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ABSTRACT
This paper explores a new technique called coherence de-

coupling, which breaks a traditional cache coherence proto-
col into two protocols: a Speculative Cache Lookup (SCL)
protocol and a safe, backing coherence protocol. The SCL
protocol produces a speculative load value, typically from an
invalid cache line, permitting the processor to compute with
incoherent data. In parallel, the coherence protocol obtains
the necessary coherence permissions and the correct value.
Eventually, the speculative use of the incoherent data can be
verified against the coherent data. Thus, coherence decou-
pling can greatly reduce — if not eliminate — the effects of
false sharing. Furthermore, coherence decoupling can also
reduce latencies incurred by true sharing. SCL protocols
reduce those latencies by speculatively writing updates into
invalid lines, thereby increasing the accuracy of speculation,
without complicating the simple, underlying coherence pro-
tocol that guarantees correctness.

The performance benefits of coherence decoupling are eval-
uated using a full-system simulator and a mix of commercial
and scientific benchmarks. Our results show that 40% to
90% of all coherence misses can be speculated correctly, and
therefore their latencies partially or fully hidden. This capa-
bility results in performance improvements ranging from 3%
to over 16%, in most cases where the latencies of coherence
misses have an effect on performance.

Categories and Subject Descriptors: C.1.2 [Processor
Architectures]: Multiple Data Stream Architectures (Mul-
tiprocessors), B.3.2 [Memory Structures]: Design Styles –
Shared memory, C.4 [Performance of Systems] – Design stud-
ies

General Terms: Performance, Design, Experimentation,
Measurement

Keywords: Coherence decoupling, speculative cache lookup,
coherence misses, false sharing
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1. INTRODUCTION
Multiprocessing and multithreading are becoming ubiq-

uitous, even on single chips, despite growing system-wide
communication latencies. Inter-processor communication in
a shared-memory multiprocessor is carried out using a cache
coherence protocol that enables the correct sharing of data
among the multiple processors. Since the cache coherence
protocol is a primary contributor to the latency of inter-
processor communication, its design is arguably the most
important aspect when designing a shared-memory multi-
processor. These protocols have been heavily studied by
researchers for decades.

Reductions in average communication latencies can be
achieved by tuning coherence protocols for specific commu-
nication patterns and/or applications. However, these opti-
mizations for specific cases add to the complexity of the pro-
tocol, since the protocol must also ensure the correctness of
data sharing in each specific case. Prior research has shown
that large reductions in average communication latency are
possible, but at the cost of protocols and systems that are
too complex to be feasible. A competing approach requires
the application programmers to tune their applications to
work well with simpler protocols — for example, padding
all data structures to reduce false sharing. This solution
is equally problematic as it decreases parallel programmers’
productivity considerably.

An important trend in computer architecture in the past
two decades has been the use of speculation: rather than in-
curring the latency of waiting for the outcome of an event,
the outcome is predicted, allowing execution to proceed with
the prediction. The prediction is verified when the outcome
of the event is known, and corrective action is taken if the
prediction was wrong. Speculative execution has been suc-
cessfully used to overcome performance hurdles in a variety
of scenarios, for example, branch instructions (control specu-
lation) [34, 41], ambiguous dependences (dependence specu-
lation) [30], parallelization (speculative parallelization) [40],
and locking overheads (speculative lock elision) [35].

In this paper we propose a technique called coherence de-

coupling, which applies speculation to the problem of long-
latency shared-memory communication. This technique re-
duces the effect of these latencies, but neither exacerbates
the programmer’s task nor makes correctness of the coher-
ence protocol more difficult to ascertain. Coherence decou-
pling breaks the communication of a shared value into two
constituent parts: (i) the acquisition and use of the value,
and (ii) the communication of the coherence permissions
that indicate the correctness of the value and thus the exe-



cution. In traditional cache coherence protocols, these two
aspects of communication have been merged into a single
protocol; obtaining the coherence permissions must strictly
occur before use of the data, thus serializing the two. Coher-
ence decoupling enables separate protocols for the specula-
tive use and eventual verification of the data. A Speculative

Cache Lookup (or SCL) protocol provides a speculative value
as quickly as possible, while in parallel the coherence proto-

col executes and eventually produces the correct value along
with the requisite access permissions.
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Figure 1: Coherence Decoupling

Separating the SCL protocol and the coherence protocol
allows each to be tuned independently. This capability en-
ables novel optimizations that permit higher performance
with less complexity than traditional protocol optimizations.
The separation also allows the two to be overlapped. The
top part of Figure 1 shows the timing of events, with a con-
ventional coherence protocol, for a read to a cache line that
requires a change in coherence permissions. The cache co-
herence operation is followed by the arrival of the line with
the correct data and the appropriate permissions, at which
point the data can be used. The bottom part of Figure 1
shows the timing of events in a system with coherence de-
coupling. Here the SCL protocol could speculatively return
the data earlier, for example, if a tag match occurs in a lo-
cal cache (even if the line is invalid), while simultaneously
launching the invalid-to-shared upgrade via the coherence
protocol. When the coherence protocol returns the permis-
sions and the correct value, the value is compared to the
value returned by the SCL protocol. If the values are iden-
tical, the speculation was correct, and the coherence latency
will have been partially or fully overlapped with useful com-
putation (“best case” in the figure). If the SCL and coher-
ence protocol values differ, a full or partial rollback must
occur, resulting in a performance loss compared to no spec-
ulation (“worst case” in the figure). The utility of coherence
decoupling, as with all speculation policies, depends on the
ratio of correct to incorrect speculations, the benefit of a
successful speculation, and the cost of recovery.

In this paper, we explore different SCL protocols with
varying speculation accuracies, while maintaining a simple,
invalidation-based coherence protocol for correctness. The
first SCL protocol we explore merely accesses the first value
it finds (e.g., in the local cache) for which the tag matches,
regardless of the coherence state of the line. This protocol
greatly reduces performance losses due to false sharing, since
falsely-shared values will not be changed by the owner of the
line, thus guaranteeing successful speculation.

The next set of SCL protocols we explore are variants

of a write-update protocol. This series of protocols trades
off the accuracy of the values provided by the SCL pro-
tocol with the extra traffic used to distribute speculation-
improving write values. Unlike a canonical cache-coherent,
write-update protocol, which suffers from correctness prob-
lems and race conditions, variants of write-update SCL pro-
tocols are simple and correct. These SCL protocols change
data only in invalid lines to maximize the chances of specu-
lative cache lookups being correct, and since they are spec-
ulative, they can roll back on any error.

In Section 2, we describe related work in multiprocessor
speculation, describing how coherence decoupling extends
prior work in several new directions. In Section 3, we de-
scribe the coherence decoupling framework, correctness is-
sues, and the set of SCL protocols that we study in this
paper. In Section 4, we describe the simulation environ-
ment that we use, profile shared-memory benchmark miss
patterns to identify the performance potential of coherence
decoupling, and evaluate the performance of a number of
SCL protocols. We conclude in Section 5 with a discussion
of why we believe that coherence decoupling will be an im-
portant technique for future processors and systems.

2. PRIOR WORK
The prior research most relevant to coherence decoupling

falls into three broad categories: (1) customized coherence
protocols, (2) speculative coherence operations, and (3) spec-
ulation on the outcome of events in a multiprocessor execu-
tion.

Customized coherence protocols attempt to specialize un-
derlying coherence protocols to reduce communication and
coherence latencies for special cases. The Stanford Dash
multiprocessor [23] included directory protocol optimizations
for specific sharing patterns, as did the pairwise sharing pro-
tocol in the Scalable Coherent Interface [15], and migra-
tory sharing protocols [3, 4, 42]. Other proposed protocols
adapt to different sharing patterns [5, 43], or trade-off write-
invalidate and write-update protocols [2, 31, 37].

A different approach exposes coherence protocols to soft-
ware; cooperative shared memory [14] used software direc-
tives to allow applications to guide the coherence protocols
with check-in and check-out primitives. Exposure to soft-
ware reached its zenith with the Stanford Flash [19] and
Wisconsin Tempest/Typhoon [38], which enabled software
to customize coherence protocols on a per-application ba-
sis [7]. These research directions were discontinued as it be-
came apparent that protocol customization was too difficult
for most programmers.

Speculative coherence operations are in a sense the con-
verse of the coherence decoupling approach. Coherence de-
coupling performs speculative computation to reduce the
need for extra coherence operations or optimizations. Spec-
ulative coherence operations instead speculatively initiate
extra coherence messages (e.g., invalidates or upgrades) in
the base protocol to reduce the latency of shared accesses
and thus the need for speculative computation. Lebeck and
Wood proposed Dynamic Self Invalidation [22], in which pro-
cessors speculatively flush their blocks based on access his-
tory, reducing the latency of later invalidations by remote
writers. Mukherjee and Hill proposed a “coherence message
predictor” [32] that initiated coherence messages specula-
tively. Kaxiras and Goodman extended this approach with
PC-indexed tables rather than address-indexed tables [17].



Lai and Falsafi restricted these tables to holding patterns of
memory demand requests only [20], thus providing a more
effective predicted stream of coherent block read requests.
They also replaced the access counts used in Dynamic Self-
Invalidation with two-level adaptive prediction in a “last-
touch predictor” [21]. Finally, Kaxiras and Young explored
a range of policies to predict the set of sharers of a given
cache line [18], as did Martin et al. [26] with “destination
set prediction.” Martin et al. also proposed token coher-
ence [27] which, like coherence decoupling, breaks a proto-
col into separate performance and correctness protocols, but
which does not employ speculation to overlap computation
and coherence operations.

The prior work most similar to coherence decoupling fits
into two categories. The first category is speculative synchro-

nization, in which the outcome of a synchronization event
is speculated. For example, a lock is speculated to be un-
held, permitting entry into critical sections [29, 35, 36]. The
similarity to coherence decoupling is that both techniques
employ speculative access to shared variables. With spec-
ulative synchronization, however, speculation is limited to
locks only. Temporally silent stores and the MESTI proto-
col [25], a proposed alternative to speculative synchroniza-
tion, exploits the predictable behavior of the values of lock
variables to reduce the coherence protocol overhead in a lock
handoff, but is neither a speculative protocol, nor does it
launch speculative operations.

The second category of event outcome speculation tech-
niques use speculation to overcome the performance lim-
itations of strong memory models [9, 12, 33, 44]. These
techniques speculate that a memory model (e.g., sequential
consistency) will not be violated if memory references are
executed in an optimistic fashion. Memory operations that
have been carried out optimistically are buffered and these
buffers are checked to see if the optimistic execution has
resulted in a possible violation of the memory consistency
model [10]. Execution is rolled back in case of a violation.
This form of speculative execution is widely used in commer-
cial multiprocessors today, but is significantly less aggressive
than coherence decoupling.

3. COHERENCE DECOUPLING
Coherence decoupling separates a cache coherence proto-

col into two parts: (i) a speculative cache lookup (SCL) pro-
tocol, which returns a speculative value that can be used for
further computation, and (ii) a coherence protocol, which
returns the correct value (as defined by the memory consis-
tency model) and the requisite permissions to use the value.
If the SCL protocol can return a value faster than the co-
herence protocol, the computation using the value and the
coherence operations can be overlapped. Higher accuracy in
the SCL protocol allows for more frequent hiding of coher-
ence protocol latencies, allowing simpler but lower perfor-
mance coherence protocols to be used without a commensu-
rate performance penalty.

We consider how to support coherence decoupling (Section
3.1), how to ensure correctness in a system with coherence
decoupling (Section 3.2), and present some SCL protocols
for coherence decoupling (Section 3.3).

3.1 Coherence Decoupling Architecture
To support coherence decoupling the system architecture

must: (i) split, providing a means to split a memory op-

eration into a speculative load operation and a coherence
operation, (ii) compute, providing mechanisms to support
execution with speculative values, and (iii) recover, provid-
ing a means for detecting a mis-speculation and recovering
correctly from it.

Splitting a memory operation (i above) into two sub-
operations is straightforward, as is the recovery process (iii
above) of comparing the results of the speculative load oper-
ation and the coherence operation to detect a mis-speculation.
The speculated value may be buffered in an MSHR, which
then compares the value against the correct value when the
coherence protocol returns the cache line.

To support speculative computation (ii above), the same
mechanisms that are used to support other forms of specu-
lative execution can be used. Since coherence latencies are
growing to hundreds of cycles, however, current microar-
chitectural mechanisms to support in-processor speculation
(e.g., branch speculation) are likely to be inadequate. Mech-
anisms that can buffer speculative state across hundreds to
thousands of speculative instructions will be necessary. Ex-
amples include the Address Resolution Buffer (ARB) [8] or
the Speculative Versioning Cache (SVC) [13] used for Mul-
tiscalar processors, load and store buffers used for specula-
tively improving the performance of sequential consistency
(SC) [12, 33], and statically allocated, kilowindow reserva-
tion stations in the TRIPS architecture [39].

In this paper, for recovering from mis-speculations, we
model the standard recovery policy for techniques that use
deep speculation: squashing the offending instruction and
all succeeding instructions.

3.2 Correctness of Coherence Decoupling
As Martin et al. have observed [28], implementing value

speculation correctly requires hardware that performs the
same function as that used for aggressive implementations
of sequential consistency (SC) and vice versa.

Coherence decoupling relies upon the above observation
for correctness. Obtaining a value speculatively with an SCL
protocol — and later verifying the speculation via the co-
herence protocol — is analogous to carrying out a memory
operation speculatively assuming that the memory consis-
tency model will not be violated, and using the coherence
protocol to verify the speculation. Thus, if we use the same
hardware to implement coherence decoupling that we use
to implement aggressive implementations of SC, coherence
decoupling can be implemented without any correctness im-
plications for the memory consistency model.

3.3 SCL Protocols for Coherence Decoupling
A wide range of SCL protocols for coherence decoupling

are possible. Although the SCL protocols can be combined
with arbitrarily-complex coherence protocols, coherence de-
coupling enables these aggressive SCL protocols to be backed
by a simple, easily-verifiable coherence protocol. In this
work we therefore measure only a simple invalidation-based
coherence protocol, described in Section 4 and rely on the
SCL protocols to improve performance.

An SCL protocol has two components. The first is the read

component — the policy for obtaining the speculative value
(i.e., where the protocol searches for a speculative value to
use). The second is the update component, in which the SCL
protocol may speculatively send writes to invalid cache lines
(former sharers) to increase the probability that a subse-



SCL Component Policy Description

Read CD Use the locally cached incoherent value for every L2 miss
Read CD-F Add a PC-indexed confidence predictor to filter speculations

Update CD-IA Use invalidation piggyback to update all invalid blocks
Update CD-C Use invalidation piggyback if the value is special (compressed)
Update CD-N Update all sharers after N writes to a block (N=5 in Section 4)
Update CD-W (Ideal): Update on every write if any sharers exist

Table 1: Coherence Decoupling Protocol Components

quent coherence decoupled access will read the correct value.
This component trades increased bandwidth — consumed
by sending speculative writes around the system — for im-
proved speculation accuracy. The update component may
be null in some SCL protocols.

3.3.1 SCL Protocol Read Component
The first policy for the read component we propose simply

uses the value in the local cache if the block is present (i.e.,
the tag matches) and if the block is either in an invalid state
or in a shared state for an atomic load access. We call this
CD, for basic coherence decoupling.

Since CD speculates on the value of every load operation
that finds a matching tag (but with the wrong permission),
it may incur a large number of mis-speculations, triggering
too many rollbacks. The next SCL read component pol-
icy we propose, called “Coherence Decoupling + Filter” (or
CD-F), employs a confidence mechanism — a PC-indexed
table of counters — to throttle speculations. For some ex-
tra hardware, CD-F reduces the number of times speculation
is employed (i.e., it reduces the coverage), thereby decreas-
ing the total number of mis-speculations, but improving the
average speculation accuracy over the base CD protocol.

In general the read component of an SCL protocol could
return a (possibly incorrect) value from anywhere it finds in
the system, if the latency of doing so is sufficiently lower than
the latency of accessing it through the coherence protocol.
In a directory-based cache coherent machine, for example,
the SCL protocol could first access the local cache and then
the home memory of the invalid line, using the invalid data
while the home directory communicated with an exclusive
owner of the block. In another example, the value could
reside in a geographically-proximate cache in a hierarchical
multiprocessor (e.g., another cache on the same chip in a
multiprocessor built from CMPs). In this paper, however,
we consider only a flat symmetric multiprocessor leaving
the issue of SCL protocols for hierarchical systems to future
work.

An SCL protocol with only a read component (and a null
update component) speculates correctly if the contents of
the accessed word in the invalid block have not changed
remotely since being invalidated (false sharing [6]), have
been changed remotely to the same value (silent stores [24]),
or have been changed remotely to a different value and
then changed back to the original value (temporally silent
stores [25]). This capability allows the problem of false shar-
ing to be greatly mitigated. As long as there is sufficient
work for the processor to do after it speculates on falsely-
shared data, the coherence protocol latency for such a re-
quest can be overlapped completely. A successful CD proto-
col will prevent the programmer from having to recode data
structures to reduce false sharing (if they can even figure
out that false sharing is occurring in the first place).

3.3.2 SCL Protocol Update Component
We can further attempt to improve the accuracy of spec-

ulation for truly-shared data by adding update components

to the SCL protocol. An update component speculatively
sends updated data around the system and writes them into
invalid cache lines. The update component of an SCL proto-
col thus trades increased speculation accuracy for the extra
bandwidth consumed by the updates.

A variety of protocols for the update component of an
SCL protocol, with different accuracies and bandwidth re-
quirements, are possible. We present several such protocols
in this section; it is easiest to view them as variants of a
basic write-update protocol. It is important to note that
since these updates are speculative, they can be completely
non-blocking for the writer and can proceed in parallel with
other operations. If a speculative write finds a copy of the
line which is not in invalid state, the write is simply dropped
and correctness preserved. This capability is in contrast to
a canonical write-update cache coherence protocol which re-
quires the writer to view the transmission of the write up-
dates as a blocking operation.

Our first update component for an SCL protocol, CD-IA,
piggybacks the value created by the writer along with the
invalidation message used to invalidate remote caches. The
message size is increased to include a data packet in addition
to the address packet. However, since we model a bus-based
broadcast coherence protocol in this paper, CD-IA updates
the data in all caches which have the block (i.e., caches al-
ready in an invalid state) and not only the sharing caches
that need to be invalidated.
CD-C is a variant of CD-IA; it uses compressed updates to

reduce the message overhead. For the commercial workloads
studied in this paper, many of writes that result in an in-
validation message frequently write the values 0, 1, or -1.
CD-C piggybacks updates for only these values to the initial
invalidation message, allowing these updates to be commu-
nicated to remote caches by adding only two additional bits
to the invalidation message.

The remaining protocols for the SCL update component
that we consider also send updates after the initial invali-
dations have been sent. Consequently these additional up-
dates require additional messages. CD-N broadcasts the dirty
line after N updates have been made by the same writer.
Other possible policies might broadcast the block after ev-

ery N writes, or broadcast the block after the (predicted)
last write to the block. With the bus-based interconnect
that we model, which has limited bandwidth, these policies
performed much worse than the others, so we do not present
their results in this paper. They may be more compelling on
higher-bandwidth topologies, which we leave to future work.

Finally, CD-W is an ideal policy that sends an update on
every write, if invalid sharers exist. That is, it uses a conven-
tional write-broadcast protocol for the update component of



Feature Parameters

Issue width 4
Window size 512-entry RUU
Number of CPUs 16
L1 cache split I/D, 128K, 4-way, 128-byte block
L2 cache unified, 4M, 4-way, 128-byte block
MSHR size 32
Base protocol bus-based MOESI
Bus bandwidth 12.8GB/s
L1/L2 hit latencies 2 cycles / 24 cycles
Memory access latency 460 cycles
Cache-to-cache latency 400 cycles

Table 2: Simulated machine configuration

the SCL protocol. In a machine with directory-based cache
coherence, the writer could maintain the list of sharers after
invalidations for propagating occasional writes, or the sys-
tem could use destination set prediction for guessing which
nodes hold invalid copies of a line [18, 26].

Table 1 summarizes the SCL protocol components that we
consider in this paper. Note that the read component of the
SCL protocol is orthogonal to the update component of the
SCL protocol. Thus either of the read components (CD or
CD-F) could be used in conjunction with any of the update
components (CD-IA, CD-C, CD-N, or CD-W), or even with a null
update component. To reduce the number of combinations,
however, for the remainder of the paper when we discuss
an SCL protocol with a non-null update component (CD-IA,
CD-C, CD-N, or CD-W), we will assume that it uses CD for its
read component.

Clearly other options for speculatively passing around data
are possible, trading off speculation accuracy with message
bandwidth. Existing cache coherence protocol optimizations
for correctly passing data can be leveraged into have specula-

tive versions. For example, we could have speculative com-
petitive write-update protocols, or speculative customized
protocols that can dynamically learn the communication
pattern of an application and try to optimize the data com-
munication. Such protocols are left for future work.

4. RESULTS
We ran our experiments on MP-Sauce, an execution-driven,

full-system multiprocessor timing simulator derived from IBM’s
SimOS-PPC, which uses AIX 4.3.1 as the simulated OS.
Full-system simulation is necessary since many of our work-
loads (commercial benchmarks) interact with the OS sub-
stantially. In the simulator itself, the architectural timing
code extends the SimpleScalar processor timing model with
multiprocessor support, including a recoding of the proces-
sor core to be fully execution driven. Network contention
due to speculative updates is also modeled (except for the
ideal CD-W protocol). Table 2 lists the most relevant machine
parameters from the simulated system.

We simulated three commercial applications and five sci-
entific shared-memory benchmarks from the SPLASH2 suites.
The three commercial workloads are TPC-W using a MySQL
backend running on Apache, SPECWeb99 running on Apache,
and SPECJbb using the IBM Java virtual machine. The
SPLASH applications we simulate are Barnes, Ocean, Water-
nsq, FFT, and Radix.

Since multi-threaded, full-system simulations produce re-
sults that vary from run to run, we replicated the methodol-
ogy in other studies and ran each experiment multiple times,

injecting small timing variations [1]. We report the mean of
the execution time across the multiple runs as our experi-
mental result.

In this paper, we limit our simulations to 16-node SMP
systems, for two reasons. First, small-scale hierarchical (CMP-
based) NUMA systems are still emerging, although they cer-
tainly provide opportunities for coherence decoupling. Sec-
ond, more traditional, directory-based CC-NUMA multipro-
cessors are typically too large to simulate in our full-system
environment—the operating system that we simulate can
support configurations only up to 24 processors. We expect
that the relative performance benefits we show will only in-
crease in larger-scale systems, where coherence misses are
more frequent and latencies are longer.

4.1 Microbenchmarks
To understand the effectiveness of coherence decoupling,

we show the results of two simple microbenchmarks, which
are designed to generate false sharing misses. simple-fs

loads falsely shared data, while executing both dependent
and independent instructions every loop iteration. The ra-
tio of dependent and independent instructions is set to 1:3.
The dependent instructions are simple additions and mul-
tiplications, which use the value returned from a load that
incurred a false sharing miss. critical-fs generates a false
sharing miss on each iteration, but calculates the address
of that load using the value returned from the false sharing
miss of the previous loop iteration. Figure 2 presents the
key microbenchmark code fragments on the left half of the
figure.

The right half of Figure 2 shows the microbenchmarks’
normalized execution times, varying cache-to-cache commu-
nication latencies from 200 to 1000 cycles, with each mi-
crobenchmark using both the baseline and the CD protocol.
simple-fs has speedups from 12% to 17% over the base
case, as communication latencies increase. With a 512-entry
RUU, CD can execute approximately 120 dependent instruc-
tions, none of which can be executed in the baseline system
until the falsely shared data return. Despite this additional
latency tolerance, however, CD can not hide communication
latencies past a certain size due to the finite instruction
window size (512 entries), after which point performance
degrades more quickly as latencies increase.
critical-fs forces a data dependence between two loads,

placing consecutive false sharing misses on the critical path
of execution. Since the delay to calculate addresses and
issue the subsequent loads can not be tolerated in this mi-
crobenchmark, false sharing misses have a major effect on
performance. CD can calculate the next address by using



   dep_val1 = fval + 2;
   indep_val1 = local + 2;
   dep_val2 = fval * 3;

   fval = array[i].value; 

...
/* dependent and independent instructions */

}

for(i = 0; i < MAX; i++) {

for(i = 0; i < MAX; i++) {

   /* false sharing miss */

index = array[index].value; /* false sharing miss */
sum += index;

}

(b) critical−fs

(a) simple−fs
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Figure 2: Microbenchmarks

data in local invalid blocks to issue the subsequent memory
accesses early, overlapping false sharing misses. Even at 200
cycles, the speedup of CD is more than 45%. As commu-
nication latencies increase, the performance of CD degrades
much more slowly than the baseline. At a 1000-cycle com-
munication latency, the baseline system is about three times
slower than CD, although the slopes of performance degrada-
tion become similar once the finite window and MSHR sizes
prevent tolerance of longer latencies.

4.2 Miss Profiling Results
Figure 3 shows a breakdown of L2 read misses for a num-

ber of cache configurations (1MB and 4MB capacity, and
128-byte and 512-byte cache lines). We partition read misses
into coherence misses and “other” misses, which include ca-
pacity, conflict, and compulsory misses. We define coher-
ence misses as having a matching tag in the L2 cache but
the wrong coherence state (e.g., invalid state on a read),
thus requiring remote communication. We subdivide coher-
ence misses into false sharing, silent stores, and true sharing
misses. Coherence misses are counted as true sharing misses
only when the correct values differ from those in the local
cache’s stale copy. Silent stores update a cache block, but
the values have not been changed from the old values stored
in the local invalid block. The silent store bar in the figure
includes both temporally silent stores and silent stores. For
false sharing misses and silent stores, local cache lines in in-
valid state will have the correct values. The sum of silent
stores and true sharing misses are the traditional address-
based true sharing misses by Dubois’ definition [6].

The data show that the fraction of coherence misses is sig-
nificant for every one of the commercial benchmarks (a min-
imum of 12% in FFT). The data corroborate the expected
trend that as the cache size grows — for a fixed size work-
load — the coherence misses increase, to 80% in SPECWeb,
81% in TPC-W, and 67% in SPECJbb. Given the enor-
mous cache sizes in future server-class systems (36MB per
processor die in IBM’s Power5 system), we expect that co-
herence misses will be a significant and growing component
of communication in future multiprocessor systems.

A significant fraction of L2 load misses across the bench-
marks are coherence misses caused by silent stores, from
7% (Barnes) to 16% (Ocean). The base CD protocol will
predict the correct value for the silent stores as well as for
false sharing misses. The ratio of false sharing misses (plus

silent stores) to true sharing misses increases as the block
sizes increase, for all benchmarks. Of those being simu-
lated, the cache configuration with the lowest average miss
rate (4MB with 512B blocks) shows that from 13% (FFT)
to 71% (Barnes) of all L2 misses result from false sharing.
If cache size growth outstrips working set size growth, as
is certain for some benchmarks, coherence misses in general
and false sharing in particular will increase as a fraction of
L2 misses.

4.3 Coherence Decoupling Accuracy
In this section, we present speculation accuracies for a

number of the coherence decoupling policies that are de-
scribed in Section 3. Figure 4 shows the ratio of correct to
incorrect CD speculations (for all coherence misses) using a
4MB cache with 128-byte blocks, for a subset of the policies
described in Section 3. In the CD-N experiment, we updated
the invalid sharers after the first 5 writes to a line.

The CD-F policy is the only one to not speculate on all co-
herence misses, due to its filter which blocks low-confidence
speculations. The base CD protocol makes more correct
speculations than CD-F, but at the expense of more mis-
predictions. However, this simple protocol provides accura-
cies that approach those of many of the update protocols,
due to silent stores and false sharing. For three commercial
benchmarks and Barnes, the base CD protocol can predict
correct values for more than 70% of coherence misses. Some
of the update protocols lose accuracy by sending the up-
date too early, changing an invalid line to a new value, after
which the writer changes the value back (a temporally silent
store) but may not broadcast the change, resulting in a mis-
speculation.

Update-component protocols have better accuracy than
CD for some benchmarks, but the improvement is modest.
CD-W improves the prediction accuracy for FFT and Radix,
but it does not increase the accuracy for the other bench-
marks. The CD-IA policy sees better accuracy for Water-nsq,
FFT, and Radix, than CD-C, because the latter policy can
not deliver a truly-shared value, if the value is not one of the
values that can be encoded and sent along with the invalida-
tion (-1, 0, or 1). Overall, coherence decoupling appears to
have much better accuracies for the commercial workloads,
with the simplest CD protocol performing as well as the more
complex protocols, except on a few of the simpler scientific
codes.



 SPECWeb99 TPC-W SPECjbb2200 Barnes Ocean Water-Nsq FFT Radix 
0

20

40

60

80

100

L
2
 
L
o
a
d
 
M
i
s
s
e
s
 
(
%
)

other misses

false sharing 

silent store 

true sharing

1
M
 
-
 
1
2
8
B
 

1
M
 
-
 
2
5
6
B
 

1
M
 
-
 
5
1
2
B
 

4
M
 
-
 
1
2
8
B
 

4
M
 
-
 
2
5
6
B
 

4
M
 
-
 
5
1
2
B
 

Figure 3: L2 Load Miss Breakdowns.

SPECWeb99 TPC-W SPECjbb2000 Barnes Ocean Water-Nsq  FFT  Radix  
0

20

40

60

80

100

A
c
c
u
r
a
c
y
 
(
%
)

No spec

Wrong

Correct

Figure 4: Accuracy of Coherence Decoupling (from left to right: CD, CD-F, CD-IA, CD-C, CD-N, CD-W)

4.4 Coherence Decoupling Timing Results
We now consider timing simulation results for a system

with coherence decoupling. Table 3 shows the speedups
over the baseline system (which is the simple invalidation
protocol with no coherence decoupling or speculation) for
the range of policies described in Section 3. We model a
flushing mechanism to recover from mis-speculations. The
mechanism flushes all instructions younger in program or-
der when the violation is detected (a “rolling flush”) rather
than waiting until the violation reaches the head of the re-
order buffer. The rolling flush mechanism reduces the cost of
speculation recovery, and is implemented in modern server
processors such as IBM’s Power5 [11].

The right-most column of Table 3 places an upper bound
on the performance of coherence decoupling in the simulated
system. In this model, all cache accesses that would have
been coherence load misses are treated as hits. For TPC-W,
the best-case speedup is 17.8%, providing only moderate op-
portunities for coherence decoupling speedups. SPECWeb99
and Ocean show larger benefits (34.6% and 34.5%). The
only benchmark with an ideal coherence decoupling speedup
of under 15% is Barnes, which is a mere 1.4% due to its neg-
ligible L2 miss rates.

The accuracies of coherence decoupling are high, partially
or fully tolerating a third to a half of coherence misses.
The speedups reflect those results for several benchmarks;
in particular, SPECJbb reaches over half of its ideal per-
formance improvement for most of the policies. Overall,
with only simple mechanisms, the base CD policy achieves
a mean speedup of 6.6%, which is over a quarter of the
ideal speedup. In larger-scale systems (and particularly CC-
NUMA systems), the speedups will likely be much higher. In
those systems, remote coherence latencies–especially those
that take multiple hops across the network–will have a more
deleterious effect on performance.

The update-based SCL protocols consume extra network
bandwidth to increase prediction accuracies. Table 4 presents
the network bandwidth overhead for CD-IA and CD-N5. In
all update protocol experiments, we only transmit the up-
dated words (not entire cache lines) to reduce bandwidth
consumed. CD-IA incurs only small traffic increases (under
4%). CD-N5 incurs much larger increases in traffic, with a
range of 6% to 30% except for Barnes, which increases traf-
fic by 95%. Due to Barnes’ low L2 miss rates, however, that
outlier has little effect on performance.

4.5 Latency Tolerance Profiles
In Table 5, we show the breakdown of instructions issued

for each benchmark during the “decoupling window”, the
time between when a load speculatively accesses invalid data
in the cache and when coherence permissions return with
the correct value, using the CD policy. Since separate CD
loads may overlap, we count instructions issued for the first
overlapped CD load; we did not measure instructions issued
for the second (and other) overlapped CD loads.

The first row of the table shows the number of correct
coherence decoupled operations per 1K instructions. The
remaining rows of the table separate the instructions in the
decoupling window into three categories: data-dependent
instructions, control-dependent instructions, and indepen-
dent instructions. Data-dependent instructions are simply
instructions that use the result of the decoupled load directly
or indirectly, through register or memory dependences. Con-
trol-dependent instructions (in this definition) are instruc-
tions that are issued correctly during the decoupling window
because coherence decoupling permitted quicker resolution
of a mis-predicted branch (data dependent on the CD load),
thus allowing instructions down the correct path to issue
more quickly than if the mis-predicted branch had waited
for the CD load to complete. Independent instructions are
simply instructions that are neither data dependent on the



Benchmark CD CD-F CD-IA CD-C CD-N5 CD-W Optimal
SPECWeb99 13.8% 11.0% 13.2% 13.1% 14.9% 18.0% 34.6%
TPC-W 1.2% 2.6% 2.3% 1.7% 1.4% 2.4% 17.8%
SPECjbb2000 16.6% 15.8% 13.5% 13.0% 17.1% 16.5% 26.3%
Barnes 0.6% 0.4% 0.7% 0.7% 0.8% 0.6% 1.4%
Ocean 6.9% 4.7% 8.2% 7.4% 6.0% 7.5% 34.5%
Water-Nsq 2.1% 1.7% 2.8% 3.5% 0.7% 5.4% 17.4%
FFT 5.1% 4.2% 6.1% 7.2% 4.6% 10.8% 21.4%
Radix 6.8% 3.6% 7.6% 8.8% 6.3% 12.0% 42.4%

Mean 6.6% 5.5% 6.8% 6.9% 6.5% 9.1% 24.5%

Table 3: Speedups for Coherence Decoupling

Benchmarks CD-IA CD-N5
SPECWeb99 3.6% 7.9%
TPC-W 3.9% 18.5%
SPECjbb2000 2.5% 2.5%
Barnes 2.7% 95.3%
Ocean 3.4% 6.1%
Water-Nsq 2.0% 28.1%
FFT 2.8% 10.5%
Radix 3.2% 8.2%

Table 4: Data Traffic Increase

load nor are issued past CD-accelerated recovery of data-
dependent mis-predicted branches.

There are fewer data-dependent instructions (from 6 to
19) than independent instructions (73 to 232). Control-
dependent instructions are more numerous for some bench-
marks; SPECjbb2000 has 16 control-dependent instructions
and Water-nsq has 21 instructions. CD loads in those bench-
marks help to resolve correct execution paths early. The
early resolution of mispredicted branches will grow in im-
portance in future processors that employ deeper specula-
tion. For L2 cache misses on single-threaded applications, a
similar observation was made by Karkhanis et al. [16].

5. CONCLUSIONS
This paper considered the use of speculation to toler-

ate the long latencies of inter-processor communication in
shared memory multiprocessors. The proposed approach,
called coherence decoupling, breaks up the cache coherence
protocol, which is used to implement coherent inter-processor
communication, into a speculative cache lookup (SCL) pro-
tocol that returns a speculative value, and a coherence cor-
rectness protocol that confirms the correctness of the spec-
ulation. An early return of a (speculative) value allows fur-
ther useful computation to proceed in parallel with the co-
herence correctness protocol, thereby overlapping long co-
herence latencies with useful computation. Furthermore,
decoupling the SCL protocol, which returns a value, from
the protocol that ensures the correctness of the value, al-
lows each protocol to be optimized separately. The SCL
protocol can be optimized for performance since it does not
have to ensure correctness; the coherence protocol can be
simple since its performance is not paramount.

We implemented a variety of options for the two com-
ponents of an SCL protocol: the read component and the
update component. The basic read component returns the
value from a matching invalid cache line for which the ac-
cess permissions are not correct. Another option we mea-
sured was the addition of a confidence filter to determine
when coherence decoupling should be employed, to reduce
the number of mis-speculations. For the update component,

we considered several variations of a canonical write-update
protocol. These variations trade off the accuracy of specu-
lation of the SCL protocol with the additional bandwidth
required.

Using a full-system simulator built on PowerPC/AIX, and
running a set of commercial workloads and scientific work-
loads, our experiments showed that coherence misses are a
significant fraction of total L2 misses, ranging from 10% to
80%, and averaging around 40% for large caches. Coherence
decoupling has the potential to hide the miss latency for
about 40% to 90% of all coherence misses, mis-speculating
roughly 20% of the time.

We also measured the performance benefits of coherence
decoupling. Several of the benchmarks are sensitive to co-
herence misses, so lower coherence latencies can improve
performance. On these workloads, coherence decouping was
able to achieve modest improvements. One of the bench-
marks is affected little by coherence misses and, unsurpris-
ingly, coherence decoupling did not help in this case. These
results suggest that coherence decoupling is generally able to
overcome the performance drawbacks of false sharing and,
furthermore, allow lower effective latencies even when true
sharing is present.

We expect techniques like coherence decoupling to grow
in importance for future processors and systems for several
reasons:

• First, multiprocessors and/or multithreaded proces-
sors will be soon be ubiquitous; almost every future
processing chip will employ some form of multipro-
cessing or multithreading. Rather than burdening pro-
grammers with having to reason about the performance
effects of data sharing, architects can develop alter-
native techniques to overcome these performance im-
pediments without burdening the programmer. Co-
herence decoupling is a technique that overcomes one
such performance impediment (false sharing), and mit-
igates true sharing in some cases.

• Second, with increasing cache sizes, coherence misses
will account for a larger fraction of all cache misses.



SPECWeb99 TPC-W SPECjbb2k Barnes Ocean Water-nsq FFT Radix
Correct CD/1K inst. 6.64 2.00 1.48 0.38 1.37 0.64 0.70 1.65
Data dependent insts 6.5 7.4 7.1 9.0 6.1 18.6 5.2 6.7
Control dependent insts 10.2 12.8 15.8 13.0 4.7 20.7 7.2 5.7
Independent insts 73.7 93.7 126.1 100.1 189.9 220.4 215.2 232.8

Table 5: Executed Instructions During Coherence Decoupling (using the CD policy)

This trend, coupled with increasing communication la-
tencies, will cause the performance loss due to coher-
ence misses to become a larger fraction of the overall
performance loss. The performance loss for coherence
misses will be magnified even further as other sources
of performance losses (e.g., locks) are attenuated (for
example, with speculative synchronization).

• Third, as communication latencies grow, there will be
temptation to make coherence protocols more complex
to reduce average latency. We believe that coherence
protocols should be kept simple, relying on microarchi-
tectural techniques to reduce communication-induced
performance losses. Again, coherence decoupling is
such a technique: the SCL protocol can allow the la-
tency of the coherence protocol to be overlapped with
computation that is likely to be useful.

• Finally, much of the hardware support required to sup-
port coherence decoupling is very likely to exist for
other reasons — e.g., to overcome the performance
limitations of sequential consistency, or to implement
other speculative execution techniques. This fact will
permit coherence decoupling to be implemented with
less additional hardware and complexity.

For future work we plan to study better SCL protocols
to increase speculation accuracies further, as well as tech-
niques for efficient mis-speculation recovery. We also plan
to study the utility of coherence decoupling for hierarchical
multiprocessors, and multiprocessors with directory-based
cache coherence.
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