A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers). They’re in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we’d like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR
Chapter 2: outline

2.1 principles of network applications
 ▪ app architectures
 ▪ app requirements
2.2 Web and HTTP
2.3 FTP
2.4 electronic mail
 ▪ SMTP, POP3, IMAP
2.5 DNS

2.6 P2P applications
2.7 socket programming with UDP and TCP
DNS: domain name system

people: many identifiers:
- SSN, name, passport #

Internet hosts, routers:
- IP address (32 bit) - used for addressing datagrams
- “name”, e.g., www.yahoo.com - used by humans

Q: how to map between IP address and name, and vice versa?

Domain Name System:
- **distributed database** implemented in hierarchy of many **name servers**
- **application-layer protocol:** hosts, name servers communicate to resolve names (address/name translation)
 - note: core Internet function, implemented as application-layer protocol
 - complexity at network’s “edge”
DNS: services, structure

DNS services
- hostname to IP address translation
- host aliasing
 - canonical, alias names
- mail server aliasing
- load distribution
 - replicated Web servers: many IP addresses correspond to one name

why not centralize DNS?
- single point of failure
- traffic volume
- distant centralized database
- maintenance

A: *doesn’t scale!*
client wants IP for www.amazon.com; 1st approx:

- client queries root server to find com DNS server
- client queries .com DNS server to get amazon.com DNS server
- client queries amazon.com DNS server to get IP address for www.amazon.com
DNS: root name servers

- contacted by local name server that can not resolve name
- root name server:
 - contacts authoritative name server if name mapping not known
 - gets mapping
 - returns mapping to local name server

13 root name "servers" worldwide

- a. Verisign, Los Angeles CA (5 other sites)
- b. USC-ISI Marina del Rey, CA
- c. Cogent, Herndon, VA (5 other sites)
- d. U Maryland College Park, MD
- e. NASA Mt View, CA
- f. Internet Software C. Palo Alto, CA (and 48 other sites)
- g. US DoD Columbus, OH (5 other sites)
- h. ARL Aberdeen, MD
- i. Netnod, Stockholm (37 other sites)
- j. Verisign, Dulles VA (69 other sites)
- k. RIPE London (17 other sites)
- l. ICANN Los Angeles, CA (41 other sites)
- m. WIDE Tokyo (5 other sites)
TLD, authoritative servers

top-level domain (TLD) servers:
- responsible for com, org, net, edu, aero, jobs, museums, and all top-level country domains, e.g.: uk, fr, ca, jp
- Network Solutions maintains servers for .com TLD
- Educause for .edu TLD

authoritative DNS servers:
- organization’s own DNS server(s), providing authoritative hostname to IP mappings for organization’s named hosts
- can be maintained by organization or service provider
Local DNS name server

- does not strictly belong to hierarchy
- each ISP (residential ISP, company, university) has one
 - also called “default name server”
- when host makes DNS query, query is sent to its local DNS server
 - has local cache of recent name-to-address translation pairs (but may be out of date!)
 - acts as proxy, forwards query into hierarchy
DNS name resolution example

- host at cis.poly.edu wants IP address for gaia.cs.umass.edu

iterated query:

- contacted server replies with name of server to contact
- “I don’t know this name, but ask this server”
DNS name resolution example

recursive query:

- puts burden of name resolution on contacted name server
- heavy load at upper levels of hierarchy?
DNS: caching, updating records

- once (any) name server learns mapping, it **caches** mapping
 - cache entries timeout (disappear) after some time (TTL)
 - TLD servers typically cached in local name servers
 - thus root name servers not often visited
- cached entries may be **out-of-date** (best effort name-to-address translation!)
 - if name host changes IP address, may not be known Internet-wide until all TTLs expire
- update/notify mechanisms proposed IETF standard
 - RFC 2136
DNS records

DNS: distributed db storing resource records (RR)

RR format: \((\text{name}, \text{value}, \text{type}, \text{ttl})\)

type=A
- **name** is hostname
- **value** is IP address

type=NS
- **name** is domain (e.g., foo.com)
- **value** is hostname of authoritative name server for this domain

type=CNAME
- **name** is alias name for some “canonical” (the real) name
- **value** is canonical name

type=MX
- **value** is name of mailserver associated with **name**
DNS protocol, messages

- *query* and *reply* messages, both with same *message format*

msg header
- **identification**: 16 bit # for query, reply to query uses same #
- **flags**:
 - query or reply
 - recursion desired
 - recursion available
 - reply is authoritative

<table>
<thead>
<tr>
<th>Identification</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td># questions</td>
<td># answer RRs</td>
</tr>
<tr>
<td># authority RRs</td>
<td># additional RRs</td>
</tr>
</tbody>
</table>

- questions (variable # of questions)
- answers (variable # of RRs)
- authority (variable # of RRs)
- additional info (variable # of RRs)
DNS protocol, messages

<table>
<thead>
<tr>
<th>Identification</th>
<th>Flags</th>
</tr>
</thead>
<tbody>
<tr>
<td># questions</td>
<td># answer RRs</td>
</tr>
<tr>
<td># authority RRs</td>
<td># additional RRs</td>
</tr>
</tbody>
</table>

- **Identification**: 2 bytes
- **Flags**: 2 bytes
- **Questions**: (variable # of questions)
- **Answers**: (variable # of RRs)
- **Authority**: (variable # of RRs)
- **Additional Info**: (variable # of RRs)

- **Name, type fields for a query**
- **RRs in response to query**
- **Records for authoritative servers**
- **Additional “helpful” info that may be used**
Inserting records into DNS

- example: new startup “Network Utopia”
- register name networkuptopia.com at DNS registrar (e.g., Network Solutions)
 - provide names, IP addresses of authoritative name server (primary and secondary)
 - registrar inserts two RRs into .com TLD server:
 (networkutopia.com, dns1.networkutopia.com, NS)
 (dns1.networkutopia.com, 212.212.212.1, A)
- create authoritative server type A record for www.networkuptopia.com; type MX record for networkutopia.com
Attacking DNS

DDoS attacks
- Bombard root servers with traffic
 - Not successful to date
 - Traffic Filtering
 - Local DNS servers cache IPs of TLD servers, allowing root server bypass
- Bombard TLD servers
 - Potentially more dangerous

Redirect attacks
- Man-in-middle
 - Intercept queries
- DNS poisoning
 - Send bogus relies to DNS server, which caches

Exploit DNS for DDoS
- Send queries with spoofed source address: target IP
- Requires amplification
Chapter 2: outline

2.1 principles of network applications
 - app architectures
 - app requirements
2.2 Web and HTTP
2.3 FTP
2.4 electronic mail
 - SMTP, POP3, IMAP
2.5 DNS
2.6 P2P applications
2.7 socket programming with UDP and TCP
Pure P2P architecture

- no always-on server
- arbitrary end systems directly communicate
- peers are intermittently connected and change IP addresses

Examples:
- file distribution (BitTorrent)
- Streaming (KanKan)
- VoIP (Skype)
Chapter 2: summary

our study of network apps now complete!

- application architectures
 - client-server
 - P2P
- application service requirements:
 - reliability, bandwidth, delay
- Internet transport service model
 - connection-oriented, reliable: TCP
 - unreliable, datagrams: UDP
- specific protocols:
 - HTTP
 - FTP
 - SMTP, POP, IMAP
 - DNS
 - P2P: BitTorrent, DHT
- socket programming: TCP, UDP sockets
Chapter 2: summary

most importantly: learned about protocols!

- typical request/reply message exchange:
 - client requests info or service
 - server responds with data, status code
- message formats:
 - headers: fields giving info about data
 - data: info being communicated

important themes:
- control vs. data msgs
 - in-band, out-of-band
- centralized vs. decentralized
- stateless vs. stateful
- reliable vs. unreliable msg transfer
- “complexity at network edge”