CS429: Computer Organization and Architecture
Storage Technologies

Dr. Bill Young
Department of Computer Science
University of Texas at Austin

Last updated: April 15, 2019 at 09:39
Conceptually, memory is a large array of bytes that can be accessed from your program by specifying a starting address and a byte count.

```
get( addr1, k ) -> [M(addr1), ... , M(addrk)]
```
Concretely, memory is a collection of technologies that store data in multiple places and formats. The memory controller(s) map addresses onto commands to retrieve bytes from these technologies.
Random-Access Memory (RAM)

Key Features

- RAM is packaged as a chip
- The basic storage unit is a cell (one bit per cell)
- Multiple RAM chips form a memory.
Static RAM (SRAM)
- Each cell stores a bit with a 6-transistor circuit.
- Retains value indefinitely, as long as kept powered (volatile).
- Relatively insensitive to disturbances such as electrical noise.
- Faster but more expensive than DRAM.

Dynamic RAM (DRAM)
- Each cell stores a bit with a capacitor and transistor.
- Value must be refreshed every 10–100 ms (volatile).
- Sensitive to disturbances, slower and cheaper than SRAM.
Flash RAM (what’s in your ipod and cell phone)

- Each cell stores 1 or more bits on a “floating-gate” capacitor
- Keeps state even when power is off (non-volatile).
- As cheap as DRAM, but much slower

Note that flash has characteristics of RAM (random access), but also of ROM (non-volatile). It’s often considered a hybrid of both.
RAM Summary

<table>
<thead>
<tr>
<th>Type</th>
<th>Trans. per bit</th>
<th>Access time</th>
<th>Persist?</th>
<th>Sensitive</th>
<th>Cost</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRAM</td>
<td>6</td>
<td>1X</td>
<td>No</td>
<td>No</td>
<td>100X</td>
<td>cache memory</td>
</tr>
<tr>
<td>DRAM</td>
<td>1</td>
<td>10X</td>
<td>No</td>
<td>Yes</td>
<td>1X</td>
<td>main memory</td>
</tr>
<tr>
<td>Flash</td>
<td>1/2–1</td>
<td>10000X</td>
<td>Yes</td>
<td>No</td>
<td>1X</td>
<td>disk substitute</td>
</tr>
</tbody>
</table>
DRAM is typically organized as a $d \times w$ array of d supercells of size w bits.
Step 1(a): Row access strobe (RAS) selects row 2.
Step 1(b): Row copied from DRAM array to row buffer.
- Step 2(a): Column access strobe (CAS) selects col 1.
- Step 2(b): Supercell (2, 1) copied from buffer to data lines, and eventually back to the CPU.
Memory Modules

64 MB memory module consisting of eight 8Mx8 DRAMs

address (row = i, col = j)

64-bit quadword at main memory address

Memory controller
DRAM and SRAM are *volatile memories*; they lose information if powered off.

Nonvolatile memories retain their value even if powered off.

- The generic name is read-only memory (ROM).
- This is misleading because some ROMs can be read and modified.
Types of ROM

- Programmable ROM (PROM)
- Erasable programmable ROM (EPROM)
- Electrically erasable PROM (EEPROM)
- Flash memory

Firmware: Program stored in a ROM

- Boot time code, BIOS (basic input/output system)
- Graphics cards, disk controllers
A *bus* is a collection of parallel wires that carry address, data, and control signals.

Buses are typically shared by multiple devices.
CPU places address A on the memory bus.

load operation: movl A, %eax
Main memory reads A from the memory bus, retrieves word x, and places it on the bus.

```
%eax

load operation: movl A, %eax
```

```
bus interface

register file

ALU

system bus

I/O Bridge

memory bus

main memory

Placed x on the bus.

x A
CPU reads word $x$ from the bus and copies it into register %eax.
CPU places address A on bus. Main memory reads it and waits for the corresponding data word to arrive.

```
store operation: movl %eax, A
```

![Diagram of memory write transaction]
CPU places data word \( y \) on the bus.

Store operation:

\[
\text{movl } %\text{eax}, A
\]
Main memory reads data word y from the bus and stores it at address A.
Disks consist of platters, typically each have two *surfaces* though not always.

Each surface consists of concentric rings called *tracks*.

Each track consists of *sectors* separated by gaps.
Aligned tracks form a cylinder. Read/write heads move in unison so are all on the same cylinder at any one time.
**Capacity**: maximum number of bits that can be stored. Vendors express this in terms of gigabytes (GB), where $1 \text{GB} = 10^9 \text{ bytes}$.

Capacity is determined by these technology factors:

- **Recording density** (bits/in): number of bits that can be squeezed into a 1 inch segment of a track.
- **Track density** (tracks/in): number of tracks that can be squeezed into a 1 inch radial segment.
- **Areal density** (bits/in$^2$): product of recording and track density.
Modern disks partition tracks into disjoint subsets called **recording zones**.

- Each track in a zone has the same number of sectors, determined by the circumference of the innermost track.
- Each zone has a different number of sectors/track.
- **Why does this make sense?**
Computing Disk Capacity

\[ \text{Capacity} = \left( \text{bytes/sector} \right) \times \left( \text{avg. sectors/track} \right) \times \left( \text{tracks/surface} \right) \times \left( \text{surfaces/platter} \right) \times \left( \text{platters/disk} \right) \]

**Example:**
- 512 bytes/sector
- 300 sectors/track (on average)
- 20,000 tracks/surface
- 2 surfaces/platter
- 5 platters/disk

\[
\text{Capacity} = 512 \times 300 \times 20000 \times 2 \times 5 = 30,720,000,000 = 30.72 \text{GB}
\]
The disk surface spins at a fixed rotational rate.

The read/write head is attached to the end of the arm and flies over the disk surface on a very thin cushion of air (around 0.1 microns).

By moving radially, the arm can position the read/write head over any track.
To read a sector on a disk requires:

- **Seek**: the read head is moved to the proper track.
- **Rotational latency**: the desired sector must rotate to the read head.
- **Data transfer**: the sector is read as it rotates under the read head.

Writing is the same.

Which of these do you suppose is longest?
The average time to access a target sector is approximately:

\[ T_{\text{access}} = T_{\text{seek}} + T_{\text{rotation}} + T_{\text{transfer}} \]

- **Seek time** \((T_{\text{seek}})\)
  - Time to position heads over cylinder containing the target sector.
  - Average \(T_{\text{seek}} = 9\text{ms}\)

- **Rotational latency** \((T_{\text{rotation}})\)
  - Time waiting for first bit of target sector to pass under read/write head.
  - Average \(T_{\text{rotation}} = \frac{1}{2} \times \frac{1}{\text{RPMs}} \times 60\text{sec/1min}\)

- **Transfer time** \((T_{\text{transfer}})\)
  - Time to read the bits in the target sector.
  - Average \(T_{\text{transfer}} = \frac{1}{\text{RPM}} \times \frac{1}{(\text{average sectors/track})} \times 60\text{sec/1min}\)
Disk Access Time Example

Given:

- Rotational rate: 7,200 RPM
- Average seek time: 9 ms
- Average sectors/track: 400

Derived:

- Average $T_{rotation}$:
  \[ \frac{1}{2} \times \left( \frac{60\text{sec}}{7200\text{RPM}} \right) \times 1000\text{ms/sec} = 4\text{ms} \]

- Average $T_{transfer}$:
  \[ \frac{60}{7200\text{RPM}} \times \frac{1}{(400 \text{ sectors/track})} \times 1000\text{ms/sec} = 0.02\text{ms} \]

- $T_{access}$: 9 ms + 4 ms + 0.02 ms
Important points:

- Access time is dominated by seek time and rotational latency.
- The first bit in a sector is the most expensive; the rest are basically free.
- SRAM access time is about 4ns / doubleword; DRAM about 60ns.
- Disk is about 40,000 times slower than SRAM, and 2,500 times slower than DRAM.
Modern disks present a simpler abstract view of the complex sector geometry.

The set of available sectors is modeled as a sequence of b-sized logical blocks \( (0, 1, 2, \ldots) \).

Mapping between logical blocks and actual (physical) sectors:

- Is maintained by a hardware/firmware device called a disk controller.
- Converts requests for logical blocks into (surface, track, sector) triples.

Allows the controller to set aside spare cylinders for each zone.

- This accounts for the difference between “formatted capacity” and “maximum capacity.”
I/O Bus

CPU chip

register file

%eax

ALU

bus interface

system bus

I/O Bridge

memory bus

main memory

I/O bus

USB controller

mouse

keyboard

graphics adapter

monitor

disk controller

Disk
The CPU initiates a disk read by writing a command, logical block number, and destination memory address to a port (address) associated with the disk controller.

The disk controller reads the associated sector and performs a direct memory access (DMA) transfer into main memory.

When the DMA transfer completes, the disk controller notifies the CPU with an interrupt (i.e., asserts a special “interrupt” pin on the CPU).
Solid State Drives (SSDs)

Requests to read and write logical blocks come across the I/O bus to the Flash translation layer.

Pages are 512KB to 4KB; blocks are 32 to 128 pages.

Data is read/written in units of pages.

A page can only be written after its block has been erased.

A block wears out after around 100,000 repeated writes.
SSDs Performance Characteristics

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequential read tput</td>
<td>250 MB/s</td>
<td>Sequential write tput</td>
<td>170 MB/s</td>
<td></td>
</tr>
<tr>
<td>Random read tput</td>
<td>140 MB/s</td>
<td>Random write tput</td>
<td>14 MB/s</td>
<td></td>
</tr>
<tr>
<td>Random read access</td>
<td>30 µs</td>
<td>Random write access</td>
<td>300 µs</td>
<td></td>
</tr>
</tbody>
</table>

Why are random writes so slow?

- Erasing a block is slow (around 1 ms).
- Write to a page triggers a copy of all useful pages in the block.
- Must find a used block (new block) and erase it.
- Write the page into the new block.
- Copy other pages from the old block to the new block.
Advantages:
- No moving parts; faster, less power, more rugged.

Disadvantages:
- Have the potential to wear out. This is mitigated by “wear leveling logic” in the flash translation layer.
- E.g., Intel X25 guarantees 1 petabyte ($10^{15}$ bytes) of random writes before they wear out.
- In 2010, they were about 100X more expensive. But by November, 2013 this has fallen to 10X. By February, 2015, this was about 2X.

Applications:
- MP3 players, smart phones, laptops.
- They are beginning to appear in desktops and servers.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>SRAM</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$/MB</td>
<td>19.2K</td>
<td>2.9K</td>
<td>320</td>
<td>256</td>
<td>100</td>
<td>75</td>
<td>60</td>
<td>320</td>
</tr>
<tr>
<td>access (ns)</td>
<td>300</td>
<td>150</td>
<td>35</td>
<td>15</td>
<td>3</td>
<td>2</td>
<td>1.5</td>
<td>200</td>
</tr>
<tr>
<td><strong>DRAM</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$/MB</td>
<td>8K</td>
<td>880</td>
<td>100</td>
<td>30</td>
<td>1</td>
<td>0.1</td>
<td>0.06</td>
<td>130K</td>
</tr>
<tr>
<td>access (ns)</td>
<td>375</td>
<td>200</td>
<td>100</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>9</td>
</tr>
<tr>
<td>typical size</td>
<td>0.064</td>
<td>0.256</td>
<td>4</td>
<td>16</td>
<td>64</td>
<td>2K</td>
<td>8K</td>
<td>125K</td>
</tr>
<tr>
<td><strong>Disk</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$/MB</td>
<td>500</td>
<td>100</td>
<td>8</td>
<td>0.30</td>
<td>0.001</td>
<td>0.005</td>
<td>0.0003</td>
<td>1.6M</td>
</tr>
<tr>
<td>access (ms)</td>
<td>87</td>
<td>75</td>
<td>28</td>
<td>10</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>29</td>
</tr>
<tr>
<td>typical size</td>
<td>1</td>
<td>10</td>
<td>160</td>
<td>1K</td>
<td>20K</td>
<td>160K</td>
<td>1.5M</td>
<td>1.5M</td>
</tr>
</tbody>
</table>
## CPU Clock Rates

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>8080</td>
<td>386</td>
<td>Pentium</td>
<td>P-III</td>
<td>P-4</td>
<td>Core 2</td>
<td>Core i7</td>
<td></td>
</tr>
<tr>
<td>Clock MHz</td>
<td>1</td>
<td>20</td>
<td>150</td>
<td>600</td>
<td>3300</td>
<td>2000</td>
<td>2500</td>
<td>2500</td>
</tr>
<tr>
<td>Cycle (ns)</td>
<td>1000</td>
<td>50</td>
<td>6</td>
<td>1.6</td>
<td>0.3</td>
<td>0.5</td>
<td>0.4</td>
<td>2500</td>
</tr>
<tr>
<td>Cores</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Effective</td>
<td>1000</td>
<td>50</td>
<td>6</td>
<td>1.6</td>
<td>0.3</td>
<td>0.25</td>
<td>0.1</td>
<td>10K</td>
</tr>
<tr>
<td>Cycle time</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Around 2003, was the inflection point in computer history when designers hit the “Power Wall.” Cores increased, but the clock rate actually decreased.
CPU speed increases *faster* than memory speed, meaning that:
- memory is more and more a limiting factor on performance;
- increased importance for caching and similar techniques.