CS429: Computer Organization and Architecture Amdahl's Law

Dr. Bill Young
Department of Computer Sciences
University of Texas at Austin

Last updated: April 10, 2014 at 13:53

Two Notions of Performance

Plane	DC to Paris	Speed	Passengers	Throughput
				(pmph)
Boeing 747	6.5 hours	610 mph	470	286,700
Concorde	3 hours	1350 mph	132	178,200

- Which has higher performance?
- What is performance?
 - Time to completion (latency)? This is our focus.
 - Throughput?
- We're concerned with performance, but there are other important metrics:
 - Cost
 - Power
 - Footprint

Amdahl's Law

How much extra performance can you get if you speed up *part* of your program? There are two factors:

- How much better is it? (s)
- How often is it used? (p)

$$Speedup(E) = \frac{Exec\ Time\ without\ E}{Exec\ Time\ with\ E} = \frac{Perf\ with\ E}{Perf\ without\ E}$$

Exec Time_{new} = Exec Time_{old}
$$*[(1-p)+p/s]$$

Speedup(E) =
$$\frac{\text{Exec Time}_{old}}{\text{Exec Time}_{new}} = \frac{1}{(1-p)+p/s}$$

Example 1

Suppose:

- Floating point instructions could be improved by 2X.
- But, only 10% of instructions are floating point.

 $\mathsf{Exec}\ \mathsf{Time}_{new} = \mathsf{Exec}\ \mathsf{Time}_{old} * [0.9 + 0.1/2] = 0.95 * \mathsf{Exec}\ \mathsf{Time}_{old}$

$$\mathsf{Speedup}_{total} = \frac{1}{0.95} = 1.053$$

Speedup is bounded by:

Example 2

Assume you can parallelize some portion of your program to make it 100X faster.

How much faster does the whole program get?

$$T_1 = T_0 \left[(1-p) + \frac{p}{S} \right]$$

Fraction of code vectorizable

Example 3

Suppose:

- Memory operations currently take 30% of execution time.
- A new L1 cache speeds up 80% of memory operations by a factor of 4.
- A second new L2 cache speeds up 1/2 of the remaining 20% by a factor of 2.

What is the total speeup?

Example 3 Answer

Applying the two optimizations sequentially:

Speed up =
$$1.242$$

Summary Message

Make the common case fast!

Examples

- All instructions require instruction fetch, only some require data memory access. *Improve instruction fetch performance* first.
- Programs exhibit locality (spatial and temportal) and smaller memories are faster than larger memories.
 - Incorporate small, fast caches into processor design.
 - Manage caches to exploit locality.

Amdahl provided a quantitative basis for making these decisions.

Amdahl's Non-Corollary

Amdahl's law does not bound slowdown!

Things can only get so fast, but they can get arbitrarily slow.

Don't do things that hurt the non-common case too much!