CS429: Computer Organization and Architecture

Linking |

Dr. Bill Young
Department of Computer Sciences
University of Texas at Austin

Last updated: January 13, 2017 at 08:55

CS429 Slideset 24: 1 Linking |

A Simplistic Translation Scheme

m.c ASCII sourcefile Problems:

‘ @ Efficiency: small change
Compiler requires complete

' re-compilation.

m.s @ Modularity: hard to share

l common functions (e.g.,

, printf).
Assembler . o

Solution: Static linker (or
‘ Binary executable object file “nker)'

P (memory image on disk)

CS429 Slideset 24: 2 Linking |

Better Scheme Using a Linker

Linking is the process of

me ac ASClsurcefiles combining various pieces
l l of code and data into a
Compiler Compiler single file that can be
l l loaded (copied) into
ms as memory and executed.
l l Linking could happen at:
Assembler Assembler]]
l l @ compile time;
atel il . .
i . Sepaaely compiled @ load time;
relocatable object files
l l @ run time.
Linker (Id)
Must somehow tell a
t Executable object file module about symbols
p (code and data for all functions

from other modules.

defined in m.c and a.c)

CS429 Slideset 24: 3 Linking |

A linker takes representations of separate program modules and
combines them into a single executable.

This involves two primary steps:

Q Symbol resolution: associate each symbol reference
throughout the set of modules with a single symbol definition.

Q Relocation: associate a memory location with each symbol
definition, and modify each reference to point to that location.

CS429 Slideset 24: 4 Linking |

Translating the Example Program

A compiler driver coordinates all steps in the translation and
linking process.

@ Typically included with each compilation system (e.g., gcc).

@ Invokes the preprocessor (cpp), compiler (ccl), assembler
(as), and linker (Id).

@ Passes command line arguments to the appropriate phases

Example: Create an executable p from m.c and a.c:

> gcc —02 —v —0 p m.c a.c

cpp [args] m.c /tmp/cca07630. i

ccl /tmp/cca07630.i m.c —0O2 [args|] —o /tmp/cca07630.s

as [args] —o /tmp/cca076301.0 /tmp/cca07630.s

<similar process for a.c>

ld —o p [system obj files]|] /tmp/cca076301.0 /tmp/
cca076302.0

>

CS429 Slideset 24: 5 Linking |

Compiling /Assembling

sum:
C Code pushl %ebp
movl %esp , %ebp
double sum(int val) { movl 8(%ebp), %ecx
int sum = 0 movl $0, %edx
double pi = 3.14; C_mpl $2, %ecx
.) ' jle L4
nt 1, movl| $0, %edx
movl $3, %eax
for(i=3; i<=val; i++) L5
sum += i ; addl Y%eax , %edx
return sum -+ pi; addl $1, %eax
} cmpl %eax , %ecx
jge .L5
.L4:
pushl %edx
Obtain with command: fildl (%esp)
leal 4(%esp), %esp
gcc -0 -5 sum.c faddl .LCO
Produces file code.s popl %ebp
Note: the assembler code in this LCo ret
slideset is IA32 code. Jlong 1374389535
long 1074339512

CS429 Slideset 24: 6 Linking |

Role of the Assembler

@ Translate assembly code (compiled or hand generated) into
machine code.

@ Translate data into binary code (using directives).

@ Resolve symbols—translate into relocatable offsets.
@ Error checking:

@ Syntax checking;
@ Ensure that constants are not too large for fields.

CS429 Slideset 24: 7 Linking |

Where Did the Labels Go?

Disassembled Object Code

08048334 <sum>:

8048334: 55 push %ebp

8048335: 89 eb mov %esp, %ebp
8048337: 8b 4d 08 mov 8(%ebp), %ecx
804833a: ba 00 00 00 00 mov $0x0, %edx

804833 f: 83 f9 02 cmp $0x2 , %ecx
8048342: 7e 13 jle 8048357 <sum—+0x23>
8048344.: ba 00 00 00 00 mov $0x0, %edx
8048349: b8 03 00 00 00 mov $0x3, %eax
804834e: 01 c2 add %eax , %edx
8048350: 83 c3 01 add $0x1, %eax
8048353: 39 cl cmp %eax, %ecx
8048355: 7d f7 jge 804834e <sum+O0xla>
8048357 52 push %edx

8048358: db 04 24 fildl (%esp)

804835b: 8d 64 24 04 lea 4(%esp), Y%esp
804835 f: dc 05 50 84 04 08 faddl 0x8048450

8048365 5d pop %ebp

8048366: c3 ret

CS429 Slideset 24: 8 Linking |

L abel Resolution

Disassembled Object Code

8048342: 7e 13 jle 8048357 <sum+0x23>
8048355: 7d 7 jge 804834e <sum-+Oxla>
804835 f : dc 05 50 84 04 08 faddl 0x8048450

Byte relative offsets for jle and jge:
@ jge: 13 bytes forward
@ jge: 9 bytes backward (two's complement of 0xf7)

Relocatable absolute address:
o faddl: 0x8048450

CS429 Slideset 24: 9 Linking |

How Does the Assembler Work?

One Pass
@ Record label definitions

@ When use is found, compute offset

Two Pass
@ Pass 1: scan for label instantiations—creates symbol table
@ Pass 2: compute offsets from label use/def

@ Can detect if computed offset is too large for assembly
Instruction.

CS429 Slideset 24: 10 Linking |

Symbol Table

00000000 g F .text 00000033 sum
symbol type segment offset from symbol
(global) segment start name

The symbol table tracks the location of symbols in the object file.
@ Symbols that can be resolved need not be included.

@ Symbols that may be needed during linking must be included.

CS429 Slideset 24: 11 Linking |

What Does a Linker Do?

Merges object files

@ Merges multiple relocatable (.0) object files into a single
executable object file that can be loaded and executed.

Resolves external references
@ As part of the merging process, resolves external references.

@ External reference: reference to a symbol defined in another
object file.

Relocates symbols

@ Relocates symbols from their relative locations in the .o files
to new absolute positions in the executable.

@ Updates all references to these symbols to reflect their new

positions.
@ References can be in either code or data:
o code: a(); /* reference to symbol a */
o data: *xp = &x; /* reference to symbol x */

CS429 Slideset 24: 12 Linking |

Why Linkers?

Modularity

@ Programs can be written as a collection of smaller source files,
rather than one monolithic mass.

@ Can build libraries of common functions shared by multiple
programs (e.g., math library, standard C library)

Efficiency
@ Time:

@ Change one source file, recompile, and then relink.
@ No need to recompile other source files.

@ Space:

o Libraries of common functions can be aggregated into a single
file.

@ Yet executable files and running machine images contain only
code for the functions they actually use.

CS429 Slideset 24: 13 Linking |

Executable and Linkable Format (ELF)

@ Standard binary format for object files.
@ Derives from AT& T System V Unix, and later adopted by
BSD Unix variants and Linux.

@ One unified format for:

o Relocatable object files (.0),
o Executable object files,
@ Shared object files (.so).

@ The generic name is ELF binaries.

@ Better support for shared libraries than the old a.out formats.

CS429 Slideset 24: 14 Linking |

ELF Object File Format

@ ELF header: magic number, type
(.0, exec, .s0), machine, byte

ordering, etc. ELE header
@ Program header table: page size, Program header tables
virtual addresses of memory (required for executables)
segments (sections), segment sizes .text section
@ .text section: code .data section
@ .data section: initialized (static) bss section
data .symtab
@ .bss section: .rell.;ext
o uninitialized (static) data rel.data
o “Block Started by Symbol” .debug
o “Better Save Space” Section header table
o Has section header, but occupies (required for relocatables)

NO Space.

CS429 Slideset 24: 15 Linking |

ELF Object File Format (continued)

@ .symtab section
@ Symbol table

@ Procedure and static variable names ELF header

@ Section names and locations Program header tables
o .rel.text section (required for executables)

@ Relocation info for .text section .text section

@ Addresses of instructions that will need

to be modified in the executable .data section

@ Instructions for modifying .bss section
@ .rel.data section symtab
@ Relocation info for .data section rel.text
@ Addresses of pointer data needing .rel.data
modification in the merged executable _debug
@ .debug section Section header table
@ Info for symbolic debugging (gcc -g) (required for relocatables)

CS429 Slideset 24: 16 Linking |

Example C Program

a.C

m.c extern int e;
int e =7, int xep = &e;
. . int x = 15;
int main () int y:
{ .

Int r = a(), int a()
}

{
}

return xep + X + vy;

CS429 Slideset 24: 17 Linking |

Merging Relocatable Object Files

Relocatable object files are merged into an executable by the
Linker. Both are in ELF format.

headers
system code text system code
.data main()
R text
a()
more system code
main() text
system data
inte=7
int *ep - &e da[a.
a() text intx =15
tex
int*ep = &e uninitialized data bss
.data
intx =15 .Symtab
i .debug
Inty bss

CS429 Slideset 24: 18 Linking |

This slideset:
@ Compilation / Assembly / Linking

@ Symbol resolution and symbol tables

Next time:
@ Code and data relocation
@ Loading
@ Libraries

@ Dynamically linked libraries

CS429 Slideset 24: 19 Linking |

