CS429: Computer Organization and Architecture

Instruction Set Architecture VI

Dr. Bill Young
Department of Computer Science
University of Texas at Austin

Last updated: September 23, 2019 at 12:37

CS429 Slideset 11: 1 Instruction Set Architecture VI

CS429 Slideset 11: 2 Instruction Set Architecture VI

Structures and Alignment

Unaligned Data struct S1 {
char c;
int 1i[2];

c| 0] i[1] v double v;

p p+1 p+5 p+9 p+17 } *p;

Aligned Data
@ Primitive data type requires K bytes
@ Starting/ending address must be a multiple of K

extra extra
C | 3 bytes I[O] I[].] 4 bytes \Y
p+0 p+4 p+3 p+16 p+24
T Multiple of 4 Multiple of 8 T
Multiple of 8 Multiple of 8

CS429 Slideset 11: 3 Instruction Set Architecture VI

Alignment Principles

Aligned Data
@ Primitive data type requires K bytes
@ Address must be a multiple of K

@ Required on some machines; advised on x86-64

Motivation for Aligning Data

@ Memory accessed by (aligned) chunks of 4, 8 or more bytes
(system dependent)

@ It's inefficient to load or store datum that spans quad word
boundaries

@ Virtual memory is trickier when datum spans 2 pages

Compiler

@ Inserts gaps in structure to ensure correct alignment of fields

CS429 Slideset 11: 4 Instruction Set Architecture VI

Specific Cases of Alignment (x86-64)

1 byte: char, ...

@ no restrictions on address

2 bytes: short, ...

@ lowest 1 bit of address must be 05

4 bytes: int, float, ...

@ lowest 2 bits of address must be 00,

8 bytes: double, long, char *, ...
@ lowest 3 bits of address must be 000,

16 bytes: long double (GCC on Linux)
@ lowest 4 bits of address must be 0000,

CS429 Slideset 11: 5 Instruction Set Architecture VI

Satisfying Alignment with Structures

Within structure: struct S1 {

@ Must satisfy each element’s alignment char c;
requirement int di[2];
double v;

} *p;

Overall structure placement

@ Each structure has alignment requirement K, where K is the
largest alignment of any element

@ Initial address and structure length must be multiples of K

Example: K = 8, due to double element

extra extra
C | 3 bytes I[O] I[].] 4 bytes \Y
p+0 p+4 p+38 p+16 p+24
T Multiple of 4 Multiple of 8 T
Multiple of 8 Multiple of 8

CS429 Slideset 11: 6 Instruction Set Architecture VI

Meeting Overall Alignment Requirement

struct S2 {
: : double v;
@ For largest alignment requirement K int i[2]:
@ Overall structure must be multiple of K char c;
}
\Y I[O] i[].] C extra 7 bytes
p-+0 p-+8 p+16 p-+24
Multiple of 8

CS429 Slideset 11: 7 Instruction Set Architecture VI

Arrays of Structures

struct S2 {

@ Overall structure length multiple of K double v;
_ _ _ int i[2];
@ Satisfy alignment requirement for every char c-
element } al10];
al0] a[1] a[2]
a—+0 a+24 a-+43 a+7r2
\Y I[O] i[].] C extra 7 bytes
p+24 p+32 p+40 p+43

CS429 Slideset 11: 8 Instruction Set Architecture VI

Accessing Array Elements

Compute array offset 12*idx

@ sizeof (S3), including alignment spacers struct S3 {
short 1i;
Element j is at offset 8 within structure float v;
short j;
Assembler gives offset a+8 } al10];

@ Resolved during linking

CS429 Slideset 11: 9 Instruction Set Architecture VI

Accessing Array Elements

a[0] alidx]
a-+0 at+12 _ﬂ__a+12*idx ~
i 2 bytes v] 2 bytes
a+12%idx a+12*idx+8

short get_j(int idx 4 Yrdi holds idx

{) leaq (%rdi,%rdi,2) ,%rax # 3%
return al[idx].j; idx
+ S movzwl a+8(,%rax,4), heax

CS429 Slideset 11: 10 Instruction Set Architecture VI

Saving Space

Put large data types first! |s this guaranteed to be the optimal
use of space?

Instead of: do this:
struct S4 { struct S5 {
char c; int 1i;

int 1i; char c;
char d; char d;
} *p; } *p;
Effect (K = 4)
C 3 bytes i d 3 bytes

i c |d |2 bytes

CS429 Slideset 11: 11 Instruction Set Architecture VI

Aside: The Knapsack Problem

The Knapsack Problem is a famous NP-hard computational
problem. Given a bin of fixed size and a number of items, each
characterised by a volume and a value, maximise the value of items
that can fit in the bin.

For example: suppose you have items of sizes {1,4,5,7} and a
container of size 10.

Using a greedy algorithm heuristic, you'd put the largest items in
first, resulting in putting in {7, 1}, for a total of 8 in the container,
O left outside.

A better solution is to put in {4,5,1}, for a total of 10 in the
container and 7 outside.

The knapsack problem is an instance of a class of problems called
bin packing problems.

CS429 Slideset 11: 12 Instruction Set Architecture VI

Union Allocation

Principles
@ Overlay union elements.
@ Allocate according to the largest element.

@ Can only use one field at a time.

union U1l { C
char c;
int i[2]; I[Q] i[1]
double v;
} *xup V
up+0 up+4 up+8

CS429 Slideset 11: 13 Instruction Set Architecture VI

Using Union to Access Bit Patterns

float bit2float (unsigned u)

{
typedef union { bit_float_t arg;
float f£; arg.u = u;
unsigned u; return arg.f;
} bit _float t; +

unsigned float2bit (float f£)

u {
bit_float_t arg;
f arg.f = f;
0 4 return arg.u;
}

Get direct representation to bit representation of float.
bit2float generates float with given bit pattern.
Note: this is not the same as (float) u.

float2bit generates bit pattern from float.

Note: this is not the same as (unsigned) f£.

© © 6 ¢ ¢

CS429 Slideset 11: 14 Instruction Set Architecture VI

Byte Order Reuvisited

Idea
@ Short/long/quad words stored in memory as 2/4/8
consecutive bytes.
@ Which is the most (least) significant?

@ Can cause problems when exchanging binary data between
machines.

Big Endian
@ Most significant byte has lowest address.
@ PowerPC, Sparc

Little Endian

@ Least significant byte has lowest address.
@ Intel x86, Alpha

CS429 Slideset 11: 15 Instruction Set Architecture VI

Byte Ordering Example

union {
unsigned char c[8]; c[0]| c[1]| c[2]| c[3]| c[4]| c[5]| c[6]| c[7]
unsigned short s[4]; S0] 1] §2] §3]

unsigned int i[2];
unsigned long 1;
Y dw;

i[0] i[1]

int j;
for (j = 0; j < 8; j++)
dw.c[j] = Oxf0O + j;
printf (" Chars 0—7 — [0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%x,0x%
xI\n",
dw.c[0] ,dw.c[1] ,dw.c[2] ,dw.c[3],
dw.c[4] ,dw.c[5] ,dw.c[6] ,dw.c[7]) ;
printf(”"Shorts 0—3 = [0x%x,0x%x,0x%x,0x%x]\n",
dw.s[0] ,dw.s[1] ,dw.s[2] ,dw.s[3]);
printf(”"Ints 0—1 = [0x%x,0x%x]\n",
dw.i[0],dw.i[1]);
printf(”"Long =— [0x%Ix]\n", dw.1);

CS429 Slideset 11: 16 Instruction Set Architecture VI

Byte Ordering on the x86

Little Endian

fo f1 f2 f3 f4 f5 f6 f7
c[0]| c[1]} c[2]| c[3]| c[4]) c[3]| c[6]| c[7]

LSB MSBLSB MSB LSB MSB LSB MSB

s0] s1] s2] s3]

LSB MSB LSB MSB

i[0] i[1]

LSB MSB

A

Print

Output on Pentium:

Chars 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts 0-3 == [0xf1f0,0xf3f2,0xf5f4,0xf7f6]

Ints 0-1 == [0xf3f2f1f0,0xf7f6f5f4]

Long 0 == [0xf7f6f5f4f3f2f1£0]

CS429 Slideset 11: 17 Instruction Set Architecture VI

Byte Ordering on Sun

Big Endian

fo f1 f2 f3 f4 f5 f6 {7
c[0]} c[1]) c[2]] c[3]] c[4]| c[5]| c[6]| c[7]

MSB LSBMSB LSBMSB LSBMSB LSB

s0] s1] g2 s3]

MSB LSB MSB LSB
i[0] i[1]
MSB LSB
Print -

Output on Sun:
Chars 0-7 == [0xf0,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7]
Shorts 0-3 == [0xfOf1,0xf2f3,0xf4f5,0xf6f7]
Ints 0-1 == [0xfOf1f2f3,0xf4f5f6f7]
Long 0 == [0xfOf1f2f3f4f5f6f7]

CS429 Slideset 11: 18 Instruction Set Architecture VI

Arrays in C
@ Contiguous allocation of memory, row order.
@ Pointer to first element.
@ No bounds checking.

Compiler Optimizations

@ Compiler often turns array code into pointer code.
@ Uses addressing modes to scale array indices.

@ Lots of tricks to improve array indexing in loops.

Structures
@ Allocate bytes in order declared.
@ Pad in middle and at end to satisfy alignment.

Unions

@ Overlay declarations.

@ Way to circumvent type system.

CS429 Slideset 11: 19 Instruction Set Architecture VI

