
CS429: Computer Organization and Architecture

Cache II

Dr. Bill Young
Department of Computer Science
University of Texas at Austin

Last updated: April 22, 2019 at 10:32

CS429 Slideset 19: 1 Cache II

Cache Vocabulary

Much of the cache organization described in these slidesets applies
to the L1 and L2 caches; not to other caches such as the TLB,
browser caches, etc.

Capacity

Cache block/line

Associativity

Cache set

Set index

Tag

Block offset

Hit rate

Miss rate

Placement policy

Replacement policy

CS429 Slideset 19: 2 Cache II

The Memory Abstraction

Conceptually, memory is a large array of bytes that can be
accessed from your program by specifying a starting address and a
byte count.

...

addr1
addr2

addrk

get(addr1, k)

[M(addr1), ... , M(addrk)]

Like any other memory optimization, caching must maintain this
abstraction.

CS429 Slideset 19: 3 Cache II

Organization of Cache Memory

Cache is an array of
S = 2s sets.

Each set contains
E ≥ 1 lines.

Each line holds a block
of data containing
B = 2b bytes

Cache size:
C = B × E × S data
bytes.

v tag 0 1 B−1...

v tag 0 1 B−1...
...

v tag 0 1 B−1...

v tag 0 1 B−1...
...

v tag 0 1 B−1...

v tag 0 1 B−1...
...

...

Set 0

Set 1

Set S−1

t tag bits1 valid bit
per line per line

B = 2b bytes
per cache block

E lines
per set

CS429 Slideset 19: 4 Cache II

Addressing Caches

v tag 0 1 B−1...

v tag 0 1 B−1...
...

v tag 0 1 B−1...

v tag 0 1 B−1...
...

v tag 0 1 B−1...

v tag 0 1 B−1...
...

...

Set 0

Set 1

Set S−1

Address A:

t bits s bits b bits

m−1 0

tag block offsetset index

The word at address A is in the cache if the tag bits in one of the
valid lines in set set index match tag for that line.

The word contents begin at offset block offset from the beginning
of the block.

CS429 Slideset 19: 5 Cache II

Placement and Replacement

What is the placement policy for such a cache?

An address must be placed into some line in the set matching the
set index of the address.

What is the replacement policy for such a cache?

This can vary. A common replacement policy is: replace the least
recently used (LRU) line in the set with a new line containing the
accessed address.

CS429 Slideset 19: 6 Cache II

Direct-Mapped Cache

This is the simplest kind of cache, characterized by exactly one line
per set (i.e, E = 1).

v tag 0 1 B−1...

v tag 0 1 B−1...

v tag 0 1 B−1...

Set 0

Set 1

Set S−1

...

CS429 Slideset 19: 7 Cache II

Accessing Direct-Mapped Caches

Use the set index bits to determine the set of interest.

v tag 0 1 B−1...

v tag 0 1 B−1...

v tag 0 1 B−1...

Set 0

Set 1

Set S−1

...
tag set index block offset

00001

CS429 Slideset 19: 8 Cache II

Direct-Mapped Caches: Matching and Selection

Line matching: Find a valid line in the selected set with a
matching tag.

Word selection: Extract the word using the block offset.

100i0110

tag set index block offset

1 0110 w0 w2 w3w1Set i:

75420 3 61

1 The valid bit must be set.
2 The tag bits in the cache line must match the tag bits in the

address.
3 If (1) and (2), then cache hit, and block offset selects starting

bits.

CS429 Slideset 19: 9 Cache II

Bytes in the Line

100i0110

tag set index block offset

1 0110 w0 w2 w3w1Set i:

75420 3 61

Suppose that the set index is 4 bits. What are the characteristics
of this cache?

1 How big are addresses on this machine?
2 How many sets are there in the cache?
3 How many lines per set?
4 How many bytes per line?
5 How big is the block offset?
6 Suppose i = 0101. What range of bytes are in this line?

CS429 Slideset 19: 10 Cache II

Direct-Mapped Cache Simulation

Suppose:

M = 16 byte
addresses;

B = 2
bytes/block;

S = 4 sets;

E = 1 line/set.

Address trace
(reads):

1 0 = [00002]

2 1 = [00012]

3 13 = [11012]

4 8 = [10002]

5 0 = [00002]

datatagv

datatagv datatagv

0 [0000] (miss)

(5)

1 0 M[0−1]

1 1 M[12−13]

datatagv

13 [1101] (miss)

(3)

01 M[0−1]

1 1 M[12−13]

b=1t=1

Address x x

s=2

xx

0 [0000] (miss)

8 [1000] (miss)

(1)

(4)

1 0 M[0−1]

1 1 M[8−9]

1 1 M[12−13]

CS429 Slideset 19: 11 Cache II

Set Associative Caches

These are characterized by more than one line per set.

v tag 0 1 B−1...

v tag 0 1 B−1...
...

v tag 0 1 B−1...

v tag 0 1 B−1...
...

v tag 0 1 B−1...

v tag 0 1 B−1...
...

...

Set 0

Set 1

Set S−1

t tag bits1 valid bit
per line per line

B = 2b bytes
per cache block

E lines
per set

CS429 Slideset 19: 12 Cache II

Accessing Set Associative Caches

Set selection is identical to that for direct-mapped cache.

v tag cache block

v tag cache block

v tag cache block

v tag cache block

v tag cache block

v tag cache block

...

Set S−1

Set 0

Set 1

t bits s bits b bits

tag set index block offset

00001

Selected set

CS429 Slideset 19: 13 Cache II

Accessing Set Associative Caches

For Line Matching and Word Selection, we must compare the tag
in each valid line in the selected set.

100i0110

tag set index block offset

Set i:

75420 3 61

1 0110 w0 w2 w3w1

1 1001

1 The valid bit must be set.

2 The tag bits in one of the cache lines must match the tag bits
in the address.

3 If (1) and (2), than cache hit, and block offset selects starting
byte.

CS429 Slideset 19: 14 Cache II

Why Use Middle Bits as Index?

00

01

10

11

4−line Cache

High-Order Bit Indexing

Adjacent memory blocks
map to same cache entry.

Poor use of spatial locality.

Low-Order Bit Indexing

Consecutive memory blocks
map to different cache lines.

Can hold a larger region of
address space in cache at
one time.

Bit Indexing
Middle−Order

0000

0010

0011

0100

0101

0110

0111

1001

0001

1000

1010

1011

1100

1101

1110

1111

0000

0010

0011

0100

0101

0110

0111

1001

0001

1000

1010

1011

1100

1101

1110

1111

Bit Indexing
High−Order

CS429 Slideset 19: 15 Cache II

Fully Associative Caches

A fully associative cache is one that has only one set.

v tag 0 1 B−1...

v tag 0 1 B−1...
...

There are no set index bits in the address.

Otherwise, accessing is the same as for a set associative cache.

Tends to require more hardware to perform the associative
search on a larger number of lines.

CS429 Slideset 19: 16 Cache II

Cache Performance Metrics

Miss Rate

Fraction of memory references not found in the cache (misses
/ references)

Typical numbers: 3-10% for L1; can be quite small (e.g.,
< 1%) for L2, depending on size, etc.

Hit Time

Time to deliver a line in the cache to the processor (including
time to determine whether the line is in the cache).

Typical numbers: 1-3 clock cycles for L1; 5-12 clock cycles for
L2.

Miss Penalty

Additional time required because of a miss.

Typically 100-300 cycles for main memory.

CS429 Slideset 19: 17 Cache II

Memory System Performance

Average Memory Access Time (AMAT)

Taccess = (1− pmiss) · thit + pmiss · tmiss

tmiss = thit + tpenalty

Assume 1-level cache, 90% hit rate, 1 cycle hit time, 200 cycle
miss time (hit time plus miss penalty).

taccess = (1− 0.1) · 1 + 0.1 · 200 = 0.9 + 20 ≈ 21

AMAT = 21 cycles, even though 90% only take one cycle. This
shows the importance of a high hit rate.

CS429 Slideset 19: 18 Cache II

Memory System Performance II

How does AMAT affect overall performance? Recall the CPI
equation (pipeline efficiency).

CPI = 1.0 + lp+mp+ rp

load/use penalty (lp) assumed memory access of 1 cycle.

Further, we assumed all load instructions were 1 cycle.

Cause Name Instr. Cond. Stalls Product
Freq. Freq.

Load lp 0.30 0.7 21 4.41

Load/Use lp 0.30 0.3 21+1 1.98

Mispredict mp 0.20 0.4 2 0.16

Return rp 0.02 1.0 3 0.06

Total 6.61

More realistic AMAT (20+ cycles) really hurts CPI and overall
performance.

CS429 Slideset 19: 19 Cache II

Memory System Performance and the Pipeline

Suppose your pipelined Y86 machine had a 1-level cache, 90% hit
rate, 1 cycle hit time, 200 cycle miss time.

taccess = (1− 0.1) · 1 + 0.1 · 200 = 0.9 + 20 ≈ 21

Recall that the clock speed of the pipeline is constrained by the
slowest stage (M).

What does this mean for the pipelined Y86 if the slowest stage has
such huge variability? What could you do?

CS429 Slideset 19: 20 Cache II

Memory System Performance and the Pipeline II

What does this mean for the pipelined Y86 if the slowest stage has
such huge variability? What could you do?

1 Run the clock 200 times more slowly to accommodate the
longest memory access? Obviously not.

2 Stall the pipeline when you have a cache miss? There’s really
no other alternative. Why not?

Reads from memory really can’t come from anywhere else.
Forwarding won’t help; the value is not in any pipeline register.

CS429 Slideset 19: 21 Cache II

Improving Memory System Performance

Taccess = (1− pmiss) · thit + pmiss · tmiss

tmiss = thit + tpenalty

How can we reduce AMAT?

Reduce the miss rate.

Reduce the miss penalty.

Reduce the hit time.

There have been numerous inventions targeting each of these.
Which would matter most?

CS429 Slideset 19: 22 Cache II

Issues with Writes

If you write to an item in cache, the cached value becomes
inconsistent with the values stored at lower levels of the memory
hierarchy.

There are two main approaches to dealing with this:

Write-through: immediately write the cache block to the next
lowest level.

Write-back: only write to lower levels when the block is evicted
from the cache.

Write-through requires updating multiple levels of the memory
hierarchy (causes bus traffic) on every write.

Write-back reduces bus traffic, but requires that each cache line
have a dirty bit, indicating that the line has been modified.

CS429 Slideset 19: 23 Cache II

Write Strategies

How to deal with write misses?

Write-allocate loads the line from the next level and updates the
cache block.

No-write-allocate bypasses the cache and updates directly in the
lower level of the memory hierarchy.

Write-through caches are typically no-write-allocate. Write-back
caches are typically write-allocate. Why does this make sense?

CS429 Slideset 19: 24 Cache II

Writing Cache Friendly Code

Can write code to improve miss rate.

Repeated references to variables are good (temporal locality).

Stride-1 reference patterns are good (spatial locality).

Examples: Assume cold cache, 4-byte words, 4-word cache blocks.

i n t sumarrayrows (i n t a [M] [N])
{

i n t i , j , sum = 0 ;
f o r (i = 0 ; i < M; i++)

f o r (j = 0 ; j < N; j++)
sum += a [i] [j] ;

r e t u r n sum ;
}

Miss rate = 1/4 = 25%

i n t s uma r r a y co l s (i n t a [M] [N])
{

i n t i , j , sum = 0 ;
f o r (j = 0 ; j < N; j++)

f o r (i = 0 ; i < M; i++)
sum += a [i] [j] ;

r e t u r n sum ;
}

Miss rate = 100%

CS429 Slideset 19: 25 Cache II

Some Questions to Consider

What happens where there is a miss and the cache has no free
lines? What should we evict?

What happens on a write miss?

What if we have a multicore chip where cores share the L2
cache but have private L1 caches? What bad things could
happen?

CS429 Slideset 19: 26 Cache II

Concluding Observations

A programmer can optimize for cache performance.

How data structures are organized.

How data are accessed.

Nested loop structure.

All systems favor “cache friendly code.”

Getting absolute optimum performance is very platform
specific (cache sizes, line sizes, associativities, etc.)

But you can get most of the advantage with generic code.

Keep the working set reasonably small (temporal locality).

Use small strides (spatial locality).

CS429 Slideset 19: 27 Cache II

