
CS429: Computer Organization and Architecture
Optimization I

Dr. Bill Young
Department of Computer Sciences

University of Texas at Austin

Last updated: November 28, 2017 at 14:28

CS429 Slideset 21: 1 Optimization I

Performance: More than Asymptotic Complexity

Constant factors matter too!

You can easily see 10:1 performance range depending on how
your code is written.

Must optimize at multiple levels: algorithm, data
representations, procedures, loops.

Must understand the system to optimize performance.

How programs are compiled and executed.

How to measure program performance and identify
bottlenecks.

How to improve performance without destroying code
modularity and generality.

CS429 Slideset 21: 2 Optimization I

Optimizing Compilers

Provide efficient mapping of program to machine:

register allocation

code selection and ordering

eliminating minor inefficiencies

Don’t (usually) improve asymptotic efficiency.

It’s up the programmer to select best overall algorithm.

Big-O savings are often more important than constant factors.

But constant factors also matter.

CS429 Slideset 21: 3 Optimization I

Limitations of Optimizing Compilers

Optimizing compilers have difficulty overcoming “optimization
blockers”:

potential memory aliasing

potential procedure side-effects.

Compilers operate under a fundamental constraint:

They must not cause any change in
program behavior under any
possible condition.

This often prevents making
optimizations when they would
only affect behavior under
pathological conditions.

CS429 Slideset 21: 4 Optimization I

Limitations of Optimizing Compilers

Behavior obvious to the programmer may be hidden by
languages and coding styles.

e.g., data ranges may be more limited than the variable type
suggests.

Most analysis is performed only within procedures;
whole-program analysis is too expensive in most cases.

Most analysis is based only on static information.

When in doubt, the compiler must be conservative.

CS429 Slideset 21: 5 Optimization I

Machine-Independent Optimizations

Some optimizations you should do regardless of the processor /
compiler.

Code Motion:

Reduce frequency with which computation is performed, if it
will always produce the same result.

Move code out of loops if possible.

The unoptimized version:

f o r (i =0; i<n ; i++)
f o r (j =0; j<n ; j++)

a [n∗ i + j] = b [j] ;

The optimized version:

f o r (i =0; i<n ; i++) {
i n t n i = n∗ i ;
f o r (j =0; j<n ; j++)

a [n i + j] = b [j] ;
}

CS429 Slideset 21: 6 Optimization I

Compiler-Generated Code Motion

Most compilers do a good job with array code and simple loop
structures.

f o r (i =0; i<n ; i++)
f o r (j =0; j<n ; j++)

a [n∗ i + j] = b [j] ;

Compiler generates the
equivalent of:

f o r (i =0; i<n ; i++) {
i n t n i = n∗ i ;
i n t ∗p = a+n i ;
f o r (j =0; j<n ; j++)

∗p++ = b [j] ;
}

Code generated by gcc:

t e s t l %edx , %edx
j l e . L1
movslq %edx , %r9
x o r l %r8d , %r8d
s a l q $2 , %r9

. L3 : x o r l %eax , %eax

. L5 : movl (% r s i ,%rax , 4) , %ecx
movl %ecx , (%rd i ,%rax , 4)
addq $1 , %rax
cmpl %eax , %edx
j g . L5
add l $1 , %r8d
addq %r9 , %r d i
cmpl %edx , %r8d
j n e . L3

. L1 : r e t

CS429 Slideset 21: 7 Optimization I

Reduction in Strength

Replace costly operations with simpler ones.

Shift, add instead of multiply or divide: 16*x becomes
x << 4.

The utility of this is machine dependent; depends on the cost
of multiply and divide instructions.

On Pentium II or III, integer multiply only requires 4 CPU
cycles.

Recognize a sequence of

products:

f o r (i =0; i<n ; i++)
f o r (j =0; j<n ; j++)

a [n∗ i + j] = b [j] ;

Optimize as follows:

i n t n i = 0 ;
f o r (i =0; i<n ; i++) {

f o r (j =0; j<n ; j++)
a [n i + j] = b [j] ;

n i += n ;
}

CS429 Slideset 21: 8 Optimization I

Make Use of Registers

Reading and writing registers is much faster than reading / writing
memory.

Limitations:

Compiler is not always able to determine whether a variable
can be held in a register.

There’s the possibility of aliasing.

CS429 Slideset 21: 9 Optimization I

Simple Program

i n t adder (i n t ∗p , i n t ∗q) {
∗p = 2 ;
∗q = 3 ;
r e t u r n (∗p + ∗q) ;

}

What value is returned? Couldn’t we just return 5 and save two
memory references?

CS429 Slideset 21: 10 Optimization I

Simple Program

i n t adder (i n t ∗p , i n t ∗q) {
∗p = 2 ;
∗q = 3 ;
r e t u r n (∗p + ∗q) ;

}

What value is returned? Couldn’t we just return 5 and save two
memory references?

Not so fast! What if p and q point to the same location (i.e.,
contain the same address)?

Aliasing means that a location may have multiple names. Often,
the compiler must assume that aliasing is possible.

CS429 Slideset 21: 11 Optimization I

Machine-Independent Optimizations (Continued)

Share Common Subexpressions:

Reuse portions of expressions.

Compilers often are not very sophisticated in exploiting
arithmetic properties.

/∗ Sum ne i g hbo r s o f i , j ∗/
up = v a l [(i −1)∗n + j] ;
down = v a l [(i +1)∗n + j] ;
l e f t = v a l [i ∗n + j −1] ;
r i g h t = v a l [i ∗n + j +1] ;
sum = up + down + l e f t +

r i g h t ;

Uses 3 multiplications:

l e a l −1(%edx) ,%ecx
imu l l %ebx ,%ecx
l e a l 1(%edx) ,%eax
imu l l %ebx ,%eax
imu l l %ebx ,%edx

Uses 1 multiplication:

i n t i n j = i ∗n + j ;
up = v a l [i n j − n] ;
down = va l [i n j + n] ;
l e f t = v a l [i n j − 1] ;
r i g h t = v a l [i n j + 1] ;
sum = up + down + l e f t +

r i g h t ;

CS429 Slideset 21: 12 Optimization I

Time Scales

Absolute time: Typically uses nanoseconds (10−9 seconds).

Clock cycles:

Most computers are controlled by a high frequency clock
signal.

Typical range:

Low end: 100 MHz: 108 cycles per second; clock period =
10ns.
High end: 2 GHz: 2× 109 cycles per second; clock period =
0.5 ns.

CS429 Slideset 21: 13 Optimization I

Example of Performance Measurement

Loop unrolling: Perform more in each iteration of the loop.
(Assume even number of elements.)

Original loop:

vo i d vsum1 (i n t n) {
i n t i ;
f o r (i = 0 ; i < n ; i++)

c [i] = a [i] + b [i] ;
}

Loop unrolled:

vo i d vsum2 (i n t n) {
i n t i ;
f o r (i = 0 ; i < n ; i +=2) {

c [i] = a [i] + b [i] ;
c [i +1] = a [i +1] + b [i +1] ;

}
}

Why would this make any difference in performance?

CS429 Slideset 21: 14 Optimization I

Cycles Per Element

CPE is a convenient way to express performance of a program that
operates on vectors or lists.

If the vector length = n, then

T = CPE× n +Overhead

Elements

C
yc

le
s

vsum1
slope = 4.0 vsum2

slope = 3.5

CS429 Slideset 21: 15 Optimization I

Code Motion Example

Procedure to convert a string to lower case:

vo i d l owe r (cha r ∗ s)
{

i n t i ;
f o r (i = 0 ; i < s t r l e n (s) ; i++)

i f (s [i] >= ’A ’ && s [i] <= ’Z ’)
s [i] −= (’A ’ − ’ a ’) ;

}

Time quadruples when string length doubles (quadratic
performance: O(n2)). Why would that be?

CS429 Slideset 21: 16 Optimization I

Convert Loop to Goto Form

vo i d l owe r (cha r ∗ s) {
i n t i = 0 ;
i f (i >= s t r l e n (s))

goto done ;
l oop :

i f (s [i] >= ’A ’ && s [i] <= ’Z ’)
s [i] −= (’A ’ − ’ a ’) ;

i ++;
i f (i < s t r l e n (s))

goto l oop ;
done :

}

So what is the issue?

CS429 Slideset 21: 17 Optimization I

Convert Loop to Goto Form

vo i d l owe r (cha r ∗ s) {
i n t i = 0 ;
i f (i >= s t r l e n (s))

goto done ;
l oop :

i f (s [i] >= ’A ’ && s [i] <= ’Z ’)
s [i] −= (’A ’ − ’ a ’) ;

i ++;
i f (i < s t r l e n (s))

goto l oop ;
done :

}

So what is the issue?

strlen is executed every iteration.

strlen is linear in length of the string; must scan string until
it finds ’\0’. Why is that?

Overall performance is quadratic. What do you do?

CS429 Slideset 21: 18 Optimization I

Improving Performance

Can move the call to strlen outside of loop, since the result does
not change from one iteration to another. This is a form of code
motion.

vo i d l owe r (cha r ∗ s)
{

i n t i ;
i n t l e n = s t r l e n (s) ;
f o r (i = 0 ; i < l e n ; i++)

i f (s [i] >= ’A ’ && s [i] <= ’Z ’)
s [i] −= (’A ’ − ’ a ’) ;

}

Now, the run time doubles when the string length doubles (linear
performance: O(n)).

Can you see other obvious optimizations in this code?

CS429 Slideset 21: 19 Optimization I

Optimization Blocker: Procedure Calls

Why couldn’t the compiler move strlen out of the inner

loop?

Procedures may have side effects. E.g., might alter global
state each time called.

Function may not return the same value for given arguments;
might depend on other parts of the global state.

Procedure lower could interact with strlen.

Why doesn’t the compiler just look at the code for strlen?

The linker might overload with a different version (unless it’s
declared static.

Inter-procedural optimization is rare because of the cost.

Warning:

The compiler treats a procedure call as a black box.

It applies weak optimizations in and around procedures.

CS429 Slideset 21: 20 Optimization I

Optimization Example: Vector ADT

length

data

0 1 2 length−1

....

Create a vector abstract data type similar to array implementations
in Pascal, ML, Java. E.g., always do bounds checking.

Procedures:

vec_ptr new_vec(int len)

Create vector of specified length

int get_vec_element(vec_ptr v, int index, int *dest)

Retrieve vector element, store at *dest
Return 0 if out of bounds, 1 if successful

int *get_vec_start(vec_ptr v)

Return pointer to start of vector data

CS429 Slideset 21: 21 Optimization I

Optimization Example

vo i d combine1 (v e c p t r v , i n t ∗ de s t)
{

i n t i ;
∗ de s t = 0 ;
f o r (i = 0 ; i < v e c l e n g t h (v) ; i++) {

i n t v a l ;
g e t v e c e l emen t (v , i , &v a l) ;
∗ de s t += va l ;

}
}

Procedure:

Compute sum of all elements of integer vector.
Store result at destination location.
Vector data structure and operations defined via abstract data
type.

Pentium II/III Performance: clock cycles / element

42.06 (compiled -g)
31.25 (compiled -O2)

CS429 Slideset 21: 22 Optimization I

Reduction in Strength

vo i d combine2 (v e c p t r v , i n t ∗ de s t)
{

i n t i ;
i n t l e n g t h = v e c l e n g t h (v) ;
i n t ∗ data = g e t v e c s t a r t (v) ;
∗ de s t = 0 ;
f o r (i = 0 ; i < l e n g t h ; i++)

∗ de s t += data [i] ;
}

Optimization

Avoid procedure call to retrieve each vector element.

Get pointer to start of array before loop.

Within the loop just do pointer reference.

Not as clean in terms of data abstraction.

CPE: 6.00 (compiled -O2)

Procedure calls are expensive!

Bounds checking is expensive!

CS429 Slideset 21: 23 Optimization I

Eliminate Unneeded Memory Refs

vo i d combine3 (v e c p t r v , i n t ∗ de s t)
{

i n t i ;
i n t l e n g t h = v e c l e n g t h (v) ;
i n t ∗ data = g e t v e c s t a r t (v) ;
i n t sum = 0 ;
f o r (i = 0 ; i < l e n g t h ; i++)

sum += data [i] ;
∗ de s t = sum ;

}

Optimization

Don’t need to store result in destination until the end.

Local variable sum will be held in a register.

Avoids 1 memory read and 1 memory write per cycle.

CPE: 2.00 (compiled -O2)

Memory references are expensive!

CS429 Slideset 21: 24 Optimization I

Detecting Unneeded Memory Refs

Combine2

.L18 :
movl (%ecx ,%edx , 4) ,%eax
add l %eax ,(% ed i)
i n c l %edx
cmpl %e s i ,%edx
j l .L18

Combine3

.L24 :
add l (%eax ,%edx , 4) ,%ecx

i n c l %edx
cmpl %e s i ,%edx
j l .L24

Performance:

Combine2: 5 instructions in 6 clock cycles; addl must read
and write memory.

Combine3: 4 instructions in 2 clock cycles.

CS429 Slideset 21: 25 Optimization I

Optimization Blocker: Memory Aliasing

Aliasing: two different memory references specify a single location.

Example:

let v: [3, 2, 17]

combine2(v, get_vec_start(v)+2) → ?

combine3(v, get_vec_start(v)+2) → ?

Observations:

This can easily occur in C, since you’re allowed to do address
arithmetic.

You have direct access to storage structures.

Get into the habit of introducing local variables and
accumulating within loops.

This is your way of telling the compiler not to check for
potential aliasing.

CS429 Slideset 21: 26 Optimization I

Previous Best Combining Code

vo i d combine3 (v e c p t r v , i n t ∗ de s t)
{

i n t i ;
i n t l e n g t h = v e c l e n g t h (v) ;
i n t ∗ data = g e t v e c s t a r t (v) ;
i n t sum = 0 ;
f o r (i = 0 ; i < l e n g t h ; i++)

sum += data [i] ;
∗ de s t = sum ;

}

Task:

Compute sum of all elements in vector.

Vector is represented by C-style abstract data type.

Achieved cycles per element (CPE) of 2.00.

CS429 Slideset 21: 27 Optimization I

Previous Best Combining Code

vo i d ab s t r a c t c omb i n e3 (v e c p t r v , d a t a t ∗ de s t)
{

i n t i ;
i n t l e n g t h = v e c l e n g t h (v) ;
d a t a t ∗ data = g e t v e c s t a r t (v) ;
d a t a t t = IDENT ;
f o r (i = 0 ; i < l e n g t h ; i++)

t = t OP data [i] ;
∗ de s t = t ;

}

Data Types: Use different declarations for data_t (int, float,
double, etc.)

Operations: Use different definitions of OP and IDENT (+/0,
*/1, etc.)

CS429 Slideset 21: 28 Optimization I

Machine Independent Optimization Results

Method Integer Floating Point

+ × + ×

abstract -g 42.06 41.86 41.44 160.00
abstract -O2 31.25 33.25 31.25 143.00
move vec length 20.66 21.25 21.15 135.00
data access 6.00 9.00 8.00 117.00
accum in temp 2.00 4.00 3.00 5.00

Optimizations: reduce function calls and memory references within
loop.
Performance anomaly:

Computing FP product of all elements exceptionally slow.

Very large speedup when accumulate in temporary.
Caused by quirk in IA32 floating point.
Memory uses 64-bit format; register uses 80-bit format.
Benchmark data caused overflow in 64 bits, but not in 80 bits.

CS429 Slideset 21: 29 Optimization I

Pointer Code

vo i d combine3p (v e c p t r v , i n t ∗ de s t)
{

i n t l e n g t h = v e c l e n g t h (v) ;
i n t ∗ data = g e t v e c s t a r t (v) ;
i n t ∗dend = data + l e n g t h ;
i n t sum = 0 ;
wh i l e (data < dend) {

sum += ∗ data ;
data++;

}
∗ de s t = sum ;

}

Optimization:

Use pointers rather than array references.

CPE: 3.00 (compiled -O2) – Oops! We’re making reverse
progress.

Warning: Some compilers do a better job of optimizing array code.

CS429 Slideset 21: 30 Optimization I

Pointer vs. Array Code Inner Loops

Array Code:

.L24 : # Loop
add l (%eax ,%edx , 4) , %ecx # sum += data [i]
i n c l %edx # i++
cmpl %e s i ,%edx # i : l e n g t h
j l .L24 # i f < goto Loop

Pointer Code:

.L30 : # Loop
add l (%eax) , %ecx # sum += ∗ data [i]
add l $4 ,%eax # data++
cmpl %edx ,%eax # data : dend
j l .L30 # i f < goto Loop

Performance:

Array code: 4 instructions in 2 clock cycles

Pointer code: almost same 4 instructions in 3 clock cycles

CS429 Slideset 21: 31 Optimization I

Machine-Independent Optimization Summary

Code Motion

Compilers are good at this for simple loop/array structures

They don’t do well in the presence of procedure calls and
potential memory aliasing.

Reduction in Strength

Shift, add instead of multiply, divide

Compilers are (generally) good at this.
The exact trade off is machine-dependent.

Keep data in registers rather than memory.

Compilers are not good at this, since they are concerned with
potential aliasing.

Share Common Subexpressions

Compilers have limited algebraic reasoning capabilities.

CS429 Slideset 21: 32 Optimization I

Important Tools

Measurement

Accurately compute time taken by code.

Most modern machines have built-in cycle counters.
Using them to get reliable measurements is tricky.

Profile procedure calling frequencies (Unix tool gprof).

Observation: Generating assembly code:

lets you see what optimizations the compiler can make;

allows you to understand the capabilities / limitations of a
particular compiler.

CS429 Slideset 21: 33 Optimization I

Code Profiling Example

Task

Count word frequencies in a text document.

Produce sorted list of words from most frequent to least.

Steps

Convert strings to lowercase.

Apply hash function.

Read words and insert into hash table:

Mostly list operations.
Maintain counter for each unique word

Sort the results.

Data Set

Collected works of Shakespeare.

946,596 total words; 26,596 unique words.

Initial implementation: 9.2 seconds.

Shakespeare’s most
frequent words.
29,801 the

27,529 and

21,029 I

20,957 to

18,514 of

15,370 a

14,010 you

12,936 my

11,722 in

11,519 that

CS429 Slideset 21: 34 Optimization I

Code Profiling

Augment executable program with timing functions.

Computes the (approximate) amount of time spent in each
function.
Time Computation method:

Periodically (∼ every 10ms) interrupt program.
Determine what function is currently executing.
Increment the timer by interval (e.g., 10ms).

Also maintains counter for each function indicating the
number of times it is called.

Using:

gcc -O2 -pg prog.c -o prog

./prog

This executes in normal fashion, but also generates file gmon.out.

gprof prog

Generates profile information based on gmon.out.
CS429 Slideset 21: 35 Optimization I

Profiling Results

% time cumulative self calls self total name
seconds seconds ms/call ms/call

86.60 8.21 8.21 1 8210.00 8210.00 sort words
5.80 8.76 0.55 946596 0.00 0.00 lower1
4.75 9.21 0.45 946596 0.00 0.00 fine ele rec
1.27 9.33 0.12 946596 0.00 0.00 h add

Call Statistics: Number of calls and cumulative time for each
function.

Performance Limiter:

Using inefficient sorting algorithm.

Single call uses 87% of CPU time.

The first obvious step in optimization is to use a more efficient

sorting algorithm. Replacing the initial slow sort with the library
function qsort (QuickSort), brought the time down from 9 seconds
to around 1 second!

CS429 Slideset 21: 36 Optimization I

Further Optimizations

Iter first: use iterative function to insert elements into the
linked list; actually causes code to slow down.

Iter last: iterative function that places new entries at end of
the list rather than front; tends to place common words near
the front of the list.

Big table: increase the number of hash functions.

Better hash: use a more sophisticated hash function.

Linear lower: move strlen out of the loop.

By applying these optimizations successively and profiling the
result, the overall runtime was reduced to around 0.5 seconds.

CS429 Slideset 21: 37 Optimization I

Profiling Observations

Benefits

Helps identify performance bottlenecks.

Especially useful for complex systems with many components.

Limitations

Only shows performance for the data tested.

E.g., linear lower did not show a big gain, since words are
short.

Quadratic inefficiency could remain lurking in the code.

The timing mechanism is fairly crude; it only works for
programs that run for > 3 seconds.

CS429 Slideset 21: 38 Optimization I

Role of the Programmer

How should I write my programs, given that I have a good

optimizing compiler?

Don’t: Smash code into oblivion.

Becomes hard to read, maintain, and assure correctness.

Do:

Select the best algorithm.
Write code that’s readable and maintainable.

Use procedures and recursion and eliminate built-in limits.
Even though these factors can slow down code.

Eliminate optimization blockers to allow the compiler to do its
job.

Focus on inner loops.

Do detailed optimizations where code will be executed
repeatedly.
You’ll get the most performance gain here.

CS429 Slideset 21: 39 Optimization I

Summary

Optimization blocker: procedure calls

Optimization blocker: memory aliasing

Tools (profiling) for understanding performance

CS429 Slideset 21: 40 Optimization I

