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Data Hazard vs. Control Hazard

There are two types of hazards that interfere with flow through a
pipeline.

Data hazard: values produced from
one instruction are not available when
needed by a subsequent instruction.

Control hazard: a branch in the
control flow makes ambiguous what is
the next instruction to fetch.

CS429 Slideset 16: 2 Pipeline III



How Do We Fix the Pipeline? Possibilities:

1 Pad the program with NOPs. That could mean two things:

Change the program itself. That violates our Pipeline
Correctness Axiom. Why?
Make the implementation behave as if there were NOPs
inserted.

2 That’s called stalling the pipeline

Data hazards:

Wait for producing instruction to complete

Then proceed with consuming instruction

Control hazards:

Wait until new PC has been determined, then fetch

Make a guess and patch later, if wrong

How is this better than inserting NOPs into the program?
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How Do We Fix the Pipeline?

3 Forward data within the pipeline
Grab the result from somewhere in the pipe

After it has been computed

But before it has been written back

This gives an opportunity to avoid performance degradation
due to stalling for hazards.

4 Do some clever combination of these.

The implemented solution (4) is a combination of 2 and 3: forward
data when possible and stall the pipeline only when necessary.
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Data Forwarding

irmovq $10, %rdx

irmovq $3, %rax

addq %rdx, %rax

Naive pipeline
Register isn’t written until completion of write-back stage.
Source operands read from register file in decode stage.
Needs to be in register file at start of stage.

Observation: value was available in execute or memory stage.

Trick:
Pass value directly from
generating instruction to
decode stage.

Needs to be available at end of
decode stage.
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Data Forwarding Example
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Bypass Paths

Decode Stage:
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pipeline stage
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Data Forwarding Example 2

Register %rdx: generated by ALU during previous cycle;
forwarded from memory as valA.
Register %rax: value just generated by ALU; forward from
execute as valB.
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Implementing Forwarding

Add new feedback paths from E, M, and W pipeline registers
into decode stage.

Create logic blocks to select from multiple sources for valA
and valB in decode stage.
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Limitation of Forwarding

Load-use (data) dependency:

Value needed by end of decode stage in cycle 7.
Value read from memory in memory stage of cycle 8.
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Dealing with Load/Use Hazard

Notice that value needed is not in any pipeline register

Stall using instruction for one cycle; requires one bubble.

Can pick up loaded value by forwarding from memory stage.
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What’s a Bubble

If we stall the pipeline at one stage and let the instructions ahead
proceed, that creates a gap that has to be filled.

A bubble is a “virtual nop” created by populating the pipeline
registers at that stage with values as if had there been a nop at that

point in the program. The bubble can flow through the pipeline just
like any other instruction.

A bubble is used for two
purposes:

1 fill the gap created when the
pipeline is stalled;

2 replace a real instruction
that was fetched
erroneously.
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Control for Load/Use Hazard

Stall instructions in fetch and decode stages
Inject bubble into execute stage.
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Control for Load/Use Hazard

Condition F D E M W

Load/Use Hazard stall stall bubble normal normal
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Control Hazards: Recall Our Prediction Strategy

Instructions that don’t transfer control:

Predict next PC to be valP; this is always reliable.

Call and Unconditional Jumps:

Predict next PC to be valC (destination); this is always reliable.

Conditional Jumps:

Predict next PC to be valC (destination).
Only correct if the branch is taken; right about 60% of the
time.

Return Instruction:

Don’t try to predict.

Note that we could have used a different prediction strategy
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Branch Misprediction Example

0x000: xorq %rax, %rax

0x002: jne target # Not taken

0x00b: irmovq $1, %rax # Fall through

0x015: halt

0x016: target:

0x016: irmovq $2, %rdx # Target

0x020: irmovq $3, %rcx # Target + 1

0x02a: halt

Should only execute the first 4 instructions.
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Handling Misprediction

Predict branch as taken
Fetch 2 instructions at target

Cancel when mispredicted
Detect branch not taken in execute stage
On following cycle, replace instruction in execute and decode
stage by bubbles.
No side effects have occurred yet.
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Control for Misprediction

Condition F D E M W

Mispredicted normal bubble bubble normal normal
Branch
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Return Example

irmovq Stack, %rsp # Initialize stack pointer

call p # Procedure call

irmovq $5, %rsi # Return point

halt

.pos 0x20

p: irmovq $-1, %rdi # procedure

ret

irmovq $1, %rax # should not be executed

irmovq $2, %rcx # should not be executed

irmovq $3, %rdx # should not be executed

irmovq $4, %rbx # should not be executed

.pos 0x100

Stack: # Stack pointer

Without stalling, could execute three additional instructions.
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Correct Return Example

ret

bubble

bubble

bubble

irmovq $5, %rsi # Return

As ret passes through pipeline, stall at fetch stage—while in
decode, execute, and memory stages.

Inject bubble into decode stage.

Release stall when ret reaches write-back stage.
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Control for Return

This is a bit confusing, because there are actually three bubbles

inserted. Stall until the ret reaches write back.

ret

bubble

bubble

bubble

irmovq $5, %rsi # Return

Condition F D E M W

Processing ret stall bubble normal normal normal
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Pipeline Summary

Data Hazards

Most handled by forwarding with no performance penalty

Load / use hazard requires one cycle stall

Control Hazards

Cancel instructions when detect mispredicted branch; two
cycles wasted

Stall fetch stage while ret pass through pipeline; three cycles
wasted.

Control Combinations

Must analyze carefully

First version had a subtle bug

Only arises with unusual instruction combination
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Performance Analysis with Pipelining

CPU time =
Seconds

Program
=

Instructions

Program
∗

Cycles

Instruction
∗

Seconds

Cycle

Ideal pipelined machine: Cycles per Instruction (CPI) = 1

One instruction completed per cycle.
But much faster cycle time than unpipelined machine.

However, hazards work against the ideal

Hazards resolved using forwarding are fine with no penalty.
Stalling degrades performance and instruction completion rate
is interrupted.

CPI is a measure of the “architectural efficiency” of the
design.
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Computing CPI

CPI is a function of useful instructions and bubbles:

CPI =
Ci + Cb

Ci

= 1.0 +
Cb

Ci

You can reformulate this to account for:

load/use penalties (lp): 1 bubble

branch misprediction penalties (mp): 2 bubbles

return penalties (rp): 3 bubbles

CPI = 1.0 +
lp + mp + rp

Ci
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Computing CPI (2)

So, how do we determine the penalties?

Depends on how often each situation occurs on average.
How often does a load occur and how often does that load
cause a stall?
How often does a branch occur and how often is it
mispredicted?
How often does a return occur?

We can measure these using:

a simulator, or
hardware performance counters.

We can also estimate them through historical averages.

Then use estimates to make early design tradeoffs for the
architecture.
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Computing CPI (3)

Assume some hypothetical counts:
Cause Name Instruction Condition Stalls Product

Frequency Frequency

Load/use lp 0.30 0.3 1 0.09
Mispredict mp 0.20 0.4 2 0.16
Return rp 0.02 1.0 3 0.06

Total penalty 0.31

CPI = 1 + 0.31 = 1.31 == 31%

This is not ideal.

This gets worse when:

you also account for non-ideal memory access latency;

deeper pipeline (where stalls per hazard increase).
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