Data Hazard vs. Control Hazard

There are two types of hazards that interfere with flow through a
pipeline.

CS429: Computer Organization and Architecture

Pipeline 111

Data hazard: values produced from
one instruction are not available when
needed by a subsequent instruction.

Dr. Bill Young
Department of Computer Science
University of Texas at Austin

Control hazard: a branch in the
control flow makes ambiguous what is

Last updated: JUly 11, 2019 at 15:02 the next instruction to fetch.

CS429 Slideset 16: 1 Pipeline 11 CS429 Slideset 16: 2 Pipeline 11

How Do We Fix the Pipeline? Possibilities: How Do We Fix the Pipeline?

Q Pad the program with NOPs. That could mean two things:

o Change the program itself. That violates our Pipeline @ Forward data within the pipeline
Correctness Axiom. Why? o Grab the result from somewhere in the pipe
o Make the implementation behave as if there were NOPs o After it has been computed
inserted. o But before it has been written back
@ That's called stalling the pipeline o This gives an opportunity to avoid performance degradation
o Data hazards: due to stalling for hazards.
@ Wait for producing instruction to complete @ Do some clever combination of these.

@ Then proceed with consuming instruction
o Control hazards:
o Wait until new PC has been determined, then fetch The implemented solution (4) is a combination of 2 and 3: forward

@ Make a guess and patch later, if wrong data when possible and stall the pipeline only when necessary.
@ How is this better than inserting NOPs into the program?

CS429 Slideset 16: 3 Pipeline 11

CS429 Slideset 16: 4 Pipeline 11

Data Forwarding Data Forwarding Example

irmovqg $10, %rdx
irmovq $3, %rax

addq %rdx, %rax # prog? 1 2 3 4 5 & 7 B8 8 10
0x000: dirmowvg $10,%rdx F D E M| W
0x00a: irmovg §3,%rax F D E M | W
@ Naive pipeline 0x014: nop FIDIE|M|W
o Register isn't written until completion of write-back stage. 0x013: nop F 1D e M| W
o Source operands read from register file in decode stage. OxOLE: addd Brdx, Brax F{D1E MW
. . . 0x018: halt FID|E|M[W
o Needs to be in register file at start of stage.
@ Observation: value was available in execute or memory stage. Cydes
o Trick: m
o Pass value directly from
. . . W_dStE = $rax Rl#rax] « 3
generating instruction to KEEP W_valE=3
decode stage. MOVING
_ FORWARD
o Needs to be available at end of
decode stage. - D !
SrcA= %rdx | valA « R[srdx]=10
SrcB=%rax |valB« W vaE=3

CS429 Slideset 16: 5 Pipeline 11 CS429 Slideset 16: 6 Pipeline 11
Bypass Paths Data Forwarding Example 2
Decode Stage: 4 progd 2 3 a4 5 & 7 8
) . 0x000: irmovg §10,%rdx | FID|E |M|W
0 ForWardlng |OgIC O0x00a: irmovyg $3,%rax F D E M W
Se|eCtS ValA and ValB Memory o 0x014: addg #rdx,8rax FID|E|M|W
— 0201E: halt FIDp|E|m|w
@ Normally from
. t fl Cycle4
register file o | i
o Forwarding: get valA E mnus e
or valB from later E
pipeline stage STVARE < 033 i_
Forwarding Sources: i D
srcA=%xdx |valA « M_vaE=10
o Execute: valE Virte bk SreB= srax [valg ¢ valE =3

icode, ifun,

@ Memory: valE, valM

o Write back: valE,
valM P

Fetch

o Register %rdx: generated by ALU during previous cycle;
forwarded from memory as valA.

o Register %rax: value just generated by ALU; forward from
execute as valB.

predPC

CS429 Slideset 16: 7 Pipeline 11 CS429 Slideset 16: 8 Pipeline 11

Implementing Forwarding wrte

1 Wil
O =D - [- -

F3
Memory

o

o I

HEEES

@ Add new feedback paths from E, M, and W pipeline registers
into decode stage. Excate

@ Create logic blocks to select from multiple sources for valA
and valB in decode stage.

Decode

A 3
Register™
file

. OCODOES BN
o _pr Instruction | PC

memory increment

CS429 Slideset 16: 9 Pipeline 11 CS429 Slideset 16: 10 Pipeline 11

Limitation of Forwarding

progh 1 2 3 4 5 3] 7 8 a 10 1
progs i 2 3 4 5 & 7T 8B 9 10 1 1
0x000: irmowg §128, $rdx | FIDI|E|M|W [FTo[E[mw
0x000: irmovq §128, $rdx
Ox00a: irmavg 43, 8rex FID|E[M|W 0x00a: irmovg §3,%rcx |F DIE|M|wW
Ux014: rmmovy #rcx, O(%rdx) FIDIE | M|W 0x014: rmmoveg $rcx, O (rdx) FIDIE |M|wW
Ox0le: irmoveg $10, 8rbz FID|E|M|W DxOle: irmovg §10,%rbx FID|E|M|W
0x028: mrmovg O(8rdx),%rax # Load %rax FIDIE|M]|W 0x028: mrmove O(%rdx),%rax # Load $rax FID|E|M]|W
0x032: addg $cbx, brax # Use Brax FID[E|M|W bubble r E MW
0x034: halt E D E YRR | 0x032: addl 8rbx,%rax # Use $rax | F | DIDJ|E | M W|
0x034: halt FIDIE[M |W|
Cycle 7 Cycle8 Cycle8
M M W
M_dstE = 8rbx M_dstM = 8rax W_dstE = $rbx
M_vaE =10 m_valM « M[126] =3 | W_vaE =10
| M
M_dstM = $rax
m_valM < M[128] =3
D
Emor | D |
valA <« M_valE = 104/
valB « R[traz| =0

@ Notice that value needed is not in any pipeline register

Load-use (data) dependency:
@ Stall using instruction for one cycle; requires one bubble.

@ Value needed by end of decode stage in cycle 7. ' '
o Value read from memory in memory stage of cycle 8. @ Can pick up loaded value by forwarding from memory stage.

CS429 Slideset 16: 11 Pipeline 11 CS429 Slideset 16: 12 Pipeline 11

What's a Bubble Control for Load/Use Hazard

progh 1 3 4 5 6 7 8 g 10 1 12
If we stall the pipeline at one stage and let the instructions ahead 04000: trmovq $128,4xdx | F | D | E [M | W
. 0x00a: irmowveg 53, %rcx F D E M| W
proceed, that creates a gap that has to be filled. D02 s Seers 08 TS TETwTw
A . " A A i Ox0le: irmowveg $10, %rbx F D E M| W
A bubble is a “virtual nop” created by populating the pipeline 04028+ memove 0($xdx) drax # Load Srax FID|E MW
registers at that stage with values as if had there been a nop at that e e bems 8 ee tem e e Tow
point in the program. The bubble can flow through the pipeline just 04034: hale PO IE|MIW
like any other instruction. Cyes
| W
. W_dStE = $rbx
A bubble is used for two | W vaE =10 I—
purposes: | M
i M_dstM = 8rax
O fill the gap created when the .:I'm—”“”*""“?ﬂ]:s
pipeline is stalled;
Q replace a real instruction | 0 |
that was fetched
erroneously. @ Stall instructions in fetch and decode stages
@ Inject bubble into execute stage.
CS429 Slideset 16: 13 Pipeline 11 CS429 Slideset 16: 14 Pipeline 11
Control for Load/Use Hazard Control Hazards: Recall Our Prediction Strategy
progh 1 3 4 5 6 7 8 g 10 1 12
0x000: irmowe §$128, $rdx F|IDJ|E|M]|W
0x00a: irmowveg 53, %rcx F D E M| W . y
04014: rmmovg Srex, O (3rds) FIDo[E|M]wW o Instructions that don’t transfer control:
o o B et W ot o B RE AT o Predict next PC to be valP; this is always reliable.
buhbble ME|M|W 11 .
0x032: addl %rbx,%rax # Use %rax | FID[ID|E|M|W ° Ca" and Uncondltlonal Jumps'
04034: halt FIF|D[E|M[W o Predict next PC to be valC (destination); this is always reliable.
cycen o Conditional Jumps:
. w o Predict next PC to be valC (destination).
ﬁ:::}g::gb“ | o Only correct if the branch is taken; right about 60% of the
. M time.
R o Return Instruction:
: o Don't try to predict.
D
| | Note that we could have used a different prediction strategy
Condition | F| D] E | M | W

Load/Use Hazard || stall | stall | bubble | normal | normal
CS429 Slideset 16: 15 Pipeline 11 CS429 Slideset 16: 16 Pipeline 11

Branch Misprediction Example Handling Misprediction

prog? 1 2 3 4 5 5] 7 =] =] 10

0x000: xorg %rax, $rax F D E] W

0x00Z: jne target # Not taken F D E M| W |
OXOOO: Xorq %raX’ %raX 0x016: irmovyg $2,%cdx # Target F D
0x002: jne target # Not taken bubble Helm|w
0x00b: irmovq $1, Yrax # Fall through 020z ;:::‘1’: 73 Bebr # Targeerl I?,_. STE T W
OX015: halt 0x00b: irmovg $1,%cax # Fall through F D E M| W
0x016: target: Dx015: halt FIDJ|E|[M[W
0x016: irmovq $2, Yrdx # Target
0x020: irmovq $3, %rcx # Target + 1
0x02a - halt o Predict branch as taken

o Fetch 2 instructions at target

Should only execute the first 4 instructions. o Cancel when mispredicted

o Detect branch not taken in execute stage

2 On following cycle, replace instruction in execute and decode
stage by bubbles.

o No side effects have occurred vyet.

CS429 Slideset 16: 17 Pipeline 11 CS429 Slideset 16: 18 Pipeline 11

Control for Misprediction Return Example

irmovq Stack, %rsp

**

Initialize stack pointer

progl te2 8 4 5 6 7 8 9 10 call P # Procedure call
0x000: xorg %rax,$rax FID|E|M]|W irmovq $5, %rsi # Return poj_nt
0x002: ine target # Not taken F D E M| W | halt
O0x016: irmowveg $2,%rdx # Target F D .pos 0x20
L
bubble E | M | W | . 0 .
p: irmovq $-1, Yrdi # procedure
0x020: irmowvyg $3,%rbx # Target+l | F
bubb 1e UplE|[m|w ?et .
0x00b: irmowveg $1,%rax # Fall through F D E M| W 1rmovq $1’ AraX # should not be executed
0x015: halt FIlpleE[wm|w irmovq $2, Y%rcx # should not be executed
irmovq $3, Y%rdx # should not be executed
irmovq $4, Y%rbx # should not be executed
Conditi r D c M W .pos 0x100
ondition || | | | | Stack: # Stack pointer

Mispredicted
Branch

normal | bubble | bubble | normal | normal

Without stalling, could execute three additional instructions.

CS429 Slideset 16: 19 Pipeline 11 CS429 Slideset 16: 20 Pipeline 11

Correct Return Example Control for Return

This is a bit confusing, because there are actually three bubbles

ret inserted. Stall until the ret reaches write back.
bubble
bubble
ret
bubble bubble
irmovqg $5, Yrsi # Return bubble
bubble
o As ret passes through pipeline, stall at fetch stage—while in irmovq $5, Yrsi # Return

decode, execute, and memory stages.

@ Inject bubble into decode stage.
Conditon || F | D | E | M | W

Processing ret || stall | bubble | normal | normal | normal

@ Release stall when ret reaches write-back stage.

CS429 Slideset 16: 21 Pipeline 11 CS429 Slideset 16: 22 Pipeline 11

Pipeline Summary Performance Analysis with Pipelining

Data Hazards
@ Most handled by forwarding with no performance penalty

@ Load / use hazard requires one cycle stall CPU time — Seconds Instructions Cycles Seconds

= * *
Program Program Instruction Cycle

Control Hazards
o |deal pipelined machine: Cycles per Instruction (CPl) =1

o One instruction completed per cycle.
o But much faster cycle time than unpipelined machine.

@ Cancel instructions when detect mispredicted branch; two
cycles wasted

o Stall fetch stage while ret pass through pipeline; three cycles o However, hazards work against the ideal

wasted. o Hazards resolved using forwarding are fine with no penalty.
o Stalling degrades performance and instruction completion rate
Control Combinations is interrupted.
@ Must analyze carefully o CPI is a measure of the “architectural efficiency” of the

o First version had a subtle bug design.

@ Only arises with unusual instruction combination

CS429 Slideset 16: 23 Pipeline 11 CS429 Slideset 16: 24 Pipeline 11

Computing CPI Computing CPI (2)

CPl is a function of useful instructions and bubbles: @ So, how do we determine the penalties?

Ci+ G Cy o Depends on how often each situation occurs on average.
CPI = 7 =10+ < o How often does a load occur and how often does that load
i i cause a stall?
o How often does a branch occur and how often is it
You can reformulate this to account for: mispredicted?

N
o load /use penalties (Ip): 1 bubble o How often does a return occur?

@ We can measure these using:
o a simulator, or
@ return penalties (rp): 3 bubbles o hardware performance counters.
@ We can also estimate them through historical averages.

o Then use estimates to make early design tradeoffs for the
G architecture.

@ branch misprediction penalties (mp): 2 bubbles

CPI= 104 PEMPEIP

CS429 Slideset 16: 25 Pipeline 11 CS429 Slideset 16: 26 Pipeline 11

Computing CPI (3)

Assume some hypothetical counts:

Cause Name | Instruction | Condition | Stalls | Product
Frequency | Frequency

Load/use Ip 0.30 0.3 1 0.09

Mispredict mp 0.20 0.4 2 0.16

Return rp 0.02 1.0 3 0.06

Total penalty 0.31

CPI=1+40.31=131==31%

This is not ideal.

This gets worse when:
@ you also account for non-ideal memory access latency;

o deeper pipeline (where stalls per hazard increase).

CS429 Slideset 16: 27 Pipeline 11

