Performance: More than Asymptotic Complexity

Constant factors matter too!

CS429: Computer Organization and Architecture

@ You can easily see 10:1 performance range depending on how
Optimization | your code is written.

@ Must optimize at multiple levels: algorithm, data

) representations, procedures, loops.
Dr. Bill Young P P P

Department of Computer Sciences

Must understand the system to optimize performance.
University of Texas at Austin

@ How programs are compiled and executed.

@ How to measure program performance and identify

bottl ks.
Last updated: November 28, 2017 at 14:28 ottienecks

@ How to improve performance without destroying code
modularity and generality.

CS429 Slideset 21: 1 Optimization | CS429 Slideset 21: 2 Optimization |

Optimizing Compilers Limitations of Optimizing Compilers

Optimizing compilers have difficulty overcoming “optimization

: . .) blockers":
Provide efficient mapping of program to machine:

. : @ potential memory aliasing
o register allocation

: . @ potential procedure side-effects.
@ code selection and ordering

@ eliminating minor inefficiencies . .
& Compilers operate under a fundamental constraint:

Don't (usually) improve asymptotic efficiency. @ They must not cause any change in
program behavior under any

@ It's up the programmer to select best overall algorithm. . ..
P Prog & possible condition.

@ Big-O savings are often more important than constant factors. :)
@ This often prevents making

optimizations when they would
only affect behavior under
pathological conditions.

o But constant factors also matter.

CS429 Slideset 21: 3 Optimization | CS429 Slideset 21: 4 Optimization |

Limitations of Optimizing Compilers Machine-Independent Optimizations

Some optimizations you should do regardless of the processor /

compiler.
@ Behavior obvious to the programmer may be hidden by Code Motion:
languages and coding styles. @ Reduce frequency with which computation is performed, if it
o e.g., data ranges may be more limited than the variable type will always produce the same result.

suggests. @ Move code out of loops if possible.

@ Most analysis is performed only within procedures;
whole-program analysis is too expensive in most cases.

@ Most analysis is based only on static information. The optimized version:
. . . The unoptimized version: : : :
@ When in doubt, the compiler must be conservative. for (i=0; i<n; i++) {
for (i=0; i<n; i++) int ni = nxi;
for (j=0; j<n; j++) for (j=0; j<n; j++)
a[nxi + j] =b[j]; ! alni +j] =b[j];

CS429 Slideset 21: 5 Optimization | CS429 Slideset 21: 6 Optimization |

Compiler-Generated Code Motion Reduction in Strength

Most compilers do a good job with array code and simple loop o Replace costly operations with simpler ones.

structures.))) o
Code generated by gcc: @ Shift, add instead of multiply or divide: 16*x becomes
testl %edx , %edx x << 4.
for (i=0; i<n; i++) jle L1 @ The utility of this is machine dependent; depends on the cost
. . . 0, 0,
for (j=0; j<n; j++) movslq oA’edX' oA)rg of multiply and divide instructions.
a[n*i + j] =b[jl]; xorl %r8d , %r8d])])
salg $2 . %r9 @ On Pentium Il or lll, integer multiply only requires 4 CPU
Compiler generates the : t33 Xor'l O(A";ax v :/A’eax " cycles.
. . .L5: mov orsi ,%rax ,4), %ecx
equivalent of: movl %ecx, (%rdi,%rax,4)
for (i=0; i<n; i++) { addgq $1, %rax Optimize as follows:
int ni = nxi; cmpl Y%oeax , Yedx Recognize a sequence of
int *p = a+ni; ig .L5 roducts: int ni = 0;
for (j=0; j<n: j++) addl $1. %r8d P ' for (i=0; i<n: i++) {
wp+ = b[j]; addq %r9 , %rdi for (i=0; i<n; i++) for (j=0; j<n; j++)
} cmpl %edx , %r8d for (j=0; j<n; j++) a[ni + j] =b[j];
jne .L3 a[nxi + j] = b[j]; ni += n;
L1: ret }

CS429 Slideset 21: 7 Optimization | CS429 Slideset 21: 8 Optimization |

Make Use of Registers Simple Program

Reading and writing registers is much faster than reading / writing
memory.
Limitations:

@ Compiler is not always able to determine whether a variable
can be held in a register.

@ There's the possibility of aliasing.

CS429 Slideset 21: 9 Optimization |

Simple Program

int adder(int *p, int xq) {
*p = 2;
xq = 3;
return (xp + *q);

What value is returned? Couldn’'t we just return 5 and save two
memory references?

Not so fast! What if p and q point to the same location (i.e.,
contain the same address)?

Aliasing means that a location may have multiple names. Often,
the compiler must assume that aliasing is possible.

CS429 Slideset 21: 11 Optimization |

int adder(int *p, int xq) {
*p = 2;
xq = 3;
return (xp + *q);

What value is returned? Couldn’'t we just return 5 and save two

memory references?

CS429 Slideset 21: 10 Optimization |

Machine-Independent Optimizations (Continued)

Share Common Subexpressions:
@ Reuse portions of expressions.

o Compilers often are not very sophisticated in exploiting
arithmetic properties.

CS429 Slideset 21: 12 Optimization |

/* Sum neighbors of i,j %/
up = val [(i=1)xn + j];
down = val[(i+1)*n + j]; Uses 1 multiplication:
left = wval[i*xn + j—1];
right = val[ixn + j+1]; int inj = i*n + j;
sum = up + down + left + up = val[inj — n];
right; down = wval[inj + n];
left = wval[inj — 1];
Uses 3 multiplications: right = val[inj + 1];
sum = up + down + left +
leal —1(%edx),%ecx right ;
imull %ebx,%ecx
leal 1(%edx),%eax
imull %ebx,%eax
imull %ebx,%edx

Time Scales Example of Performance Measurement

Loop unrolling: Perform more in each iteration of the loop.

Absolute time: Typically uses nanoseconds (10~° seconds).
(Assume even number of elements.)

Clock cycles:
Loop unrolled:

o Most computers are controlled by a high frequency clock Original loop: - 2 imt n) 1
. VoI vsum n n
signal. void vsuml(int n) { int i;
o Typical range: int i; , , for (i =0; i <n; i+=2) {
. for (i = 0; i < n; i+4) c[i] = a[i] + b[i];
o Low end: 100 MHz: 102 cycles per second; clock period = cli] = a[i] + b[i]; cli+1] = a[i+1] + b[i+1];
10ns. } }
o High end: 2 GHz: 2 x 10° cycles per second; clock period = ¥
0.5 ns.

Why would this make any difference in performance?

CS429 Slideset 21: 13 Optimization | CS429 Slideset 21: 14 Optimization |

Cycles Per Element Code Motion Example

CPE is a convenient way to express performance of a program that
operates on vectors or lists.

If the vector length = n, then Procedure to convert a string to lower case:
T = CPE x n+ Overhead :
void lower(char xs)
{ . .
int 1
for (i = 0; i < strlen(s); i++)
if (s[i] >= 'A" & s[i] <= 'Z")
s[i] —= ('A" — 'a’);
}

Cycles

Time quadruples when string length doubles (quadratic
performance: O(n?)). Why would that be?

Elements

CS429 Slideset 21: 15 Optimization | CS429 Slideset 21: 16 Optimization |

Convert Loop to Goto Form Convert Loop to Goto Form

void lower(char xs) {
int i = 0;
if (i >= strlen(s))
goto done;
loop:
if (s[i] > A" && s[i] <= 'Z")
s[i] = (A" = "a’");
i++;
if (i < strlen(s))
goto loop;
done:

}

So what is the issue?

CS429 Slideset 21: 17 Optimization |

void lower(char xs) {
int i = 0;
if (i >= strlen(s))
goto done;
loop:
if (s[i] >= "A" && s[i] <= 'Z")
s[i] = (A" = "a’');
i++;
if (i < strlen(s))
goto loop;
done:

}

So what is the issue?
@ strlen is executed every iteration.

@ strlen is linear in length of the string; must scan string until
it finds >\0’. Why is that?

@ Overall performance is quadratic. What do you do?

CS429 Slideset 21: 18 Optimization |

Improving Performance

Can move the call to strlen outside of loop, since the result does
not change from one iteration to another. This is a form of code
motion.

void lower(char xs)
{ .
Int 1
int len = strlen(s);
for (i = 0; i < len; i++)
if (s[i]>= 'A"&& s[i] <= 'Z")
} s[i] —= ("A" = "a’);

Now, the run time doubles when the string length doubles (linear
performance: O(n)).

Can you see other obvious optimizations in this code?

CS429 Slideset 21: 19 Optimization |

Optimization Blocker: Procedure Calls

Why couldn’t the compiler move strlen out of the inner
loop?
@ Procedures may have side effects. E.g., might alter global
state each time called.

@ Function may not return the same value for given arguments;
might depend on other parts of the global state.

@ Procedure lower could interact with strlen.
Why doesn’t the compiler just look at the code for strlen?

@ The linker might overload with a different version (unless it's
declared static.

@ Inter-procedural optimization is rare because of the cost.
Warning:
@ The compiler treats a procedure call as a black box.

@ It applies weak optimizations in and around procedures.

CS429 Slideset 21: 20 Optimization |

Optimization Example: Vector ADT Optimization Example

void combinel(vec_ptr v, int xdest)
length 0o 1 2 length-1 { . .
int 1
data -——>| | | | | | xdest = 0;
for(i = 0; i < vec_length(v); i+) {
.o . . int val;
.Create a vector abstract data type similar to array [mplementatlons get_vec element(v, i, &val)
in Pascal, ML, Java. E.g., always do bounds checking. xdest 4= val:
}
Procedures: }
vec_ptr new_vec(int len)
Create vector of specified length Procedure:
o Compute sum of all elements of integer vector.
int getTvec_element(vec_ptr V,* int index, int *dest) o Store result at destination location.
Retrieve v.ector element, storg at *dest @ Vector data structure and operations defined via abstract data
Return 0 if out of bounds, 1 if successful type.
int *get_vec_start(vec_ptr v) Pentium I1/11l Performance: clock cycles / element
Return pointer to start of vector data © 42.06 (compiled -g)
@ 31.25 (compiled -02)

CS429 Slideset 21: 21 Optimization | CS429 Slideset 21: 22 Optimization |

Reduction in Strength Eliminate Unneeded Memory Refs

void combine2(vec_ptr v, int xdest) void combine3(vec_ptr v, int xdest)
{ {
int i; int i:
!nt length = vec_length (v); int length = vec_length(v);
int xdata = get_vec_start(v); int xdata = get_vec_start(v);
*dest.: 0; _ _ int sum = 0;
for(i =0; i< length i++) for(i = 0; i < length; i++)
xdest += data[i]; sum 4= data[i];
} xdest = sum;
Optimization }
@ Avoid procedure call to retrieve each vector element. Optimization
Get pointer to start of array before loop. @ Don't need to store result in destination until the end.

Within the loop just do pointer reference. Local variable sum will be held in a register.

°
@ Avoids 1 memory read and 1 memory write per cycle.
o CPE: 2.00 (compiled -02)
°

Memory references are expensive!

CPE: 6.00 (compiled -02)

)
)
@ Not as clean in terms of data abstraction.
)
@ Procedure calls are expensive!

)

Bounds checking is expensive!

CS429 Slideset 21: 23 Optimization | CS429 Slideset 21: 24 Optimization |

Detecting Unneeded Memory Refs

Combine2 Combine3
.L18: .L24:
movl (%ecx,%edx ,4),%eax addl (%eax,%edx ,4),%ecx
addl %eax,(%edi)
incl %edx incl %edx
cmpl %esi ,%edx cmpl %esi ,%edx
il L18 il L24
Performance:

@ Combine2: 5 instructions in 6 clock cycles; addl must read
and write memory.

@ Combine3: 4 instructions in 2 clock cycles.

CS429 Slideset 21: 25 Optimization |

Optimization Blocker: Memory Aliasing

Aliasing: two different memory references specify a single location.

Example:
o letv: [3, 2, 17]
o combine2(v, get_vec_start(v)+2) —7
o combine3(v, get_vec_start(v)+2) — 7

Observations:

@ This can easily occur in C, since you're allowed to do address

arithmetic.
@ You have direct access to storage structures.

@ Get into the habit of introducing local variables and
accumulating within loops.

@ This is your way of telling the compiler not to check for
potential aliasing.

CS429 Slideset 21: 26 Optimization |

Previous Best Combining Code

Previous Best Combining Code

void combine3(vec_ptr v, int xdest)
{ . .
Int 1;
int length = vec_length(v);
int xdata = get_vec_start(v);
int sum = 0;
for(i = 0; i < length; i++)
sum += data[i];
xdest = sum;
}
Task:

@ Compute sum of all elements in vector.
@ Vector is represented by C-style abstract data type.
@ Achieved cycles per element (CPE) of 2.00.

CS429 Slideset 21: 27 Optimization |

void abstract_.combine3(vec_ptr v, data_t *xdest)
{ . .
int 1;
int length = vec_length(v);
data_t xdata = get_vec._start(v);
data_t t = IDENT;
for(i = 0; i < length; i++)
t =t OP data[i];
xdest = t;

}

Data Types: Use different declarations for data_t (int, float,
double, etc.)

Operations: Use different definitions of OP and IDENT (4-/0,
*/1, etc.)

CS429 Slideset 21: 28 Optimization |

Machine Independent Optimization Results Pointer Code

Method Integer Floating Point void combine3p(vec_ptr v, int xdest)
+ 0 + X { int | th I th(v)
n eng = vec_leng V),
abstract -g 42.06 | 41.86 | 41.44 | 160.00 int +data — get vec start(v):
move vec_length | 20.66 | 21.25 | 21.15 | 135.00 int sum = 0;
data access 6.00 | 9.00 | 8.00 | 117.00 while (iatad<tdend) {
. sum — *xQdata,
accum in temp 2.00 | 4.00 | 3.00 5.00 datatt:
}
Optimizations: reduce function calls and memory references within) xdest = sum;
loop.
Performance anomaly: Optimization:
@ Very large speedup when accumulate in temporary. o CPE: 3.00 (compiled -02) — Oops! We're making reverse
o Caused by quirk in 1A32 floating point. progress
o Memory uses 64-bit format; register uses 80-bit format.] ' _) o
o Benchmark data caused overflow in 64 bits, but not in 80 bits. Warning: Some compilers do a better job of optimizing array code.
CS429 Slideset 21: 29 Optimization | CS429 Slideset 21: 30 Optimization |
Pointer vs. Array Code Inner Loops Machine-Independent Optimization Summary
Array Code: .
Y Code Motion
L2 # Loop o Compilers are good at this for simple loop/array structures
addl (%eax,%edx ,4), %ecx # sum 4= data[i] P g P P y
incl %edx # i+ @ They don’t do well in the presence of procedure calls and
cmpl %esi %edx # i:length potential memory aliasing.
jl .L24 # if < goto Loop . .
Reduction in Strength
Pointer Code: @ Shift, add instead of multiply, divide
130 4 Loop o Compilers are (generally) good at this.
addl (%eax), %ecx # sum += xdata[i] o The exact trade off is machine-dependent.
addl $4,%eax # datat++ o Keep data in registers rather than memory.
0, 0, .
cmpl - Yedx,%eax # data:dend o Compilers are not good at this, since they are concerned with
il .L30 # if < goto Loop . ..
potential aliasing.
Performance: Share Common Subexpressions
@ Array code: 4 instructions in 2 clock cycles o Compilers have limited algebraic reasoning capabilities.

@ Pointer code: almost same 4 instructions in 3 clock cycles

CS429 Slideset 21: 31 Optimization | CS429 Slideset 21: 32 Optimization |

Important Tools Code Profiling Example

Task
@ Count word frequencies in a text document.
Measurement @ Produce sorted list of words from most frequent to least.

o Accurately compute time taken by code. Steps Shakespeare’s most

° Mc?st modern machlngs have built-in cycle_ counters. o Convert strings to lowercase. frequent words.
o Using them to get reliable measurements is tricky. _ 29,801 | the
@ Profile procedure calling frequencies (Unix tool gprof). ® Apply hash functllon. . 27,529 | and
. _ @ Read words and insert into hash table: 21029 | |
Observation: Generating assembly code: . . ’
o Mostly list operations. 20957 | to
o lets you see what optimizations the compiler can make; o Maintain counter for each unique word 18v514 :
, o
@ allows you to understand the capabilities / limitations of a @ Sort the results. 15370 | a
particular compiler. Data Set 14'010 you
@ Collected works of Shakespeare. 12,936 | my
o 946,596 total words; 26,596 unique words. 11,722 | in
11,519 | that

@ Initial implementation: 9.2 seconds.

CS429 Slideset 21: 33 Optimization | CS429 Slideset 21: 34 Optimization |
Code Profiling Profiling Results
Augment executable program with timing functions. % time | cumulative self calls self total | name
. . . seconds | seconds ms/call ms/call
o Computes the (approximate) amount of time spent in each / /

. 86.60 8.21 8.21 1 [8210.00 | 8210.00 | sort_words

function. 5.80 8.76 0.55 | 946596 0.00 0.00 | lowerl
@ Time Computation method: 4.75 9.21 0.45 | 946596 0.00 0.00 | fine_ele_rec

o Periodically (~ every 10ms) interrupt program. 1.27 9.33 0.12 | 946596 0.00 0.00 | h-add

o Determine what function is currently executing.
o Increment the timer by interval (e.g., 10ms).

@ Also maintains counter for each function indicating the
number of times it is called.

Using:

gcc -02 -pg prog.c -o prog
./prog

This executes in normal fashion, but also generates file gmon. out.

gprof prog
Generates profile information based on gmon.out.

CS429 Slideset 21: 35

Optimization |

Call Statistics: Number of calls and cumulative time for each
function.

Performance Limiter:
@ Using inefficient sorting algorithm.
o Single call uses 87% of CPU time.

The first obvious step in optimization is to use a more efficient
sorting algorithm. Replacing the initial slow sort with the library
function gsort (QuickSort), brought the time down from 9 seconds
to around 1 second!

CS429 Slideset 21: 36 Optimization |

Further Optimizations Profiling Observations

Benefits

o lter first: use iterative function to insert elements into the _ _
linked list; actually causes code to slow down. @ Helps identify performance bottlenecks.

o lter last: iterative function that places new entries at end of o Especially useful for complex systems with many components.

the list rather than front; tends to place common words near

: Limitations
the front of the list. Onlv <h c o the d J
. . . @ Only shows performance for the data testead.
@ Big table: increase the number of hash functions. y P

o E.g., linear lower did not show a big gain, since words are

@ Better hash: use a more sophisticated hash function. short.

@ Linear lower: move strlen out of the loop. o Quadratic inefficiency could remain lurking in the code.
By applying these optimizations successively and profiling the @ The timing mechanism is fairly crude; it only works for
result, the overall runtime was reduced to around 0.5 seconds. programs that run for > 3 seconds.

CS429 Slideset 21: 37 Optimization | CS429 Slideset 21: 38 Optimization |

Role of the Programmer Summary

How should | write my programs, given that | have a good
optimizing compiler?

@ Don’t: Smash code into oblivion.
o Becomes hard to read, maintain, and assure correctness.
o Do:

o Select the best algorithm.
o Write code that's readable and maintainable.

9 Use procedures and recursion and eliminate built-in limits. o Tools (profiling) for understanding performance
@ Even though these factors can slow down code.

@ Optimization blocker: procedure calls

@ Optimization blocker: memory aliasing

o Eliminate optimization blockers to allow the compiler to do its
job.
@ Focus on inner loops.
9 Do detailed optimizations where code will be executed

repeatedly.
o You'll get the most performance gain here.

CS429 Slideset 21: 39 Optimization | CS429 Slideset 21: 40 Optimization |

