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Cache Performance Metrics

Miss Rate

@ Fraction of memory references not found in cache (misses /
references)

o Typical numbers: 3-10% for L1; can be quite small (e.g.,
< 1%) for L2, depending on size, etc.

Hit Time
@ Time to deliver a line in the cache to the processor (including
time to determine whether the line is in the cache).

@ Typical numbers: 1-3 clock cycles for L1; 5-12 clock cycles for
L2.

Miss Penalty
o Additional time required because of a miss.
@ Typically 100-300 cycles for main memory.
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Writing Cache Friendly Code

o Repeated references to variables are good (temporal locality).

o Stride-1 reference patterns are good (spatial locality).

Examples:
Assume cold cache, 4-byte words, 4 word (16-byte) cache blocks.

int sumarrayrows(int a[M][N]) int sumarraycols(int a[M][N])

{ {
int i, j, sum = 0; int i, j, sum = O0;
for( i =0; i <M; i++ ) for( j =0; j <N; j++)
for(j = 0; j <N; j++ ) for( i =0; i <M; i+t )

sum += al[i][il];
return sum;

} }

sum += al[i][]];

return sum,;

Miss rate = 1/4 = 25% Miss rate = 100%
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The Memory Mountain

550 MHz

16 KB on-chip L1 d-cache
16 KB on-chip L1 i-cache
512 KB off-chip unified
L2 cache

read throughput (MB/s)

Ridges of

Temporal
Slapes of Locality
Spatial B

Locality

128k X

working set size (bytes)

512k

Why would performance drop as the working set gets very small?
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Ridges of Temporal Locality A Slope of Spatial Locality

Slice through the memory mountain with stride = 1.

This illustrates read throughput with different caches and memory. Slice through memory mountain with size = 256KB.
This shows cache block size.
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Anomaly in Memory Mountain Matrix Multiplication Example

Why does the memory mountain drop off at the back? Prof.
Warren Hunt told me: “When | looked into this issue, | didn't
come to a clean resolution. Perhaps the dropoff is a measurement
anomaly; the times are so short in comparison to the measurement
costs that it appears that the performance is degrading.”

Major Cache Effects to Consider.

@ Total cache size: Exploit temporal locality and keep the
working set small

@ Block size: Exploit spatial locality.
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Layout of C Arrays in Memory (review)

Miss Rate for Matrix Multiply

Assume:

o Line size = 32B (big enough for 4 64-bit words)

@ Matrix dimension N is very large.

@ We can approximiate 1/N as 0.0.

@ Cache is not even big enough to hold multiple rows.

Analysis Method: Look at access pattern of the inner loop.
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()

(i)
o

(i)

/x ijk x/
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0; // in reg

for (k=0; k<n; k++)
sum += a[i][k] = b[k][]j]:
c[i115] = sum;

row-wise column-wise fixed

Misses per Inner Loop
Iteration:
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C arrays are allocated in row-major order.
@ Each row is allocated in contiguous memory locations.

Stepping through columns in one row:

for (i = 0; i < N;
sum += a[j][i];

i++)

@ This accesses successive elements.
o If block size B > 4 bytes, exploits spatial locality.
o Compulsary miss rate = 4 bytes / B.

Stepping through rows in one column:

for (i = 0; i < N;
sum += ali][i];

i++)

@ Accesses distant elements.
@ No spatial locality!

o Compulsary miss rate = 1 (i.e., 100%).
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/x jik x/
for (j=0; j<n; j++) {
for (i=0; i<n; i++) {
sum = 0.0; // in reg

for (k=0; k<n; k++)

c[i][i] = sum;

sum += a[i][k] = b[k][]j]:

row-wise
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Misses per Inner Loop
Iteration:
A | B]|C
0.25 | 1.0 | 0.0

fixed



Matrix Multiplication (kij)

r=ali][k];
for (j=0; j<n; j++)
c[i][i] 4= r = b[k][i];

R " i
/x kij x/ A B N
for (k=0; k<n; k++) { ’
for ( i=0; i<n; i++) { fixed row-wise row-wise

Misses per Inner Loop
Iteration:
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Matrix Multiplication (ikj)

r=ali][k];
for (j=0; j<n; j++)
c[i][i] +=r = b[k][j];
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/x ikj x/ A B N
for (i=0; i<n; i++) { ’
for (kZO; k<n; k++) { fixed row-wise row-wise

Misses per Inner Loop
Iteration:

Al B | C
0.0 | 0.25 | 0.25
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Matrix Multiplication (jki)

/*x jki ox/
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
r=>blk][jl]:
for (i=0; i<n; i++)
cliIli] 4= alillk] * r;

(*.k) (*)
(k.j)
o
A E’E c
column-wise fixed column-wise

Misses per Inner Loop
Iteration:
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Matrix Multiplication (kji)

/x kjiox/
for (k=0; k<n; k++) {
for (j=0; j<n; j++) {
¢ = bk
for (i=0; i<n; i++)
cLilli] 4= alillk] * r;

CS429 Slideset 21: 16

(*.k) (*)
((9)]
o
A E’E c
column-wise fixed column-wise

Misses per Inner Loop
Iteration:
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Summary of Matrix Multiplication Concluding Observations

ijk (& jik):

The programmer can optimize for cache performance.
9@ 2 loads, 0 stores

] / iterati 195 @ How data structures are organized.
@ misses / iteration = 1.
o How data are accessed (e.g., nested loop structure).
kij (& ikj):
i ( i) All systems favor “cache friendly code.”
@ 2 loads, 1 store

_ _ _ o Getting absolute optimum performance is very platform
@ misses / iteration = 0.5

specific.
jki (& kiji): o Involves cache sizes, line sizes, associativities, etc.
@ 2 loads, 1 store @ Can get most advantage with generic code.
@ misses / iteration = 2.0 o Keep working set reasonably small (temporal locality).
Miss rates are important, but not perfect predictors of @ Use small strides (spatial locality).

performance.. Code scheduling matters, also.
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