CS429: Computer Organization and Architecture

Logic Design

Dr. Bill Young
Department of Computer Science
University of Texas at Austin

Last updated: February 17, 2020 at 13:55

CS429 Slideset 5: 1 Logic Design

Topics of this Slideset

To execute a program we need:
@ Communication: getting data from one place to another
@ Computation: perform arithmetic or logical operations
@ Memory: store the program, variables, results

Everything is expressed in terms of bits.
@ Communication: Low or high voltage on a wire
@ Computation: Compute boolean functions
@ Storage: Store bits

CS429 Slideset 5: 2 Logic Design

Digital Signals

Volimgs
AR YTVl
N
TRERERME - o 3o e e e . s e e, 0 e T
OFF N i i I'_q'\-\.)
TR U S
¥
1 :
™ Tirme ——» T2
MNolsy Signal

@ Use voltage thesholds to extract discrete values from a

continuous signal.
@ Simplest version: 1-bit signal
o Either high range (1) or low range (0)
o With a guard range between them.
@ Not strongly affected by noise or low-quality elements; circuits

are simple, small and fast.

CS429 Slideset 5: 3 Logic Design

Truth Tables

And: A & B =1 when both A =

1 and B = 1. Not: “A = 1 when A = 0.
A B | & A\~
0 0 0 0 1
0 1 0 1 0
1 0 0
1 1|1

Xor: A © B = 1 when either A

Or: A | B = 1 when either A = — 1 or B = 1, but not both.
lorB=1. A B |-
0 010
A B 0 1|1
O 1 0|1
HE Ll
1 1|1

CS429 Slideset 5: 4 Logic Design

Gates

What does it mean for a hardware device to represent a boolean
function (or truth table), say and?

A
B—

CS429 Slideset 5: 5 Logic Design

Gates

What does it mean for a hardware device to represent a boolean
function (or truth table), say and?

A
B—

Q Place on the two input lines voltages representing logical
values (T or F).

Q After a short delay, the output line will stabilize to a voltage
representing the logical and of the inputs.

CS429 Slideset 5: 6 Logic Design

Computing with Logic Gates

How are these logic functions actually computed in hardware?
@ Logic gates are constructed from transistors.
@ The output is a boolean function of inputs.
@ The gate responds continuously to changes in input with a
small delay.

tall
=
=
i
L
r
e

il ¢
Z

=

=

-
kg
o %o
3

3

How many of these do you really need?

CS429 Slideset 5: 7 Logic Design

Aside: Multiple-Input Gates

Some gates allow multiple inputs. For example, a 3-input AND is
essentially just a cascade of two 2-input ANDs.

W
X
i i

Z=WXY

3 input AND GATE

For which gates does it make sense to have extra inputs? For
which doesn’t it make sense?

CS429 Slideset 5: 8 Logic Design

Aside: Inverted Inputs/Outputs

A small circle on either the input or output of a gate means that
that signal is inverted. That is, it's as if there were an inverter
(not) gate there.

D
QDLE
‘;‘ij (A+ B)AB

What would an implies gate look like?

CS429 Slideset 5: 9 Logic Design

A Complex Function

Primitive boolean functions are
implemented by logic gates; more
complex functions, by
combinations of gates.

X
—_ = R R OO O Ol X
R) OO, =, OO

R O, O FRr O F O 0
—_ O O O K = =N

ij?@z

Z =1 || (B & C);

CS429 Slideset 5: 10 Logic Design

Another Circuit

A B C

= >

JUU

Which wires are connected and which are not? Can you see what
this circuit does?

CS429 Slideset 5: 11 Logic Design

Another Circuit

A B C

= >

JUU

Which wires are connected and which are not? Can you see what
this circuit does?
This is called a majority circuit. What function does it compute?

CS429 Slideset 5: 12 Logic Design

Sets of Logic Gates

It's pretty easy to see that any boolean function can be
implemented with AND, OR and NOT. Why? We call that a
functionally complete set of gates.

You can get by with fewer gates. How would you show each of the
following?

@ AND and NOT is complete.
@ OR and NOT is complete.
@ NAND is complete.

@ NOR is complete.

@ AND alone is not complete.
@ OR alone is not complete.

Often circuit designers will restrict themselves to a small subset of
gates (e.g., just NAND gates). Why would they do that?

CS429 Slideset 5: 13 Logic Design

Using Logic for Arithmetic

Suppose you wanted to do addition with logic. How might you go
about that?

CS429 Slideset 5: 14 Logic Design

Using Logic for Arithmetic

Suppose you wanted to do addition with logic. How might you go
about that?

Define a circuit (full adder) that does one step in an addition:

A | B | Cin |l Cout|S
00| O
010 1
A - 0O(1] O
Full =S 0|1 1
B g Adder - 110 0
cary—in camymout 10| 1
1 11] 0
1|1 1

CS429 Slideset 5: 15 Logic Design

Full Adder

The following circuit is a full
adder:

A | B | Cin |l Cout |S

A-p 0| 0] O 0 0

i D’QD—E olo| 1] o |1

- | o100 | o |1
%37 01 1 1 0

o 1{o| o | o |1

10 1 1 0

1|1 0 1 0

A half adder is a simpler circuit 1111 1 |1

with only inputs A and B.

CS429 Slideset 5: 16 Logic Design

Adding a Pair of 4-bit Ints

B I.- Ebs Az 1 1‘- B Iﬁl
Larm Camv |
Full C Full L Half
Adder ‘ Adder Adder
Carry l
¥ O I
R2 G &3 B

How do you subtract? How do you multiply?

CS429 Slideset 5: 17 Logic Design

Combinational Circuits

—_— M~
—_— R, ~=
. Combinational
ninputs — 7 - — > moutputs
2 circuit
— i

The box contains an acyclic network of logic gates.

@ Continuously responds to changes in inputs.

@ Outputs become (after a short delay) boolean functions of the
Inputs.

CS429 Slideset 5: 18 Logic Design

Bit Equality

The following circuit generates a 1 iff a and b are equal.

d

int eq = (a&&b) || (la&&!'b);
Can you design a simpler circuit to do this?

Hardware description languages (Verilog, VHDL)
@ Describe control, data movement, ...

@ “Compile” (synthesize) a hardware description into a circuit.

CS429 Slideset 5: 19 Logic Design

Verilog Example

One of the more widely used HDL's is Verilog:

module simp_circuit (A, B, C, x, y);
input A, B, C;
output x, vy;
wire e;
and gl (e, A, B);
not g2 (y, C);
or g3 (x, e, y);
endmodule

CS429 Slideset 5: 20 Logic Design

HCL

Hardware Control Language (HCL)
@ Very simple hardware description language.
@ Boolean operations have syntax similar to C logical operations.
@ We'll use it to describe control logic for processors.
Data types
@ bool: Boolean (a, b, ¢, ...)
@ int: words (A, B, C, ...)
@ Does not specify word size
Statements
@ bool a = bool-expr;

@ int A = int-expr;

CS429 Slideset 5: 21 Logic Design

HCL Operations

Boolean expressions
@ Logic operations: a && b,a || b, !a

@ Word comparisons: A == B, A !'= B, A < B, A <= B,
A > B A > B

@ Set membership: A in {B, C, D}

Word expressions
@ Case expressions: [a: A; b: B; c: C]
@ Evaluate Boolean expressions a, b, c in sequence

@ Return corresponding word expression for first successful
Boolean evaluation.

CS429 Slideset 5: 22 Logic Design

Word Equality

b31—

a31__ |

Bit equal

eq31

b30—

a30—

Bit equal

eq30

bl—

al—

Bit equal

eql

-

b0——

a0 —

Bit equal

eq0

Word-level representation:

HCL Representation:
Iz(q- = (:j\ == IB:)
Assume 32-bit word size.

HCL representation
@ Equality operation

@ Generates Boolean value

CS429 Slideset 5: 23 Logic Design

Bit Multiplexor
S

B

e

HCL Expression:

int out = (s && a) || (!'s && b);

@ Control signal s selects between two inputs a and b.

@ OQOutput is a when s == 1, and b otherwise.

CS429 Slideset 5: 24 Logic Design

Word Multiplexor

Word-level representation:

S_W ‘

Mux
:Z>7out3 1 B

b31

B
o)

Out

HCL Representation:

int OQut = [

b0

T

Select input word A or B
depending on control signal S.

CS429 Slideset 5: 25 Logic Design

e
-

a0

Word Examples

Minimum of 3 words int Min3 = [

—_— A <=B && A <= C : A;
<= <= : ;

C Min3 B A && B C : B;
B—— MIN3 —— 1 . C;
A—y]

—

4—way Multiplexor int Out4 = [

- sl && !sO : DO;
SO sl : D1;

_ N 1sO : D2;
DO 1 : D3;
Dl —— Out4]
Do MUX4
D3 —

What do these do?

CS429 Slideset 5: 26 Logic Design

Constructing an ALU

An ALU is an Arithmetic Logic Unit

@ Multiple functions: add, subtract, and, xor, others
@ Combinational logic to perform functions.

@ Control signals select function to be performed.

@ Modular: multiple instances of 1-bit ALU

CS429 Slideset 5: 27 Logic Design

A 4-bit ALU

A[ﬂ:a} B{ﬂ:a} S2 | 91 | 9p | FUnction (k)
0|00 A+B
S, 2 0] 0|1 A-B
S, C QA | .8 A-1
% ¥ of1]1 A+
L 1]0]|o0 A N B
(0:3) 1lo|1] AVB
Z, C and V are status flags 11110 NOT A
& by o i[1] a@s
V = Overflow

@ Combinational logic: continuously responding to inputs.

@ Control signal selects function computed; Y86 ALU has only 4
arithmetic/logical operations.

@ Also computes values of condition codes. Note these are not
the same as the three Y86 flags:

o OF: overflow flag
o ZF: zero flag
o SF: sign flag

CS429 Slideset 5: 28 Logic Design

The Y86 ALU in HCL

X

<s1,s0>=00

A

L ——xiy
U

Yy o
/LOF
I—ZF

SF

int Out = [
Isl && !'s0:
Isl && sO :
sl && !'s0:

1
1;

<s1,s0>=01

A
U

Yy — <
/LOF
|—ZF

X+Y;
X-Y;
X&Y ;
X°Y;

SF

<s1,s0>=10
X
A
L ——x&yY
U
Y — <
/LOF
ZF
SF

<sl,s0>=11

X

A
U

1

SF

CS429 Slideset 5: 29 Logic Design

Sequential Logic

How would you design a circuit that records a bit? What does that
even mean?

CS429 Slideset 5: 30 Logic Design

Sequential Logic

How would you design a circuit that records a bit? What does that
even mean?

Ideally, you'd like a To store a new value:
bi-stable device (latch) @ Line Enable should be low (0).
as follows: . .
Q Place the bit to store on line Data.
Data o Q Raise Enable to high (1).
— @ The value on line Data is stored in
— the device.
Enable
@ Lower Enable to low (0).
The value on line Q is Q Reading Q returns the stored bit

the current stored value. until next store.

Such “state-holding” devices are called sequential logic as opposed
to combinational logic.

CS429 Slideset 5: 31 Logic Design

SR Flip Flop: Storing a Bit

Pulse (temporarily raise) the R

An SR flip flop is a step in the (reset) input to record a 0.
direction of a latch. Pulse the S (set) input to record
al.
Q
Characteristic table
S | R | Qnext | Action
a 00 Q hold state
S 0|1 0 reset
110 1 set
1|1 X not allowed

This is not very convenient because it requires pulsing either S or

R to record a bit.

CS429 Slideset 5: 32 Logic Design

Gated D Latch: Store and Access One Bit

a
[
Higher level representation
D Latch Truth table
E/CP | D|Q Q | Comment
D Qr—— 0 X | Q| @ | No change
1 O 0| 1 | Reset
cp 9 1 1| 1] 0| Set

E (enable) and CP (clock pulse) are just two
names for the same input.

CS429 Slideset 5: 33 Logic Design

A 4-bit Register

D0—Ip Q—qQo
e ol

4 D latches: DI—p Q—0qI
@ All share the E/CP (aka WE e ol

or Write Enable) input

@ D0-D3 are the data input D2—1p ol—aq2
@ Q0-Q3 are the output

e CP Ql

D3 D Q——Q3

CP —e—CP Q—

CS429 Slideset 5: 34 Logic Design

Register File Abstraction

Suppose we want eight 4-bit
registers and one output port.
Register file provides the CPU

. WE
with temporary, fast storage.
/1
@ N registers.
@ Each of K bits. Data in
@ L output ports. o Data out
Reg /4
/3

CS429 Slideset 5: 35 Logic Design

Race-through Condition with D Latches

Write Enable (WE) must be held at “1” long enough to allow:

@ Data to be read;
@ Operation (e.g., addition) to be performed;

@ Result to be stored in target register.

Y

Register
File ALU

Y

Y

CS429 Slideset 5: 36 Logic Design

Edge Triggered Flip Flops

An edge-triggered flip-flop changes states either at the positive
edge (rising edge) or at the negative edge (falling edge) of the
clock pulse on the control input.

@ A register is made up of several flip flops, each providing
storage and access for an individual bit.

@ A register file is made up of several registers and control logic

CS429 Slideset 5: 37 Logic Design

Clocking

The clock acts to enforce timing control on the chip.
@ An integral part of every synchronous system.

@ Can be global

Inputs ——— = Chilputs
Combinational
ciredit

Flip-fiops
Closs pulﬁﬁﬂr

{a] Block dagram

(k) Tirnkng diagram of clock palsas

Clock Frequency = 1 / clock period
@ Measured in cycles per second (Hertz)
@ 1 KHz = 1000 cycles / second
@ 1ns (107 seconds) = 1GHz (10°) clock frequency
o

Higher frequency means faster machine speed.

CS429 Slideset 5: 38 Logic Design

Random Access Memory (RAM)

Stores many words

@ Conceptually, a large array where each row is uniquely
addressable.

@ In reality, much more complex to increase throughput.

@ Multiple chips and banks, interleaved, with multi-word
operations.

Many implementations

@ Dynamic (DRAM) is large, inexpensive, but relatively slow.

o 1 transistor and 1 capacitor per bit.

@ Reads are destructive.

o Requires periodic refresh.

@ Access time takes hundreds of CPU cycles.

@ Static (SRAM) is fast but expensive.

@ 6 transistors per bit.
@ Streaming orientation.

CS429 Slideset 5: 39 Logic Design

Computation
@ Performed by combinational logic.
@ Implements boolean functions.

@ Continuously reacts to inputs.

Storage

@ Registers: part of the CPU.

o Each holds a single word.
o Used for temporary results of computation.
o Loaded on rising clock.

@ Memory is much larger.

@ Variety of implementation techniques.

CS429 Slideset 5: 40 Logic Design

