CS429: Computer Organization and Architecture

Integers

Dr. Bill Young
Department of Computer Science
University of Texas at Austin

Last updated: June 10, 2019 at 14:22

CS429 Slideset 3: 1 Integers

Topics of this Slideset

@ Numeric Encodings: Unsigned and two's complement

@ Programming Implications: C promotion rules
o Basic operations:

¢ addition, negation, multiplication
o Consequences of overflow
o Using shifts to perform power-of-2 multiply/divide

CS429 Slideset 3: 2 Integers

C Puzzles Encoding Integers: Unsigned

int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = vy,

@ Assume a machine with 32-bit, two's complement integers.
@ For each of the following, either:

o Argue that is true for all argument values;
o Give an example where it's not true.

x <0 — ((x%2) <0
ux >= 0
x&7) =7 — (x<<30) < 0
ux > -1
X >y — -x < -y
x *x x>0
x>0 y>0 —x+y>0
x >= 0 — -x <=0
x <=0 — -x >= 0
CS429 Slideset 3: 3 Integers

For unsigned integers, we treat all values as non-negative and use
positional notation as with non-negative decimal numbers.

18 | 64 | 32 | 16 8 a2 1|
Binary Number 1_. 1 . 1 . (4] . 1 . 0 .D . I

Calculate 1128 | 1x64 | 1332 | Ox16 | 1x8 | Oxd |Ox2 | 1x1 |
Add them 128 | +64 | 437 | 40 | 48 | 40 | +0 | 41 |

Result a P]

Assume we have a w length bit string X.

Unsigned: B2U,,(X) = %1 X; x 2/

CS429 Slideset 3: 4 Integers

Unsigned Integers: 4-bit System

1000

CS429 Slideset 3: 5

Integers

Encoding Integers: Two's Complement

Two's complement is a way of encoding integers, including some
positive and negative values. It's exactly like unsigned except the
high order bit is given negative weight.

Two’s complement: B2T,(X) = —X,,_1 x 2*~1 4+ E,-W:_Oz X; x 2

Decimal | Hex Binary
15213 | 3B 6D | 00111011 01101101
-15213 | C4 93 | 11000100 10010011

Sign Bit:
For 2's complement, the most significant bit indicates the sign.
@ 0 for nonnegative

o 1 for negative

CS429 Slideset 3: 6 Integers

Signed Integers: 4-bit System

x = 15213: 00111011 01101101
y = —15213: 11000100 10010011
Weight 15213 -15213
11 T[1 1
2|0 01 2
4|1 40 0
8|1 8|0 0
16 | 0 01 16
32 |1 32 |0 0
64 | 1 64 | 0 0
128 | 0 01 128
256 | 1 256 | 0 0
512 | 1 512 | 0 0
1024 | 0 01 1024
2048 | 1 2048 | 0 0
4096 | 1 4096 | 0 0
8102 | 1 8192 | 0 0
16384 | 0 01 16384
-32768 | 0 01 -32768
[Sum | 15213 | -15213 |

CS429 Slideset 3: 7

Integers

CS429 Slideset 3: 8 Integers

Values for Different Word Sizes

Numeric Ranges

Unsigned Values

UMin =0 000...0
UMax = 2% — 1 111...1
Two’s Complement Values
TMin = —2w-1 100...0
TMax =2""1 -1 o011...1
Values for w = 16
Decimal | Hex Binary
UMax 65535 | FF FF | 11111111 11111111
TMax 32767 | 7F FF | 01111111 11111111
TMin | -32768 | 80 00 | 10000000 00000000
-1 -1 | FF FF | 11111111 11111111
0 0 | 00 00 | 00000000 00000000

CS429 Slideset 3: 9

Integers

Unsigned and Signed Numeric Values

[w 8 16 | 32 [64 |
UMax | 255 | 65,525 | 4,294,067,295 | 18,446,744,073,709,551,615
TMax | 127 | 32,767 | 2,147,483,647 | 9,223,372,036,854,775,807
TMin | -128 | -32,768 | -2,147,483,648 | -9,223,372,036,854,775,808

Observations

o |TMin| = TMax + 1
o UMax =2 x TMax +1

C Programming

#include <limits .h>

Declares various constants: ULONG_MAX, LONG_MAX, LONG_MIN,
etc. The values are platform-specific.

CS429 Slideset 3: 10

Casting Signed to Unsigned

Integers

Equivalence: Same encoding for

nonnegative values

Uniqueness:

o Every bit pattern represents
a unique integer value

@ Each representable integer
has unique encoding

Can Invert Mappings:
o inverse of B2U(X) is U2B(X)
o inverse of B2T(X) is T2B(X)

CS429 Slideset 3: 11

Integers

[X [B2U(X) [B2T(X) |
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 7
1010 10 6
1011 11 5
1100 12 -4
1101 13 3
1110 14 -2
1111 15 1

C allows conversions from signed to unsigned.

short int x = 15213;
unsigned short ux = (unsigned
short int y = —15213;
unsigned short uy = (unsigned

short) x;

short) y;

Resulting Values:

@ The bit representation stays the same.

@ Nonnegative values are unchanged.

o Negative values change into (large) positive values.

CS429 Slideset 3: 12

Integers

Signed vs Unsigned in C Casting Surprises

Constants
@ By default, constants are considered to be signed integers.
@ They are unsigned if they have “U” as a suffix: 0U,
4294967259U.

Casting

o Explicit casting between signed and unsigned is the same as
U2T and T2U:

int tx, ty;
unsigned ux, uy;
tx = (int) ux;

uy = (unsigned) ty;

@ Implicit casting also occurs via assignments and procedure

calls.
tx = ux;
uy = ty;

CS429 Slideset 3: 13 Integers

Sign Extension

Task: Given a w-bit signed integer x, convert it to a w+k-bit
integer with the same value.

Rule: Make k copies of the sign bit :

!/
X = Xw—1y---Xw—1,Xw—-2,..., W0

Why does this work?

unsigned Zero-extend
w8) [a[ofe] -« [B[e[eA[0[E[E[6 240
Foh [1[2]2]1]ofo]ofo] \
sk 1i1i1 [1 1i1 1i3[2]ofo[ol0] -16

(s8) Sign-extend

e zero-extend extends unsigned values to wider mode
e sign-extend extends signed values to wider mode

CS429 Slideset 3: 15 Integers

Expression Evaluation

@ If you mix unsigned and signed in a single expression, signed
values implicitly cast to unsigned.

@ This includes when you compare using <, >, ==, <=, >=,

Const 1 Const 2 | Rel. | Evaluation

0 oU | == unsigned

-1 0] < signed

-1 ou| > unsigned
2147483647 -2147483648 | > signed
2147483647V -2147483648 | < unsigned
-1 2 > signed

(unsigned) 1 2] < unsigned
2147483647 2147483648U | < unsigned
2147483647 | (int) 2147483648U | > signed

CS429 Slideset 3: 14 Integers

Sign Extension Example

short int x = 15213;
int ix = (int) x;
short int y = —15213;
int iy = (int) vy;

| | Decimal | Hex | Binary |
X 15213 3B 6D 00111011 01101101
ix 15213 | 00 00 3B 6D | 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011

iy -15213 | FF FF C4 93 | 11111111 11111111 11000100 10010011

In converting from smaller to larger signed integer data types, C
automatically performs sign extension.

CS429 Slideset 3: 16 Integers

Why Use Unsigned?

Don’t use just to ensure numbers are nonzero.

@ Some C compilers generate less efficient code for unsigned.

unsigned
for (i=1;

i;
i < cnt;

al[i] += ali-1]

i++)

o It's easy to make mistakes.

for (i

cnt—2; i >= 0;

ali] += a[i+1]

i)

Do use when performing modular arithmetic.

@ multiprecision arithmetic

o other esoteric stuff

Do use when you need extra bits of range.

Complement and Increment Examples Unsigned Addition

CS429 Slideset 3: 17

Integers

| | Decimal | Hex | Binary
X 15213 | 3B 6D | 00111011 01101101
“x -15214 | C4 92 | 11000100 10010010
~x+1 -15213 | C4 93 | 11000100 10010011
0 0 | 00 00 | 00000000 00000000
~0 -1 | FFFF | 11111111 11111111
~0+1 0 | 00 00 | 00000000 00000000

CS429 Slideset 3: 19

Integers

Negating Two's Complement

To find the negative of a number in two’s complement form:

complement the bit pattern and add 1:

~x+1=—x

Example:

10011101 = 0x9C = —994
complement:

01100010 = 0x62 = 9819
add 1:

01100011 = 0x63 = 9919

Try it with: 11111111 and 00000000.

CS429 Slideset 3: 18

Given two w-bit unsigned quantities u, v, the true sum may be a

w+1-bit quantity.

Discard the carry bit and treat the result as an unsigned integer.

Integers

Thus, unsigned addition implements modular addition.

UAddy (v, v) = (u+ v) mod 2"

UAddy (u, v) = { utv

CS429 Slideset 3: 20

u+v-—2%

Integers

u+v<2¥
ut+v>2%

Detecting Unsigned Overflow Properties of Unsigned Addition

W-bit unsigned addition is:

@ Closed under addition:

Task:
2 0 < UAddy (1, v) < 2% — 1

Determine if s = UAddy (u,v) = u+v.
o Commutative

Claim: We have overflow iff: UAdd,, (u, v) = UAdd,, (v, u)
s<uors<uv. o Associative

UAdd,, (t, UAdd,, (u, v)) = UAdd,, (UAdd,, (¢, u), v)

BTW: s < u iffs < v. So it's OK to check only one of these © 0 is the additive identity
conditions because both will be true when there's an overflow. UAddy (u,0) = u
On the machine, this causes the carry flag to be set. o Every element has an additive inverse

Let UComp,, (u) = 2" — u, then
UAdd,, (u, UComp,,(u)) =0

CS429 Slideset 3: 21 Integers CS429 Slideset 3: 22 Integers

Two's Complement Addition Two's Complement Addition

Given two w-bit signed quantities u, v, the true sum may be a
w+1-bit quantity.
TAdd and UAdd have identical bit-level behavior.
Discard the carry bit and treat the result as a two's complement
number.

1 tv uV V;
Int

nt
= ((unsigned) u + (unsigned) v);

i
s
t

cC ~ 0

in
+ v

u+v+2* u+v < TMin, (NegOver)
TAddy, (u,v) =< u+v TMin,, < u+ v < TMax,,
u+v—2" TMax, < u+ v (PosOver)

This will give s == t.

CS429 Slideset 3: 23 Integers CS429 Slideset 3: 24 Integers

Detecting 2's Complement Overflow Properties of TAdd

Task:
Determine if s = TAdd,, (u,v) = u+v.

Claim: We have overflow iff either:

@ u,v <0 but s> 0 (NegOver)
@ u,v >0 but s <0 (PosOver)

Can compute this as:
ovf = (u<0 == v<0) && (u<0 != s<0);
On the machine, this causes the overflow flag to be set.

Why don’t we have to worry about the case where one input is
positive and one negative?

CS429 Slideset 3: 25 Integers

TAdd is Isomorphic to UAdd.

This is clear since they have identical bit patterns.
Tadd,, (u, v) = U2T(UAdd,,(T2U(u), T2U(v)))

Two’s Complement under TAdd forms a group.

@ Closed, commutative, associative, 0 is additive identity.

@ Every element has an additive inverse:

Let TComp,,(u) = U2T(UComp,, (T2U(u)), then
TAdd,, (u,UComp,,(u)) =0

) —u u # TMin,,
TComp,, (1) = { TMin,, u = TMin,,

CS429 Slideset 3: 26 Integers

Multiplication

Computing the exact product of two w-bit numbers x, y. This
is the same for both signed and unsigned.

Ranges:

@ Unsigned: 0 < xxy < (2% —1)2 =22 — 2w+l 4 1, requires
up to 2w bits.

@ Two's comp. min:
x*ky > (=271 x(2¥~t —1) = —22%=2 1 2%~1 requires up
to 2w — 1 bits.

@ Two's comp. max: x * y < (—2%71)2 = 22%=2 requires up to
2w (but only for TMin2).

Maintaining the exact result
@ Would need to keep expanding the word size with each
product computed.
@ Can be done in software with “arbitrary precision” arithmetic
packages.

CS429 Slideset 3: 27 Integers

Unsigned Multiplication in C

Given two w-bit unsigned quantities u, v, the true sum may be a
2w-bit quantity.

We just discard the most significant w bits, treat the result as
an unsigned number.

Thus, unsigned multiplication implements modular
multiplication.

UMulty, (u, v) = (v x v) mod 2"

CS429 Slideset 3: 28 Integers

Unsigned vs. Signed Multiplication Unsigned vs. Signed Multiplication

Unsigned Multiplication Unsigned Multiplication

unsigned ux (unsigned)

= X
. . ' unsigned ux = (unsigned) x;
uns!gned uy = (unsigned) vy; unsigned by — Eunsigned; v
unsigned up = ux * uy; unsigned up = ux % uy: '
@ Truncates product to w-bit number: up = UMult,, (ux, uy)
o Modular arithmetic: up = (ux - uy) mod 2% Two’s Complement Multiplication

int x, vy;
int p=x *xy;

Two’s Complement Multiplication

int x, vy;
int p=x % vy, Relation

) @ Signed multiplication gives same bit-level result as unsigned.
o Compute exact product of two w-bit numbers x, vy. ‘
. @ up == (unsigned) p
o Truncate result to w-bit number: p = TMult,(x, y)

CS429 Slideset 3: 29 Integers CS429 Slideset 3: 30 Integers

Multiply with Shift Aside: Floor and Ceiling Functions

Two useful functions on real numbers are the floor and ceiling

A left shift by k, is equivalent to multiplying by 2. This is true for)
functions.

both signed and unsigned values.

Definition: The floor function |r|, is the greatest integer less than
or equal to r.

u<<1—-oux?2

u<< 2—-sux4

u<<3—>ux8 3.14] =3
u<< 4 - ux16 |-3.14] = 4
u<<5—>UX32 L?J:7
u<< 6 —uxbd

Definition: The ceiling function [r], is the smallest integer greater

. . e . . than or equal to r.
Compilers often use shifting for multiplication, since shift and add

is much faster than multiply (on most machines). 3.14] = 4

U<< 5 -u<<3==mu * 24 [—3.14] = -3
(7] =7

CS429 Slideset 3: 31 Integers CS429 Slideset 3: 32 Integers

Unsigned Divide by Shift

A right shift by k, is (approximately) equivalent to dividing by 2%,
but the effects are different for the unsigned and signed cases.
Quotient of unsigned value by power of 2.

u >> k == [u/2¥]

Uses logical shift.

| | Division | Computed | Hex | Binary
u 15213 15213 | 3B 6D | 00111011 01101101
u>> 1 7606.5 7606 | 1D B6 | 00011101 10110110
u>> 4 950.8125 950 | 03 B6 | 00000011 10110110
u >> 8 | 59.4257813 59 | 00 3B | 00000000 00111011

CS429 Slideset 3: 33

Correct Power-of-2 Division

Integers

Signed Divide by Shift

Quotient of signed value by power of 2.

u >> k== |u/2K|

@ Uses arithmetic shift. What does that mean?

@ Rounds in wrong direction when u < 0.

| Division | Computed | Hex | Binary
u -15213 -15213 | C4 93 | 11000100 10010011
u > 1 -7606.5 -7607 | E2 49 | 11100010 01001001
u>> 4 -050.8125 -951 | FC 49 | 11111100 01001001
u >> 8 | -59.4257813 -60 | FF C4 | 11111111 11000100

Properties of Unsigned Arithmetic

CS429 Slideset 3: 34

Integers

We've seen that right shifting a negative number gives the wrong

answer because it rounds away from 0.

x >> k == [x/2¥]

We'd really like [x /27 instead.

You can compute this as: [(x + 2K —1)/2%|. In C, that's:

(x + (1<<k) —1) >> k

This biases the dividend toward 0.

CS429 Slideset 3: 35

Integers

Unsigned multiplication with addition forms a Commutative

Ring.

o Addition is commutative
@ Closed under multiplication

0 < UMulty (u,v) <2% —1

©

©

©

©

Multiplication is commutative

UMulty, (u, v) = UMult,, (v, u)

Multiplication is associative
UMult, (t, UMult,, (u, v)) = UMult,, (UMult,, (t, u), v)
1 is the multiplicative identity

UMulty, (u,1) = u

Multiplication distributes over addition

UMult, (t, UAdd,,(u, v)) = UAdd,,(UMult, (¢, u), UMult, (¢, v))

CS429 Slideset 3: 36

Integers

Properties of Two's Complement Arithmetic C Puzzle Answers

Isomorphic Algebras Assume a machine with 32-bit word size, two's complement

. T " . integers.
@ Unsigned multiplication and addition: truncate to w bits &

@ Two's complement multiplication and addition: truncate to w
bits int x = foo();
int y = bar();
Both form rings isomorphic to ring of integers mod 2% unsigned ux = x;
Comparison to Integer Arithmetic unsigned uy = y;

@ Both are rings

)] x <0 — ((x%2) <0 False: TMin
o Integers obey ordering properties, e.g. ux >= 0 True: 0= UMin
u>0—>u+v>v (x & 7) == — (x<<30) < 0 True: x3 =1
ux > -1 False: 0
U>O,V>O—>U'V>O x>y — -x < -y False: —1, TMin
° : ' X *xx >0 False: 30426
These pr_opertles are not obeyed by two's complement x> o0ay >0 xtyso False: TMasx, TMax
arithmetic. x >= 0 —-x <=0 True: -TMax < 0
TMax + 1 == TMin x <= 0 — -x >= 0 False: TMin
15213 * 30426 == -10030 (for 16-bit Words)

CS429 Slideset 3: 37 Integers CS429 Slideset 3: 38 Integers

