CS429: Computer Organization and Architecture

Optimization Il

Dr. Bill Young
Department of Computer Science
University of Texas at Austin

Last updated: April 24, 2019 at 07:47

CS429 Slideset 21: 1

Optimization |l

Cache Performance Metrics

Miss Rate

@ Fraction of memory references not found in cache (misses /
references)

o Typical numbers: 3-10% for L1; can be quite small (e.g.,
< 1%) for L2, depending on size, etc.

Hit Time
@ Time to deliver a line in the cache to the processor (including
time to determine whether the line is in the cache).

@ Typical numbers: 1-3 clock cycles for L1; 5-12 clock cycles for
L2.

Miss Penalty
o Additional time required because of a miss.
@ Typically 100-300 cycles for main memory.

CS429 Slideset 21: 2 Optimization |l

Writing Cache Friendly Code

o Repeated references to variables are good (temporal locality).

o Stride-1 reference patterns are good (spatial locality).

Examples:
Assume cold cache, 4-byte words, 4 word (16-byte) cache blocks.

int sumarrayrows(int a[M][N]) int sumarraycols(int a[M][N])

{ {
int i, j, sum = 0; int i, j, sum = O0;
for(i =0; i <M; i++) for(j =0; j <N; j++)
for(j = 0; j <N; j++) for(i =0; i <M; i+t)

sum += al[i][il];
return sum;

} }

sum += al[i][]];

return sum,;

Miss rate = 1/4 = 25% Miss rate = 100%

CS429 Slideset 21: 3

Optimization |l

The Memory Mountain

550 MHz

16 KB on-chip L1 d-cache
16 KB on-chip L1 i-cache
512 KB off-chip unified
L2 cache

read throughput (MB/s)

Ridges of

Temporal
Slapes of Locality
Spatial B

Locality

128k X

working set size (bytes)

512k

Why would performance drop as the working set gets very small?

CS429 Slideset 21: 4 Optimization |l

Ridges of Temporal Locality A Slope of Spatial Locality

Slice through the memory mountain with stride = 1.

This illustrates read throughput with different caches and memory. Slice through memory mountain with size = 256KB.
This shows cache block size.

1200

main memory L2 cache L1 cache region
region region N e R 800
1000 — 700 —
@ 600 | [[| [
m L [A L —
800 £
=3 @ _
5 e 2 500
a = -
g EN. S I s
2 600 5, 400 — ———— one access per cache Ine——
o 5 — — = = — R —
= o
= £ 300
5 [L I B
2 400 e
e ®© 200
200 M 1 [1 1 [0 — M 1 — — M1~ ™ @~ —
0
0 sl s2 s3 s4 s5 s6 s7 s8 s9 s10 sll1 s12 sl13 al4 sl15 sl6
X X X X .
§ § & F Ny g 2 I 3 § d 3 & & stride (words)
5] b & o © @

working set size (bytes)

CS429 Slideset 21: 5 Optimization |l CS429 Slideset 21: 6 Optimization |l

Anomaly in Memory Mountain Matrix Multiplication Example

Why does the memory mountain drop off at the back? Prof.
Warren Hunt told me: “When | looked into this issue, | didn't
come to a clean resolution. Perhaps the dropoff is a measurement
anomaly; the times are so short in comparison to the measurement
costs that it appears that the performance is degrading.”

Major Cache Effects to Consider.

@ Total cache size: Exploit temporal locality and keep the
working set small

@ Block size: Exploit spatial locality.

SRS S Description
SR T ——__ PentiumliiXeon
550 MH . . .
meimud{ache @ Multiply N x N matrices.]{* .J(k_ *0/ _ e
@ 16 KB on-chip L1 i-cach . or 1=0; 1<n; |
g o2 <B of-chip uifiad o O(N3) total operations. for (j—0: jen: j+4) {
5 = L2 hi 1 ' .
: ‘i."\'",""' - o @ Accesses: ?um ?ko_oo;k /ﬁ+|+n) reg
H X or =0; k<n;
g 620 k‘—‘\‘w"' ",. : o N readS pel’ source sum 4= a [i] [k] * b [k] [j])
5 41,'.:}» .."'l"ﬁ Ridges of element c[i][j] = sum;
Shopes of LR oo o N va?Iues. summed per)
sttt) destination (but may

Locality

be held in register).

x
g B
@

X
x5

stride (words) &
=

s o working set size (bytes)

CS429 Slideset 21: 7 Optimization |l CS429 Slideset 21: 8 Optimization |l

Layout of C Arrays in Memory (review)

Miss Rate for Matrix Multiply

Assume:

o Line size = 32B (big enough for 4 64-bit words)

@ Matrix dimension N is very large.

@ We can approximiate 1/N as 0.0.

@ Cache is not even big enough to hold multiple rows.

Analysis Method: Look at access pattern of the inner loop.

CS429 Slideset 21: 9

Matrix Multiplication (ijk)

Optimization |l

()

(i)
o

(i)

/x ijk x/
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0; // in reg

for (k=0; k<n; k++)
sum += a[i][k] = b[k][]j]:
c[i115] = sum;

row-wise column-wise fixed

Misses per Inner Loop
Iteration:

CS429 Slideset 21: 11

Optimization |l

C arrays are allocated in row-major order.
@ Each row is allocated in contiguous memory locations.

Stepping through columns in one row:

for (i = 0; i < N;
sum += a[j][i];

i++)

@ This accesses successive elements.
o If block size B > 4 bytes, exploits spatial locality.
o Compulsary miss rate = 4 bytes / B.

Stepping through rows in one column:

for (i = 0; i < N;
sum += ali][i];

i++)

@ Accesses distant elements.
@ No spatial locality!

o Compulsary miss rate = 1 (i.e., 100%).

CS429 Slideset 21: 10

Matrix Multiplication (jik)

Optimization |l

/x jik x/
for (j=0; j<n; j++) {
for (i=0; i<n; i++) {
sum = 0.0; // in reg

for (k=0; k<n; k++)

c[i][i] = sum;

sum += a[i][k] = b[k][]j]:

row-wise

CS429 Slideset 21: 12

()

(i)

column-wise

(i)
o

Optimization |l

Misses per Inner Loop
Iteration:
A | B]|C
0.25 | 1.0 | 0.0

fixed

Matrix Multiplication (kij)

r=ali][k];
for (j=0; j<n; j++)
c[i][i] 4= r = b[k][i];

R " i
/x kij x/ A B N
for (k=0; k<n; k++) { ’
for (i=0; i<n; i++) { fixed row-wise row-wise

Misses per Inner Loop
Iteration:

CS429 Slideset 21: 13

Al B | C
0.0 | 0.25 | 0.25

Optimization |l

Matrix Multiplication (ikj)

r=ali][k];
for (j=0; j<n; j++)
c[i][i] +=r = b[k][j];

CS429 Slideset 21: 14

L0k " i
/x ikj x/ A B N
for (i=0; i<n; i++) { ’
for (kZO; k<n; k++) { fixed row-wise row-wise

Misses per Inner Loop
Iteration:

Al B | C
0.0 | 0.25 | 0.25

Optimization |l

Matrix Multiplication (jki)

/*x jki ox/
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r=>blk][jl]:
for (i=0; i<n; i++)
cliIli] 4= alillk] * r;

(*.k) (*)
(k.j)
o
A E’E c
column-wise fixed column-wise

Misses per Inner Loop
Iteration:

CS429 Slideset 21: 15

Optimization |l

Matrix Multiplication (kji)

/x kjiox/
for (k=0; k<n; k++) {
for (j=0; j<n; j++) {
¢ = bk
for (i=0; i<n; i++)
cLilli] 4= alillk] * r;

CS429 Slideset 21: 16

(*.k) (*)
((9)]
o
A E’E c
column-wise fixed column-wise

Misses per Inner Loop
Iteration:

Optimization |l

Summary of Matrix Multiplication Concluding Observations

ijk (& jik):

The programmer can optimize for cache performance.
9@ 2 loads, 0 stores

] / iterati 195 @ How data structures are organized.
@ misses / iteration = 1.
o How data are accessed (e.g., nested loop structure).
kij (& ikj):
i (i) All systems favor “cache friendly code.”
@ 2 loads, 1 store

_ _ _ o Getting absolute optimum performance is very platform
@ misses / iteration = 0.5

specific.
jki (& kiji): o Involves cache sizes, line sizes, associativities, etc.
@ 2 loads, 1 store @ Can get most advantage with generic code.
@ misses / iteration = 2.0 o Keep working set reasonably small (temporal locality).
Miss rates are important, but not perfect predictors of @ Use small strides (spatial locality).

performance.. Code scheduling matters, also.

CS429 Slideset 21: 17 Optimization |l CS429 Slideset 21: 18 Optimization |l

