lexical entities that name functions and variables.

Each symbol has a value (typically a memory address).

Code consists of symbol definitions and references.

References can be either local or external.

m.c

i n t e = 7 ; // de f o f g l o b a l e

i n t main () {
i n t r = a () ; // r e f to e x t e r n a l symbol a
e x i t (0) ; // r e f to e x t e r n a l symbol e x i t

// (d e f i n e d i n l i b c . so)
}

Note that e is locally defined, but global in that it is visible to all
modules. Declaring a variable static limits its scope to the current
file module.

CS429 Slideset 23: 11 Linking I

Relocating Symbols and Resolving External References (2)

a.c

e x t e r n i n t e ;

i n t ∗ep = &e ; // de f o f g l o b a l ep , r e f to
// e x t e r n a l symbol e

i n t x = 15 ; // de f o f g l o b a l x
i n t y ; // de f o f g l o b a l y

i n t a () { // de f o f g l o b a l a
r e t u r n ∗ep+x+y ; // r e f s o f g l o b a l s ep , x , y

}

CS429 Slideset 23: 12 Linking I

m.o Relocation Info

m.c

i n t e = 7 ;

i n t main () {
i n t r = a () ;
e x i t (0) ;

}

Source: objdump

Disassembly of section .text

00000000 <main>:
0 : 55 pu sh l %ebp
1 : 89 e5 movl %esp , %ebp
3 : e8 f c f f f f f f c a l l 4<main+0x4>

4 : R 386 PC32 a
8 : 6a 00 pu sh l $0x0
a : e8 f c f f f f f f c a l l b<main+0xb>

b : R 386 PC32 e x i t
f 90 nop

Disassembly of section .data

00000000 <e>:
0 : 07 00 00 00

CS429 Slideset 23: 13 Linking I

a.o Relocation Info (.text)

a.c

e x t e r n i n t e ;

i n t ∗ep = &e ;
i n t x = 15 ;
i n t y ;

i n t a () {
r e t u r n

∗ep + x + y ;
}

Disassembly of section .text

00000000 <a>:
0 : 55 pu sh l %ebp
1 : 8b 15 00 00 00 movl 0x0 , %edx
6 : 00

3 : R 386 32 ep
7 : a1 00 00 00 00 movl 0x0 , %eax

8 : R 386 32 x
c : 89 e5 movl %esp , %ebp
e : 03 02 add l (%edx) ,%eax

10 : 89 ec movl %ebp , %esp
12 : 03 05 00 00 00 add l 0x0 , %eax
17 : 00

14 : R 386 32 y
18 : 5d pop l %ebp
19 : 3c r e t

CS429 Slideset 23: 14 Linking I

a.o Relocation Info (.data)

a.c

e x t e r n i n t e ;

i n t ∗ep = &e ;
i n t x = 15 ;
i n t y ;

i n t a () {
r e t u r n ∗ep + x + y ;

}

Disassembly of section .data

00000000 <ep>:
0 : 00 00 00 00

0 : R 386 32 e
00000004 <x>:

4 : 0 f 00 00 00

CS429 Slideset 23: 15 Linking I

Strong and Weak Symbols

Program symbols are either strong or weak.

strong: procedures and initialized globals

weak: uninitialized globals

This doesn’t apply to purely local variables.

p1.c

i n t foo = 5 ; // foo : s t r o ng

p1 () { // p1 : s t r o ng
. . .

}

p2.c

i n t foo ; // foo : weak he r e

p2 () { // p2 : s t r o ng
. . .

}

CS429 Slideset 23: 16 Linking I

Linker Symbol Rules

Rule 1: A strong symbol can only appear once.

Rule 2: A weak symbol can be overridden by a strong symbol of
the same name.

References to the weak symbol resolve to the strong symbol.

Rule 3: If there are multiple weak symbols, the linker can pick one
arbitrarily.

CS429 Slideset 23: 17 Linking I

Linker Puzzles

What happens in each case?

File 1 File 2 Result

int x;

p1() {} p1() {}

int x; int x;

p1() {} p2() {}

int x; double x;

int y; p2() {}
p1() {}

int x=7; double x;

int y=5; p2() {}
p1() {}

int x=7; int x;

p1() {} p2() {}

CS429 Slideset 23: 18 Linking I

Linker Puzzles

Think carefully about each of these.

File 1 File 2 Result

int x; Link time error: two strong symbols (p1)
p1() {} p1() {}
int x; int x; References to x will refer to the same
p1() {} p2() {} unitialized int. What you wanted?
int x; double x; Writes to x in p2 might overwrite y!
int y; p2() {} That’s just evil!
p1() {}
int x=7; double x; Writes to x in p2 might overwrite y!
int y=5; p2() {} Very nasty!
p1() {}
int x=7; int x; References to x will refer to the same
p1() {} p2() {} initialized variable.

Nightmare scenario: two identical weak structs, compiled by
different compilers with different alignment rules.

CS429 Slideset 23: 19 Linking I

The Complete Picture

Translators
(cc1, as)

Translators
(cc1, as)

m.c a.c

m.o a.o

Linker (ld)

p

(ld−linux.so)

Loader/Dynamic Linker

p’

libc.so libm.so

libwhatever.a

CS429 Slideset 23: 20 Linking I

