Performance Example

Exercise: You have a task X with two component parts A and B, each of which takes 30 minutes. What is the latency of X?

Suppose that you can speedup part B by a factor of 2. What is the latency now? What is the overall speedup?

Answer: It really depends on whether A and B are **concurrent** or **sequential**. If sequential, you can answer using **Amdahl's Law**.

Two Notions of Performance

<table>
<thead>
<tr>
<th>Plane</th>
<th>DC to Paris</th>
<th>Speed</th>
<th>Passengers</th>
<th>Throughput (pmph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boeing 747</td>
<td>6.5 hours</td>
<td>610 mph</td>
<td>470</td>
<td>286,700</td>
</tr>
<tr>
<td>Concorde</td>
<td>3 hours</td>
<td>1350 mph</td>
<td>132</td>
<td>178,200</td>
</tr>
</tbody>
</table>

- **Which has higher performance?**
- **What is performance?**
 - Time to completion (latency)?
 - Throughput?
- We're concerned with performance, but there are other important metrics:
 - Cost
 - Power
 - Footprint
Amdahl’s Law

How much extra performance can you get if you speed up *part* of your program? There are two factors:

- How much better is it? \((S, k) \)
- How often is it used? \((\alpha) \)

\[
T_{\text{new}} = (1 - \alpha) T_{\text{old}} + (\alpha T_{\text{old}})/k = T_{\text{old}}[(1 - \alpha) + \alpha/k]
\]

\[
S = \frac{T_{\text{old}}}{T_{\text{new}}} = \frac{1}{(1 - \alpha) + \alpha/k}
\]

Example 1

Your pipeline has one very slow stage that consumes 60% of the time to process an instruction. You discover that you can speed it up by a factor of 3. What is the improvement in the latency?

\[
S = \frac{T_{\text{old}}}{T_{\text{new}}} = \frac{1}{(1 - \alpha) + \alpha/k}
\]

Hence,

\[
S = \frac{1}{(1 - 0.6) + 0.6/3} = 1.67X
\]

Suppose you could make that stage arbitrarily fast. How much would that improve latency?

Example 2

Suppose:

- Floating point instructions could be improved by 2X.
- But, only 10% of instructions are floating point.

\[
T_{\text{new}} = T_{\text{old}} \times [0.9 + 0.1/2] = 0.95 \times T_{\text{old}}
\]

\[
S_{\text{total}} = \frac{1}{0.95} = 1.053
\]

Speedup is bounded by:

\[
\frac{1}{\text{fraction of time not enhanced}}
\]

Example 3

Assume you can parallelize some portion of your program to make it 100X faster.

How much faster does the whole program get?

\[
T_1 = T_0 \left[(1 - p) + \frac{p}{S} \right]
\]
Example 4

Suppose:
- Memory operations currently take 30% of execution time.
- A new L1 cache speeds up 80% of memory operations by a factor of 4.
- A second new L2 cache speeds up 1/2 of the remaining 20% by a factor of 2.

What is the total speedup?

Example 4 Answer

Applying the two optimizations sequentially:

<table>
<thead>
<tr>
<th>Memory operations currently take 30% of execution time.</th>
<th>A new L1 cache speeds up 80% of memory operations by a factor of 4.</th>
<th>A second new L2 cache speeds up 1/2 of the remaining 20% by a factor of 2.</th>
<th>What is the total speedup?</th>
</tr>
</thead>
</table>

Summary Message

Make the common case fast!

Examples
- All instructions require instruction fetch, only some require data memory access. *Improve instruction fetch performance first.*
- Programs exhibit locality (spatial and temporal) and smaller memories are faster than larger memories.
 - Incorporate small, fast caches into processor design.
 - Manage caches to exploit locality.

Amdahl’s Non-Corollary

Amdahl’s law does not bound slowdown!

Things can only get so fast, but they can get arbitrarily slow.

Don’t do things that hurt the non-common case too much!

Amdahl provided a quantitative basis for making these decisions.