CS429: Computer Organization and Architecture

Linking |

Dr. Bill Young

Department of Computer Sciences
University of Texas at Austin

Last updated: March 26, 2014 at 15:26

(CS429 Slideset 22: 1 Linking Il

Relocating Symbols and Resolving External References

@ Symbols are lexical entities that name functions and variables.
@ Each symbol has a value (typically a memory address).
@ Code consists of symbol definitions and references.

@ References can be either local or external.

m.cC

int e = 7; // def of local e

int main() {
int r = a(); // ref to external symbol a
exit (0); // ref to external symbol exit

// (defined in libc.so)

(CS429 Slideset 22: 2 Linking 1l

Relocating Symbols and Resolving External References (2)

d.C
extern int e;
int xep = &e; // def of local ep, ref to
// external symbol e
int x = 15; // def of local x
int y; // def of local vy
int a() { // def of local a
return xep+x+y; // refs of locals ep, x, vy
t

CS429 Slideset 22: 3 Linking 1l

m.o Relocation Info

Disassembly of section .text

00000000 <main >:
m.c 0: 55 pushl %ebp
: 1: 89 e5 movl %esp, %ebp
Int e =7, 3: 8 fc ff ff ff call 4<maintOx4>
4. R_386_PC32 a
int main() { 8: 6a 00 pushl $0x0
int r = a(); a: e8 fc ff ff ff call b<main+0xb>
exit (0); b: R_386_PC32 exit
} f 90 nop

Source: objdump Disassembly of section .data

00000000 <e>:
0: 07 00 00 00

CS429 Slideset 22: 4 Linking Il

a.o Relocation Info (.text)

Disassembly of section .text

00000000 ;
a.C <a>

0: 55 pushl %ebp
extern int e: é: gg 15 00 00 00 movl O0Ox0, %edx
int xep — &e: 3. R_386.32 ep
int x = 15 7: al 00 00 00 00 movl O0x0, %eax
int y;; 8: R_386_32 x

H c: 89 e5 movl %esp, %ebp
: e: 03 02 addl (%edx),%eax
int a() { 0. 89 { ;
return : ec movl %ebp, %esp
ep b x by 12: 03 05 00 00 00 addl 0x0, %eax
} 17: 00
14: R_386.32 vy
18: 5d popl %ebp
19: 3c ret

CS429 Slideset 22: 5 Linking Il

a.o Relocation Info (.data)

ad.C

extern int e;]]
Disassembly of section .data

int xep = &e; 00000000 <ep>:

int x = 15; 0: 00 00 00 00

Int vy;; 0: R_386_.32 e
00000004 <x>:

int a() { 4. 0f 00 00 00

return xep + X + Vy;

}

(CS429 Slideset 22: 6 Linking 1l

Executable After Relocation

After Relocation and External Reference Resolution (.text)

08048530 <main>:

8048530: 55 pushl %ebp

8048531: 89 e5 movl %esp, %ebp

8048533 ed 08 00 00 OO0 call 8048540 <a>

8048538: 6a 00 pushl $0x0

804853a: e8 35 ff ff ff call 8048474 <_init+0x94>
804853 f: 90 nop

08048540 <a>:
8048540: 55 pushl %ebp
8048541: 8b 15 1c a0 04 movl 0x804a0lc, %edx
3048546: 08
8048547: al 20 a0 04 08 movl 0x804a020, %eax

804854c: 89 e5 movl %esp, %ebp
804854e: 03 02 addl (%edx), %eax
8048550: 89 ec movl %ebp, %esp

8048552: 03 05 dO0 a3 04 addl 0x804a3d0, %eax
8048557 08

8048558: 5d popl %ebp

8048559: c3 ret

CS429 Slideset 22: 7 Linking Il

Executable After Relocation

After Relocation and External Reference Resolution (.data)

m.C

int e = 7;

int main() {

int r =a(); Disassembly of section .data
exit (0);
1 08042018 <e>:
804a018: 07 00 00 00
a.C
_ 0804a01lc <ep>:
extern int e; 804a0lc: 18 a0 04 08
int xep = &e; 08042020 <x>:
int x = 15; 804a020: Of 00 00 00
int y;;
int a() {
return xep + X + ;vy;

CS429 Slideset 22: 8 Linking Il

Strong and Weak Symbols

Program symbols are either strong or weak.

strong: procedures and initialized globals

weak: uninitialized globals

This doesn’'t apply to local variables.

pl.c p2.c
int foo = 5; // foo: strong int foo; // foo: weak here
pl() A // pl: strong p2() A // p2: strong

(CS429 Slideset 22: 9 Linking 1l

Linker Symbol Rules

Rule 1: A strong symbol can only appear once.

Rule 2: A weak symbol can be overridden by a strong symbol of
the same name.

@ References to the weak symbol resolve to the strong symbol.

Rule 3: If there are multiple weak symbols, the linker can pick one
arbitrarily.

CS429 Slideset 22: 10 Linking 1l

Linker Puzzles

What happens in each case?

Case 1 Case 2 Result
int x;

p1O {} |p10 {}

int x; int x;

p1O {} | p20 {}

int x; double x;

int y; p20 {}

pl1O {}

int x=7; | double Xx;
int y=5; | p20) {}
plO {}

int x=7; | int x;

piO {} | p20 {}

CS429 Slideset 22: 11 Linking Il

Linker Puzzles

Think carefully about each of these.

Case 1 Case 2 Result

int x; Link time error: two strong symbols (p1)
p1O {} |[p1O {}

int x; int x; References to x will refer to the same
p1O {} | p20 {} unitialized int. What you wanted?
int x; double x; | Writes to x in p2 might overwrite y!
int y; p20 {} That's just evil!

p1O) {}

int x=7; | double x; | Writes to x in p2 might overwrite y!
int y=5; | p20 {} Very nasty!

p1(O {}

int x=7; int x; References to x will refer to the same
p1O {} p20 {} initialized variable.

Nightmare scenario: two identical weak structs, compiled by
different compilers with different alignment rules.

CS429 Slideset 22: 12 Linking Il

Packaging Commonly Used Functions

How to package functions commonly used by programmers?
(Math, 1/0O, memory management, string manipulation, etc.)

Awkward, given the linker framework so far:

@ Option 1: Put all functions into a single source file.

@ Programmers link big object file into their programs.
o Space and time inefficient.

@ Option 2: Put each function in a separate source file.

o Programmers explicitly link appropriate binaries into their
programs.
o More efficient, but burdensome on the programmer.

CS429 Slideset 22: 13 Linking Il

Packaging Commonly Used Functions

Solution: static libraries (.a archive files)
@ Concatenate related relocatable object files into a single file
with an index (called an archive).

@ Enhance the linker so that it tries to resolve unresolved
external reference by looking for symbols in one or more
archives.

@ If an archive member resolves the reference, link into the
executable.

CS429 Slideset 22: 14 Linking Il

Static Libraries (archives)

libc.a Is a static library
1l.c c . .
pi pj (archive) of relocatable object
files concatenated into one file.

Translator Translator
" 02.0 .. 1heoutput pis an executable

\ l / object file that only contains

Linker (9 code and data for libc functions
l called from pl.c and p2.c.

Y

This further improves modularity and efficiency by packaging
commonly used functions, e.g., C standard library (libc) or math
library (libm).

The linker includes only the .o files in the archive that are actually
needed by the program.

CS429 Slideset 22: 15 Linking Il

Creating Static Libraries

atoi.c printf.c random.c
Translator Translator Ll Translator
atoi.o printf.o random.o

e

Archiver (ar)

|

libc.a

Command: ar rs libc.a atoi.o printf.o ... random.o

Archiver allows incremental updates: Recompile a function that
changes and replace the .o file in the archive.

CS429 Slideset 22: 16 Linking 1l

Commonly Used Libraries

libc.a (the C standard library)
@ 8MB archive of 900 object files
@ 1/0, memory allocation, signal handling, string handling, data
and time, random numbers, integer math
libm.a (the C math library)
@ 1MB archive of 226 object files

o floating point math (sin, cos, tan, log, exp, sqrt, ...)

o . .
ar —t usr/lib/libc.a . .
% fusr/lib/ | % ar —t /usr/lib/libm .a
sort sort
fork .o
€._acos.o
S e_acosf.o
fprintf.o e acosh o
fpu_control .o e_acosh% o
fputc.o - '
P e_acoshl .o
freopen.o e acosl o
fscanf.o - '

CS429 Slideset 22: 17 Linking Il

Using Static Libraries

Linker's algorithm for resolving external references:
@ Scan .o files and .a files in the command line order.

@ During the scan, keep a list of the current unresolved
references.

@ As each new .o or .a file obj is encountered, try to resolve each
unresolved reference in the list against the symbols in obj.

@ If there are any entries in the unresolved list at the end of the
scan, then error.

Problem:
@ Command line order matters.

@ Moral: put libraries at the end of the command line.

> gcc —L. libtest.o —Imine

> gcc —L. —Imine libtest.o

libtest.o: In function ‘main’

libtest .o(.text+0x4): undefined reference to ‘libfun’

CS429 Slideset 22: 18 Linking Il

Loading Executable Binaries

Executable object file for

Loaded segments:
example program p:

Process image Virtual addr
ELF header N _ 0x080483e0
init and shared lib
(required for executables)
.text section
_ text segment 0x08048494
.data section (/o)
.bss section
.symtab data segment 0x08042010
rel.tex (initialized r/w)
.rel.data
.debu
. & bss segment 0x0804a3b0
Section header table o
_ (uninitialized r/w)
(required for relocatables)

CS429 Slideset 22: 19 Linking II

Shared Libraries

Static libraries have some disadvantages:

@ Potential for duplicating lots of common code in the
executable files on a file system. (e.g., every program needs
the standard C library).

@ Potential for duplicating lots of code in the virtual memory
space of many processes.

@ Minor bug fixes of system libraries require each application to
explicitly relink.

CS429 Slideset 22: 20 Linking Il

Shared Libraries

Solution:

@ Shared libraries (dynamic link libraries DLLs) whose members
are dynamically loaded into memory and linked into an
application at run-time.

@ Dynamic linking can occur when an executable is first loaded
and run. (The common case for Linux, handled automatically
by 1d-1inux.so.)

@ Dynamic linking can also occur after the program has begun.

@ In Linux, this is done explicitly by user with dlopen().
o Basis for High-Performance Web Servers.

@ Shared library routines can be shared by multiple processes.

CS429 Slideset 22: 21 Linking Il

Dynamically Linked Shared Libraries

m.cC a.c
Translators Translators
(ccl, as) (ccl, as)

| |
~_

Linker (Id)
l Shared library of dynamically
Partially linked executable p D ibcso clocatable object files

(on disk) l /

Loader/Dynamic Linker

libc.so functions called by m.c
and a.c are loaded, linked, anc

(Id-linux.so) _
(potentially) shared among
l processes.
Fully linked executable ,
p’ (in memory) P

CS429 Slideset 22: 22 Linking 1l

The Complete Picture

m.c a.c
Translators Translators
(ccl, as) (ccl, as)

i) L
~

Linker (Id)

libwhatever.a

libc.so libm.so

//

Loader/Dynamlc Linker
(Id-linux.so)

|

pl

CS429 Slideset 22: 23 Linking 1l

