Errata on “Measuring Experimental Error in Microprocessor Simulation”

Rajagopalan Desikan*, Doug Burger’, Stephen W. Keckler®, Llorenc Cruz}, Fernando Latorret,
Antonio Gonzalezt and Mateo Valero?

Computer Architecture and Technology Laboratory

fDepartment of Computer Sciences
*Department of Elec. & Computer Engineering
The University of Texas at Austin

1 History and Summary

This short paper serves to correct the errors contained in the
paper entitled “Measuring Experimental Error in Micropro-
cessor Simulation,” presented at the 2001 International Sym-
posium on Computer Architecture (ISCA-28) [2]. That paper
contained a study of a validated microarchitectural simulator
called si m al pha, and included a case study that compared
results obtained from a configuration of si m al pha to those
reported by Cruz et al. [1]. The comparison showed a disparity
in the results between the two studies, which was invalid due
to an error in the way the operand bypass network of si m
al pha was modified.

In this paper, we present a revised comparison that mod-
els the bypass network in si m al pha consistently with the
work of Cruz et al. (henceforth called the reference study). Af-
ter explaining the bypassing issues in detail, we show that the
new comparison between the revised results and the reference
study shows similar trends, thus validating the accuracy of the
reference study.

In addition, we (the authors of the si mt al pha study)
would like to state explicitly that we regret any professional
harm caused to the authors of the reference study (Cruz,
Gonzalez, Valero, and Topham). The original intent was to
show that different simulators modeling similar targets could
cause different conclusions to be drawn, thus emphasizing the
need for consistency across simulators and research efforts.
Since the comparison with the reference study was made with
a (modified) validated simulator, and the two sets of results
showed a different trend (because of the error in modeling the
bypass), it is natural to infer that the reference study was in-
correct. We thoughtlessly published the comparison without
contacting the authors of the reference study beforehand. We
apologize to them both for implying an error in their (correct)
methodology and for the discourteous way in which it was pre-
sented.

2 Partial bypassing

The bypass networks from the output of functional units to ear-
lier stages in the pipeline are essential for achieving high ILP.

!Department d’ Arquitectura de Computadors

Universitat Politecnica de Catalunya
Barcelona, Spain

Compared to current-generation machines, future machines
with deeper pipelines, wider issue cores, and larger wire/gate
delay ratios, have been shown to have unscalable bypass net-
works [4]. That trend has led some researchers to consider
partitioned architectures [3], and others to consider partial by-
pass networks.

To illustrate different bypass configurations, Figure 1 shows
a number of different bypass configurations for a single-issue
pipeline, modeled after the Alpha 21264. The stages are Fetch,
Slot, Map, Issue, Register Read, Execute, and Writeback. An
arc from the end of one stage to the beginning of another in-
dicates a bypass path. Results are forwarded along that path,
between the two stages connected by the arc. A full-bypass
pipeline is one in which the value just computed in the execute
stage can be forwarded to any previous stage between the issue
and execute stages.

Figure 1a shows a pipeline with a single-cycle register file
access. Since the pipeline supports full bypassing (from the
execute “E” stage to the register read “R” stage), instructions
B and C, which are both dependent on instruction A, can issue
in each of the two cycles following the issue of instruction A.

Figure 1b shows a pipeline, with full bypass, for which the
register file takes two cycles to access. Completed instructions
may be bypassed to any of the intermediate latches, allowing
consumer instructions B and C to again issue in the two cy-
cles succeeding producer instruction A. We will refer to this
organization as FB, for “full bypass”.

Figures 1c and d show two different partial bypassing
pipelines, in which the set of bypass paths is incomplete, re-
stricting the cycles during which consumer instructions may be
issued while a producer instruction is in flight. Both pipelines
incur two-cycle register read delays, and each pipeline sup-
ports bypassing to one of those two stages. Figure 1c shows
the partial bypass scheme measured by Cruz et al. [1]. The by-
pass path goes to stage R1, but not stage R2. Thus, a consumer
instruction B cannot issue in the cycle immediately following
the issue of the producer instruction A, as shown by the grey-
shaded pipeline bubble. This scheme has the advantage that
the issue control logic and scheduler are simple—once an in-
struction is woken up, it will always be possible to issue it. We
call this scheme PB- R1.

(a) One-cycle register file access with bypass

Cycle: 1 2 3 4 5 6 7 8 9 10 n

A [FlsIm] rTr]TEeRv]
- T
| Issue |—> R;Qe':;e' m—»l Writeback B: [FTsIm] rTrR¥ETw]
c [FlsIml i JTr]efw]
(b) Two-cycle register file access with full bypassing
A [FTsIwm] Im]r]e]
T\
| Issue |—>Reg.Read11_—:|-.‘Reg.Read2H__:|—>{ Execute }J_,lwmeback B: [FlsIm]rrrYe]w]
c [FIsIm]rm¥e]ew]
(c) Two-cycle register file access with partial bypass to R1
A [FlsIm] i r]r]EeRv]
Il
| Issue |—>Reg4Read1 Reg.Reale—» Execute }J—blwmeback B [FTsm] [" [rdm]e]w]
c [FTsm] [Irmr]e]w]
(d) Two-cycle regsiter file access with partial bypass to R2
A [F]sIm[i Jr]r]EeRv]
]
| Issue |—>Reg4Read1|—>|Reg.ReadZ Execute Writeback B: | F | s | M |] | R1 | R2 +/E | w |
[

Flsm] [[rm]r]e]w]

Figure 1: Different bypass implementations

In Figure 1d, we show another possible partial bypass con-
figuration, called PB- R2. In this configuration, computed re-
sults may be bypassed to the last stage of the register read, but
not the first. This version of partial bypassing will offer higher
performance (as dependent, single-cycle instructions may be
issued back-to-back), at the cost of increased scheduler com-
plexity. Schedulers are simpler to design if an instruction is
always ready to issue once it is first ready to issue. Scheduler
complexity is increased if it has to support an instruction being
ready to issue, then not ready, then ready again as in PB- R2.
The consumer instruction B is shown to issue in the cycle fol-
lowing the issue of its parent instruction, but then in the next
cycle, a one-cycle bubble must be inserted into the pipeline
before C can be issued, as the result of A cannot be forwarded
to stage R1.

Finally, we note that organization (d) is not feasible if the
bypass network itself consumes the bulk of a clock cycle. If
the bypass network takes a cycle, then the most aggressive by-
passing organization possible would resemble organization (c)
in terms of pipeline bubbles and issue restrictions.

3 Revised results

Figure 2 summarizes the set of experiments originally pub-
lished in the si m al pha paper [2]. The numbers presented
herein are higher than those reported previously [2], due to
fixes intended to increase the simulator accuracy, but they do
not differ qualitatively. For brevity, we show only three har-
monic means, instead of individual benchmarks. The bars rep-
resent the means of the five integer benchmarks, the five float-
ing point benchmarks, and all ten benchmarks used, respec-
tively.

We implemented a partial bypass scheme, on an 8-wide
issue configuration, and compared the performance trends
across a one-cycle register file delay, a two-cycle register file
delay with full bypassing, and a two-cycle register file delay
with partial bypassing. Inthe si m al pha paper, a significant
discrepancy in the trends and the differential in the absolute
performance of the two simulators was noted. The disparity
was not explained, allowing the reader to conclude that it was
due to either subtle differences in the organization of the simu-
lated microarchitectures, or inaccurate modeling in one of the
two simulators.

The disparity was due to neither factor; it is attributable to
the fact that the implemented bypass scheme was PB- R2, in-
stead of PB- R1. The authors of the si m al pha paper in-
correctly interpreted the bypass explanation in paragraph 3,
section 2 of [1] to mean the last stage in the register file ac-
cess, instead of the last stage furthest from the execution units
from which the result is forwarded. Thus, in the original si m
al pha implementation, dependent instructions can be issued
back-to-back, whereas in the Cruz et al. implementation, a
minimum one-cycle bubble always exists between a producer
instruction and its consumer.

Figure 3 shows the same comparison as in the si m al pha
paper, but with the PB- R1 scheme implemented, and a cor-
rect comparison. We note that, with the new comparison, we
see similar drops in IPC when the bypassing is restricted to
one stage in a two-cycle register file access. This correspon-
dence between the two studies is shown in Figure 4, in which
the IPCs of each study have been normalized to their respec-
tive base cases of single-cycle register file access. This figure
shows that the relative drop due to the restricted bypass is al-
most exactly identical in the two studies for the integer bench-

Cruzetd.

34 — 1 cycle, full bypass
== 2 cycle, full bypass
== 2 cycle, partia bypass

sim-alpha 8-way (old)
mmm 1 cycle, full bypass
14 mmm 2 cycle, full bypass
mmm 2 cycle, partia bypass

Instructions per Cycle
N
1

ALL SPECINT SPECFP

Figure 2: Revision of the original partial bypassing compari-
son described on p. 267 of the ISCA-28 proceedings [2].

Cruzetd.

34 = 1 cycle, full bypass
== 2 cycle, full bypass
== 2 cycle, partial bypass

sim-alpha 8-way (new)
==] cycle, full bypass
14 mmm 2 cycle, full bypass
mmm 2 cycle, partial bypass

Instructions per Cycle
~
1

ALL SPECINT SPECFP

Figure 3: Correct partial bypass comparison.

marks. The relative drop in floating-point benchmark perfor-
mance is significantly larger for the si m al pha variant than
for the reference study.

4 Discussion

Both simulators in the original comparison simulated what
their designers intended them to simulate. However, the par-
tial bypass comparison presented was invalid due to the er-
ror in modeling the wrong bypassing configuration in si m
al pha. We rectified the comparison by comparing 2-cycle
register file accesses with full bypass networks to partial by-
passing in which operands are forwarded only to the first stage
of the register file access. After the revision, the two simulators
both showed identical performance drops for the SPECINT95
benchmarks, and large slowdowns for the SPECFP95 bench-
marks.

The motivation for striving for more consistent simulation
results across different simulators is not to obtain identical
results in terms of absolute performance, but to confirm that
added optimizations result in similar performance trends. We
saw such a matching performance trend across two simulators
in this revised comparison. We have seen other such corre-
spondences; as reported in the original study [2], the si m
out or der simulator from the SimpleScalar tool suite shows
some similar performance trends to si m al pha. For exam-
ple, the relative performance drops in the two simulators are
consistent when the three-cycle L1 D-cache latency is reduced
to one cycle.

A simulator that models all of the complexities in an actual
microarchitecture can play a useful role, by providing a lower-
level point of comparison to measure trends. However, these

1 ALL SPECINT SPECFP
O 104+ R I
o]
B o 2 cyclefull
N o PBtoR1
E 1 = PBtoR2
5 0.5
S]
0.0
% %, % %, % %
g % z % v %
% % % % % %

Figure 4: Normalized partial bypass comparison.

complexities of a real implementation may interfere with the
evaluation of new, higher-level ideas, particularly because the
actual implementations are so carefully tuned. Higher-level
simulators such as si m out or der and the reference simu-
lator of Cruz et al., are necessary in addition to validated simu-
lators, as particular implementation choices may affect results
as equally as fundamental implementation constraints at the
low level. When both levels show similar trends, as in this
study, the researcher may be confident that the results gained
are not the artifact of an idiosyncrasy of one particular simula-
tor.

Acknowledgments

We thank Mark Hill for his feedback on a draft of this paper.

References

[1] José-Lorenzo Cruz, Antonio Gonzalez, Mateo Valero, and
Nigel P. Topham. Multiple-banked register file architec-
tures. In Proceedings of the 27th Annual International
Symposium on Computer Architecture, pages 316-325,
June 2000.

[2] Rajagopalan Desikan, Doug Burger, and Stephen W.
Keckler. Measuring experimental error in microprocessor
simulation. In Proceedings of the 28th Annual Interna-
tional Symposium on Computer Architecture, June 2001.

[3] R. Kessler, E. McLellan, and D. Webb. The alpha 21264
microprocessor architecture. In Proceedings of Interna-
tional Conference on Computer Design, pages 90-105,
October 1998.

[4] Subbarao Palacharla, Norman P. Jouppi, and J. E. Smith.
Complexity-effective superscalar processors. In Proceed-
ings of the 24th Annual I nternational Symposiumon Com-
puter Architecture, pages 206-218, June 1997.

