
Copyright

by

Bertrand Allen Maher

2010

The Dissertation Committee for Bertrand Allen Maher
certifies that this is the approved version of the following dissertation:

Atomic Block Formation for Explicit Data Graph

Execution Architectures

Committee:

Kathryn S. McKinley, Supervisor

Douglas C. Burger, Supervisor

Stephen W. Keckler

Scott A. Mahlke

Keshav Pingali

Atomic Block Formation for Explicit Data Graph

Execution Architectures

by

Bertrand Allen Maher, B.S., M.S.C.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2010

Dedicated to my parents Howard and Rita Maher.

Acknowledgments

I would like to thank the numerous people who have helped me along

the way to completing this dissertation. I thank my committee, Kathryn

McKinley, Doug Burger, Steve Keckler, Keshav Pingali, and Scott Mahlke,

for their valuable feedback on my research. Their insight has unquestionably

improved this dissertation.

I am particularly indebted to my advisors, Doug Burger and Kathryn

McKinley, for their supervision of this work. I count myself lucky to have

had scientists of their caliber to oversee my research. Doug and Kathryn have

always challenged me to improve my ideas, yet also encouraged me that those

ideas are worth pursuing. I hope that my career in computer science will make

them proud.

I thank Steve Keckler for his leadership of the TRIPS project along

with Doug and Kathryn. My career thus far has been enriched by working on

such an ambitious research project as a graduate student.

I thank the TRIPS team without whom this work would have been im-

possible. My fellow TRIPS compiler collaborators, Katie Coons, Jon Gibson,

Behnam Robatmili, Aaron Smith, and Bill Yoder have taught me a great deal

over the years. I thank the TRIPS hardware team, Karu Sankaralingam, Ram-

das Nagarajan, Sibi Govindan, Divya Gulati, Paul Gratz, Heather Hanson,

v

Changkyu Kim, Haiming Liu, Nitya Ranganathan, Simha Sethumadhavan,

and Premkishore Shivakumar, for their contributions. I particularly thank

Mark Gebhart for his excellent work on the TRIPS performance evaluation.

I thank the many friends I’ve made in graduate school, Walter Chang,

Jeff Diamond, Curtis Dunham, Boris Grot, Maria Jump, Alison Norman, and

Jenn Sartor, for numerous excellent conversations on matters both technical

and not, and for attending practice talks, reading papers, and generally en-

riching my life over the past several years.

I am grateful to my best friend and soon-to-be wife Katie Coons for

always being there for me during our time in graduate school. As a friend

and fellow student she has been a continuous source of encouragement; as a

researcher she has been an inspiration. I look forward to the next chapter of

our lives together.

Finally, I thank my parents Rita and Howard and my sister Marie for

their support and love. My parents taught me to love learning from an early

age, and their example inspired me to embark on a career in science. I thank

them for always encouraging me to do my best, and for their unconditional

love. I dedicate this dissertation to them.

Bertrand Allen Maher

The University of Texas at Austin

August 2010

vi

Atomic Block Formation for Explicit Data Graph

Execution Architectures

Publication No.

Bertrand Allen Maher, Ph.D.

The University of Texas at Austin, 2010

Supervisors: Kathryn S. McKinley
Douglas C. Burger

Limits on power consumption, complexity, and on-chip latency have fo-

cused computer architects on power-efficient designs that exploit parallelism.

One approach divides programs into atomic blocks of operations that exe-

cute semi-independently, which efficiently creates a large window of potentially

concurrent operations. This dissertation studies the intertwined roles of the

compiler, architecture, and microarchitecture in achieving efficiency and high

performance with a block-atomic architecture.

For such an architecture to achieve high performance the compiler must

form blocks effectively. The compiler must create large blocks of instructions

to amortize the per-block overhead, but control flow and content restrictions

limit the compiler’s options. Block formation should consider factors such of

frequency of execution, block size such as selecting control-flow paths that

vii

are frequently executed, and exploiting locality of computations to reduce

communication overheads.

This dissertation determines what characteristics of programs influence

block formation and proposes techniques to generate effective blocks. The first

contribution is a method for solving phase-ordering problems inherent to block

formation, mitigating the tension between block-enlarging optimizations—if-

conversion, tail duplication, loop unrolling, and loop peeling—as well as scalar

optimizations. Given these optimizations, analysis shows that the remaining

obstacles to creating larger blocks are inherent in the control flow structure

of applications, and furthermore that any fixed block size entails a sizable

amount of wasted space. To eliminate this overhead, this dissertation proposes

an architectural implementation of variable-size blocks that allow the compiler

to dramatically improve block efficiency.

We use these mechanisms to develop policies for block formation that

achieve high performance on a range of applications and processor configu-

rations. We find that the best policies differ significantly depending on the

number of participating cores. Using machine learning, we discover gener-

alized policies for particular hardware configurations and find that the best

policy varies significantly between applications and based on the number of

parallel resources available in the microarchitecture. These results show that

effective and efficient block-atomic execution is possible when the compiler and

microarchitecture are designed cooperatively.

viii

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xii

List of Figures xiv

Chapter 1. Introduction 1

1.1 Dissertation Contributions . 5

1.2 Dissertation Organization . 8

Chapter 2. Related Work 11

2.1 Block Formation . 11

2.1.1 Traces, Superblocks and Treegions 12

2.1.2 Hyperblocks . 13

2.2 Phase-Ordering Problems . 15

2.3 Atomicity . 18

Chapter 3. EDGE Architectures 21

3.1 Advantages of Block-atomic Architectures 21

3.2 EDGE ISAs . 23

3.3 Compiling for EDGE ISAs . 26

3.4 TRIPS Microarchitecture . 29

3.5 TFlex Microarchitecture . 30

ix

Chapter 4. Iterative Block Formation 34

4.1 Introduction . 35

4.2 Phase Ordering Challenges . 38

4.3 Iterative Block Formation . 40

4.3.1 Head and Tail Duplication 40

4.3.2 Incremental Block Formation 43

4.4 Policy . 46

4.5 TRIPS compiler . 49

4.6 Experimental Results . 50

4.6.1 Comparison to Static Phase Ordering 52

4.6.2 VLIW and EDGE Heuristics 55

4.6.3 Estimated Performance with Block Counts 57

4.7 Summary . 61

Chapter 5. Compiler Evaluation 63

5.1 Comparative Performance Evaluation 65

5.1.1 Methodology . 65

5.1.2 Performance Results . 68

5.2 Block Size Efficiency . 71

5.2.1 Methodology . 72

5.2.2 Block Fullness . 73

5.2.3 Control Flow Limitations 75

5.3 Summary . 89

Chapter 6. Variable-Size Blocks 93

6.1 Atomicity and Composability in EDGE Architectures 96

6.1.1 Block-Atomic Execution 96

6.1.2 EDGE Support for Composability 97

6.2 Instruction Set Support . 99

6.3 Microarchitecture . 100

6.3.1 Fixed-Size Blocks . 101

6.3.2 Variable-Size Blocks . 102

6.4 Architectural Results . 105

x

6.4.1 Methodology . 105

6.4.2 One Block Per Core . 107

6.4.3 Multiple Blocks Per Core 109

6.4.4 Variable-Size Blocks . 112

6.5 Summary . 117

Chapter 7. Block Formation Heuristics 121

7.1 Compiler Structure . 124

7.2 Default Block Formation Heuristic 127

7.3 Block Formation Heuristics . 128

7.4 Implemented Features . 131

7.5 Machine Learning Results . 135

7.5.1 Learning Methodology 136

7.5.2 Learned Heuristics Discussion 140

7.5.3 SPEC CPU Results . 143

7.6 Summary . 144

Chapter 8. Conclusions 146

8.1 Dissertation Contributions . 148

8.2 Future Directions . 151

8.3 Final Thoughts . 154

Bibliography 156

Vita 170

xi

List of Tables

3.1 TRIPS ISA block constraints 25

4.1 Percent improvement in cycle counts of EDGE blocks over basic
blocks (BB) with various orderings of Unrolling (U), Peeling
(P) Incremental If-conversion (I), and Scalar Optimizations (O).
Parentheses indicate merged phases. 51

4.2 Static count of blocks merged/tail duplicated blocks/unrolled
iterations/peeled iterations (m/t/u/p), with various orderings
of Unrolling (U), Peeling (P) Incremental If-conversion (I), and
Scalar Optimizations (O). Parentheses indicate merged phases. 54

4.3 Percent improvement in cycle count over basic blocks (BB) us-
ing VLIW heuristics, VLIW with iterative optimization, depth-
first (DF) and breadth-first (BF) EDGE heuristics. 56

4.4 Percent improvement in block counts of SPEC benchmarks over
basic blocks (BB) with various combinations and orderings of
Unrolling (U), Peeling (P) If-conversion (I), and Scalar Opti-
mizations (O). Parentheses indicate merged phases. 59

4.5 Percent improvement in cycle counts of SPEC benchmarks over
basic blocks (BB) with various combinations and orderings of
Unrolling (U), Peeling (P) If-conversion (I), and Scalar Opti-
mizations (O). Parentheses indicate merged phases. 60

5.1 Reference platforms. 66

5.2 Performance counter statistics for SPEC. 70

5.3 Per-benchmark efficiency of blocks for fixed maximum sizes of
32, 64, and 128 instructions. 75

6.1 Microarchitectural parameters of each TFlex core 106

6.2 Efficiency, in terms of real instructions to total words fetched,
of variable-size blocks with different granularities. 114

6.3 Per-benchmark efficiency of blocks for fixed maximum sizes of
32, 64, and 128 instructions. 115

7.1 Operators used to construct cost functions. 126

xii

7.2 Boolean-valued features . 132

7.3 Real-valued features . 133

7.4 Real-valued features, continued 134

7.5 Heuristics with the best geometric mean speedup over baseline,
both hand-written and machine-learned. 140

xiii

List of Figures

3.1 Phases of the TRIPS compiler. 26

3.2 TRIPS processor die photo with outlined tiles. 29

3.3 Microarchitecture of one TFlex Core 31

3.4 Mapping blocks to composable TFlex cores 31

4.1 Block formation example. 39

4.2 Classical tail duplication. 41

4.3 Head duplication implements peeling. 42

4.4 Head duplication implements unrolling. 43

4.5 Iterative block formation algorithm. 44

4.6 Compiler flow with iterative block formation. 49

4.7 Cycle count reductions versus block count reductions. 58

5.1 Speedup on SPECINT relative to Core 2/gcc. 67

5.2 Speedup on SPECFP relative to Core 2/gcc. 68

5.3 Dynamic average total and useful instructions per block with
various maximum block sizes. 74

5.4 Distribution of block sizes in SPEC CPU2000 benchmarks, weighted
by execution frequency. The categories indicate the reason for
the compiler’s inability to merge that block with the next in the
execution trace. 77

5.5 Distribution of block sizes in SPEC CPU2000 benchmarks, af-
ter implementing call merging and epilogue duplication. While
block fullness is improved, performance suffers. 80

5.6 Cut analysis of 256.bzip2 . 82

5.7 Cut analysis of 186.crafty . 83

5.8 Cut analysis of 254.gap . 83

5.9 Cut analysis of 176.gcc . 83

5.10 Cut analysis of 164.gzip . 84

5.11 Cut analysis of 181.mcf . 84

xiv

5.12 Cut analysis of 197.parser . 84

5.13 Cut analysis of 253.perlbmk 85

5.14 Cut analysis of 300.twolf . 85

5.15 Cut analysis of 175.vpr . 86

5.16 Cut analysis of 188.ammp . 86

5.17 Cut analysis of 173.applu . 86

5.18 Cut analysis of 301.apsi . 87

5.19 Cut analysis of 179.art . 87

5.20 Cut analysis of 183.equake . 88

5.21 Cut analysis of 177.mesa . 88

5.22 Cut analysis of 172.mgrid . 88

5.23 Cut analysis of 171.swim . 89

5.24 Cut analysis of 168.wupwise 90

6.1 TFlex: A Composable Chip Multiprocessor EDGE Architecture 98

6.2 Performance with one fixed-size block per core and maximum
fixed block size of 32, 64, and 128 instructions. Thus, fewer
hardware resources are required with smaller maximum block
sizes. 108

6.3 Performance with 128 instructions per core and fixed-size blocks.
Thus, with maximum block sizes of 32, 64, and 128 instructions,
there are 4, 2, and 1 blocks per core, respectively, and all con-
figurations require the same number of issue queue slots. . . . 110

6.4 Performance with 8-instruction granularity variability in the in-
struction window with various maximum block sizes using 128
instructions per core. 113

7.1 An example cost function that selects first by branch probabil-
ity, then by the inverse of block size. 126

7.2 Speedup of learned heuristics on microbenchmarks. Each bar is
normalized to the performance of the baseline heuristic running
on the same number of cores as the learned heuristic. 137

7.3 Speedup of heuristics learned for 1-, 8-, and 32-cores over base-
line heuristic on one core. 143

xv

Chapter 1

Introduction

Since 2006 improvements in single-threaded processor performance have

dramatically slowed. Efforts to increase clock rate by increasing pipeline depth

have largely been abandoned due to excessive power consumption. Further-

more, microarchitectural techniques to extract instruction-level parallelism

(ILP) from a sequential instruction stream have made minimal gains, due

to limits on power consumption and design complexity. In response to these

limitations, recent industrial designs place multiple processor cores on one chip

to provide greater performance.

To achieve performance improvements with multicore processors, soft-

ware must be concurrent. Most software written today is not highly concur-

rent, both because programmers have depended on single-thread performance

improvements and because parallel programming is more difficult than sequen-

tial programming. Although some code can be automatically parallelized by a

compiler, most currently cannot. Most of the burden of parallel programming

therefore falls to human programmers, who will have to spend more time writ-

ing complex—and difficult to debug—parallel algorithms and less time adding

useful features to their software.

1

As an alternative to multicore processors, block-atomic instruction set

architectures (ISA) can enable a processor to extract parallelism from a se-

quential programming model more efficiently than out-of-order superscalar

processors. In such an ISA, large regions of instructions are grouped together

into blocks, which the processor fetches, executes, and commits as a unit. By

executing large blocks the processor can avoid much of the control and book-

keeping overhead present in an instruction-atomic processor. Block-atomic

ISAs present a familiar sequential programming model to the programmer, so

performance improvements do not require explicit parallelization of software.

For block-atomic architectures to be a plausible complement to multi-

core designs, compilers must be able to form blocks that execute with high

performance. If compilers can perform this optimization automatically, then

block-atomic processors will be able to achieve greater performance than su-

perscalar processors without fundamentally changing the programming model.

High performance blocks ideally contain a large number of instructions in or-

der to expose parallelism and amortize bookkeeping overheads. The blocks

must also contain regions of code that maximize performance and efficiency in

the common case. By selecting a large, fixed block size, a block-atomic ISA

can limit hardware complexity while remaining a feasible compiler target.

This dissertation investigates the proper balance between hardware and

software in the design of a block-atomic ISA, focusing particularly on the ar-

chitectural block size. Selecting a block size entails tradeoffs between static

and dynamic optimization opportunities. Large blocks create the possibility of

2

efficient execution within a large region of code, but rely more heavily on the

compiler to form blocks. Smaller blocks depend more on dynamic techniques

such as branch prediction and register renaming to create parallelism within a

large window. This thesis will quantify the performance, power, and complex-

ity tradeoffs among these design possibilities and the compiler’s capabilities.

A block-atomic architecture relies on the compiler’s block formation

heuristics for good performance. There are three parameters within the com-

piler’s control. The compiler can often improve performance by constructing

large blocks. Larger architectural blocks are more difficult for the compiler to

fill, and usually require code-expanding techniques such as loop unrolling, but

statically create more opportunities for parallel execution. Predication allows

the compiler to eliminate branches, possible avoiding mispredictions, although

at the cost of code expansion and reducing the number of useful instructions in

the processors window. Block formation also encapsulates dependences within

blocks, creating opportunities for efficient execution.

This dissertation presents compiler techniques for generating blocks for

a block-atomic architecture. These techniques include both the mechanisms

that must be implemented to ensure that the compiler has flexibility to in-

clude the most profitable control paths, as well as the policy that guides its

decisions, and the techniques used to discover policy. This dissertation ana-

lyzes the ability of the compiler to form large blocks in the presence of con-

trol flow structures that inhibit block formation. To understand the effects of

block formation the correlation of performance with block size will be explored

3

and understood. To ameliorate cases where the compiler cannot achieve high

utilization of fixed-size blocks, an ISA and microarchitecture that supports

variable-sized blocks will be presented.

To form optimized blocks the compiler must be free to choose any con-

trol flow path to include in a block, and must be able to pack each block full of

optimized code. Prior work in this area applies transformations such as loop

peeling and loop unrolling prior to block formation in order to expose large

regions of code for the block formation algorithm. This dissertation describes

a transformation, called head duplication, that combines loop unrolling and

peeling into the block formation process, so that the compiler can weigh ex-

panding a loop versus including other paths of control flow. To ensure that

the code produced by the block formation stage is highly optimized, the com-

piler iterates phases of block merging and scalar optimizations, which serve to

compact the block and thus enable additional merging phases.

EDGE block formation must be guided by policy, which is generally

a heuristic function that informs the compiler which basic blocks should be

included in a block. Previous work has found functions that use a combina-

tion of basic block size, execution frequency, and dependence height to select

blocks for inclusion. While these features will likely be used for block-atomic

architectures, additional features such as minimizing communication between

blocks will become important. Developing these heuristics is a time-consuming

task for a compiler writer. This dissertation provides the reader with insight

into what heuristics and features are likely to perform well, and provide a

4

methodology for discovering good heuristics by applying genetic programming

techniques to a variety of microarchitectural configurations.

Designers of future block-atomic architectures should know the capa-

bilities of compilers when setting parameters such as the block size. This

dissertation provides a breakdown of block sizes in programs, indicating which

control-flow features most inhibit block formation, and providing solutions to

these limitations where feasible. Block size is typically well correlated with

performance, but there is a point of diminishing returns as well. This disserta-

tion shows the relationship between block size and performance, and identify

the other variables that affect this relationship.

Given the limitations of the compiler uncovered by the block size anal-

ysis, the processor must be able to recoup some of the efficiency loss when

blocks cannot be completely filled. This dissertation describes architectural

and microarchitectural support for variable-sized blocks. Variable-sized blocks

give a block-atomic architecture more of the resource flexibility enjoyed by

instruction-level processors, for example, the ability to use only the required

amount of space in the the instruction cache and issue queue. This flexibility

mitigates the impact of small blocks, but still allows the processor to retain

the advantages of block-atomic execution when large blocks are available.

1.1 Dissertation Contributions

This dissertation evaluates the software capabilities necessary to com-

pile code for block-atomic EDGE architectures. The following are the contri-

5

butions.

• We propose iterative block formation, which is an approach that is well-

suited to constrained, block-atomic architectures. This algorithm inte-

grates scalar optimizations with block formation, ensuring that blocks

are maximally full even when optimizations are taken into account.

• We show that the transformations of loop unrolling and loop peeling are

essentially equivalent to tail duplication. We call those transformations

head duplication, to emphasize that while tail duplication removes side

entrances to a trace at forward edges, head duplication removes side en-

trances at loop headers, i.e., back edges. We use this new transformation

to combine peeling and unrolling into a single-pass algorithm as part of

block formation.

• We evaluate the performance of the compiler for the TRIPS system us-

ing prototype hardware. We show that the TRIPS compiler can success-

fully compile the industry standard SPEC CPU2000 benchmark suite.

We compare performance to the leading commercial processor platform,

Intel’s Core 2, and show that while TRIPS performance is promising

on compute-intensive floating-point benchmarks, it struggles on control-

intensive integer benchmarks

• We evaluate the ability of an aggressive, block-forming compiler to con-

struct large blocks on a suite of realistic benchmarks. We show that the

6

average dynamically-executed block is relatively under-full and catego-

rize the control-flow constraints that prevent the compiler from filling

blocks. We also show the block-sizes have a “U-shaped” distribution—

smaller blocks and larger blocks are relatively more common than medium

sizes, thus arguing for a flexible microarchitectural block size.

• We propose modifications to an existing EDGE ISA, the TRIPS proces-

sor ISA, that allow the underlying microarchitecture to support variable-

size blocks. Using this ISA, we propose microarchitectural support for

variable-size blocks, which improves utilization of the instruction cache

and the instruction window.

• We evaluate the impact of block size on performance, in microprocessors

that support both fixed-size and variable-size blocks. We see that perfor-

mance varies widely across benchmarks. Compute-intensive benchmarks

benefit from large blocks compared to small blocks. Control-intensive

benchmarks, however, lose little performance from small block sizes and

would benefit from having more blocks in flight. We show that an ar-

chitecture supporting variable-size blocks is able to achieve the “best of

both worlds” performance.

• We explore the space of policies for EDGE architectures using machine

learning. By feeding a large number of heuristics into a genetic pro-

gramming system, we cover a significant extent of the space of possible

policies. We extract meaning, where possible, from the learned policies

7

to determine the characteristics of high-performing EDGE blocks.

• We determine that the best policy for forming blocks depends signif-

icantly on the core count of the composed processor. For small con-

figurations, little or no predication is desirable due to limited machine

resources. For larger configurations more aggressive predication works

well.

1.2 Dissertation Organization

This dissertation is organized as follows. Chapter 2 reviews related

work. We focus on a few distinct areas. The use of architectural atomicity in

processors and the compiler’s ability to take advantage of atomicity is the key

area of related work. We also focus on compiler approaches to constructing

blocks, regardless of whether the blocks are used as an architectural atomic

unit.

Chapter 3 describes EDGE architectures and the microarchitectures

that will be evaluated in this dissertation. While EDGE architectures them-

selves are described in detail in other dissertations, an overview is necessary

to give context to this work.

Chapter 4 describes compiler support necessary to form large blocks

in the presence of ISA constraints. This chapter encompasses iterative block

formation and head duplication, which together allow the compiler to form

optimized blocks conforming to the ISAs block restrictions. Iterative block

8

formation allows the compiler to easily consider the constraints and the effects

of optimizations with each merge. Head duplication enables the compiler to

perform loop unrolling and peeling concurrently with block formation in a

single pass algorithm, which resolves the phase ordering tension between these

optimizations.

Chapter 5 evaluates the performance of the TRIPS compiler. We com-

pare performance on compiled SPEC CPU2000 benchmarks to several com-

mercial platforms and demonstrate shortcomings in performance. To under-

stand these results, we evaluate of the space efficiency of blocks and analyzes

what code features commonly prevent the compiler from forming completely

full blocks. We show that function calls and small blocks are the primary cause

of small blocks, and that overall the distribution is somewhat bimodal, with

clusters at small and large sizes.

Chapter 6 describes the effect of granularities of fixed- and variable-size

blocks on the performance of EDGE processors. We evaluate a variety of con-

figurations, varying the architectural size of blocks and the number of blocks

per core. We show that several benchmarks scale well to high core counts

and large block sizes, while those that do not can attain good performance at

low core counts by executing larger numbers of smaller blocks. We propose an

ISA and microarchitecture for supporting variable-size blocks that can execute

both classes of programs with high performance and efficiency.

Chapter 7 describes policies that attain high performance on EDGE

processors. Because the space of possible policies is highly complex, we ex-

9

plore it using genetic programming techniques. Learning specialized heuristics

per-benchmark can achieve significant speedups, while learning generalized

heuristics gives us insight into general principles of policy for EDGE architec-

tures. Learning policies for a variety of configurations shows that heuristics

are quite different for small numbers of participating cores than for large num-

bers, as predication becomes less effective at smaller core counts. Chapter 8

summarizes the work and concludes.

10

Chapter 2

Related Work

Related work falls into three categories. The first category is the use of

blocks as a compiler and hardware abstraction, mechanisms for forming blocks,

and heuristics for improving performance of block formation. The second

category concerns compiler solutions to phase ordering problems, especially

those relating to predication. The third category contains architectural and

compiler support for atomicity.

2.1 Block Formation

Compilers have used blocks of instructions as a useful abstraction since

the use of basic blocks in the FORTRAN compiler [8]. Since then, compilers

have included more advanced types of code regions. Typically the goal of

creating large regions in the compiler is to broaden the scope of instruction

scheduling. Frequently, control-flow transformations are necessary to remove

constraints within blocks. In this section we overview techniques for handling

large code regions. Section 2.1.1 discusses traces and superblocks, which VLIW

compilers use commonly. Section 2.1.2 discusses hyperblocks at length, which

closely match the control-flow model of EDGE blocks.

11

2.1.1 Traces, Superblocks and Treegions

Fisher pioneered trace scheduling for VLIW architectures, which at-

tempts to improve execution time by scheduling instructions across multiple

basic blocks [24]. This scheme uses static branch prediction to identify fre-

quently executed program paths (traces) at compile time. Trace scheduling

optimizes traces by speculatively scheduling instructions in earlier basic blocks

and pushing correcting code on to the less frequently taken paths. Such trans-

formations allow the compiler to move instructions around branches to improve

the global schedule. While effective, its drawbacks include code and compiler

complexity due to side trace entrances and the possibility of exponential code

expansion [34, 40].

Superblock scheduling also attempts to improve global instruction schedul-

ing, and improves over trace scheduling by eliminating the need for side en-

trances [34]. To form superblocks, a compiler uses tail duplication, which

replicates instructions/blocks after a side entrance, and redirects the side en-

trance to this copy. After tail duplication each super block is a single-entry,

multiple-exit region of code. This structure gives more freedom to the sched-

uler and optimizer, because the compiler can break constraining dependences

outside of the superblock. Because the effectiveness of superblock compila-

tion relies on the accuracy of profiling information, researchers have proposed

techniques for mitigating the effect of profile variation on superblock compi-

lation. The speculative hedge heuristic for superblock scheduling attempts to

minimize execution time across all paths to account for such variations [21].

12

A related approach, treegion scheduling, uses a different type of schedul-

ing region to achieve profile tolerance and improve machine utilization. Tree-

gions, like superblocks, are single-entry, multiple-exit regions; unlike superblocks,

however, treegions may contain basic blocks from multiple paths of control [30].

A treegion consists of a tree of basic blocks; thus there can be multiple paths

of control, but no merge points. Treegion compilation does make use of tail

duplication, however, to increase the scope of scheduling by eliminating merge

points. These regions increase the ability of the compiler to schedule instruc-

tions from multiple code paths and potentially make better use of a wide

machine. By including multiple paths, a treegion compiler can limit the effect

of profile variation.

2.1.2 Hyperblocks

The hyperblock generalizes the superblock to enable effective use of

predicated execution [47]. A hyperblock, like a superblock, is a single-entry,

multiple-exit region of code, but a hyperblock can contain multiple paths of

control by replacing control flow instructions with predicates within the hy-

perblock. The goal of hyperblock formation is to eliminate branching and

maximize ILP, while avoiding over-commitment of processor resources [46]. A

standard hyperblock-forming compiler performs heuristic-driven hyperblock

formation, followed by block-enlargement optimizations (such as predicated

loop peeling and hyperblock loop unrolling), and finally applies dataflow op-

timizations modified to operate on predicated code [14].

13

Using the hyperblock as an abstraction enables compilers to reason

about the value of applying predication using heuristics to evaluate a set of

basic blocks in a region. Each basic block is assigned a priority for inclusion

in a hyperblock, which allows the compiler to balance control flow and pred-

ication. VLIW heuristics focus on balancing dependence height, dependence

width (resource utilization of each VLIW instruction and other resources),

path frequency, and branch predictability [7, 18, 46, 47, 57]. The hyperblock

formation goals for VLIW and EDGE architectures are related since both

apply if-conversion to expose scheduling or placement regions by removing

branches. Branch frequency is important to both architectures, since it is

better to fill a hyperblock with instructions that execute under the same con-

ditions and frequencies. VLIW heuristics have used path frequency as a key

heuristic; it is unclear, however, whether EDGE architectures benefit from

using path frequency.

To find improved hyperblock formation heuristics, prior work has ap-

plied machine learning techniques to search the space of heuristic functions.

Meta Optimization [72] uses a genetic algorithm to evolve a custom heuris-

tic using feedback over several generations of experiments. In that work a

genetic programming system learns general-purpose heuristics for hyperblock

formation that improve performance by 25% over a human-created heuristic.

In Chapter 7 this dissertation uses a similar technique to learn heuristics for

EDGE block formation, and to explore the effect of heuristics on performance

at several composed core counts.

14

There are two important differences between VLIW and EDGE con-

straints [45, 66]. First, EDGE blocks also must conform to the architectural

restrictions on block size, load/store ids, and register usage. Second, since

VLIW machines issue instructions in a statically determined order, there is a

high penalty for imbalanced dependence chains. An EDGE block can commit

when all of its outputs are produced, and thus long dependence chains with a

false predicate do not directly add to the execution schedule length, although

they do occupy space in a block that may otherwise have been filled with

useful instructions. An additional complication faced by an EDGE compiler,

however, is that blocks must be size-constrained to allow dataflow encoding

within a block. Nevertheless, both VLIW and EDGE compilers use heuristics

to form large scheduling regions.

2.2 Phase-Ordering Problems

Iterative block formation with head duplication solves phase ordering

problems between if-conversion, scalar/predicate optimization, and loop un-

rolling/peeling. Phase ordering problems in general are well-known in compiler

optimizations, so we summarize the most closely related here.

Predication creates phase ordering problems, because code can be highly

optimized in predicated form using standard techniques in the dataflow do-

main, but not all code is best left predicated. Reverse if-conversion allows code

to be optimized in the predicated form and then reverted to the control flow

domain as necessary [6, 75]. Iterative optimization has been used with reverse

15

if-conversion to produce good schedules for VLIW architectures [6]. After

applying predication, optimizations, and scheduling, this algorithm finds the

basic blocks that most constrain the schedule and remove them from a hyper-

block, allowing a later scheduling attempt to produce better code.

August et al. discuss the interaction of hyperblock formation and scalar

optimizations [7]. Their solution iterates on if-conversion, scalar optimizations,

and VLIW scheduling. If this algorithm produces a poor schedule, it performs

reverse if-conversion to remove basic blocks that constrain the schedule, allow-

ing the algorithm to adjust hyperblock formation decisions after scheduling.

Iterative block formation, by contrast, makes decisions incrementally in a sin-

gle pass to ensure that the block conforms to the architectural constraints.

A related technique is software pipelining, which uses an iterative ap-

proach to select an appropriate unroll factor based on scheduling constraints [2,

3, 41, 58]. Rau’s iterative modulo scheduling algorithm performs software pipelin-

ing for progressively larger values of the iteration interval until it resolves de-

pendence constraints. Iterative block formation unrolls incrementally to fill

blocks, but does not consider inter-iteration dependences, because dynamic

issue in EDGE processors reduces the static scheduling problem of VLIW ma-

chines.

One of the classic phase ordering problems in compilation is between

instruction scheduling and register allocation [10, 28]. If register allocation is

performed before scheduling, re-use of register names may inhibit scheduling of

parallel operations. If scheduling is performed first, it may increase the number

16

of simultaneous live values, leading to more spills to memory. Prior work has

approached this problem using heuristics or algorithms that approach either

scheduling or allocation with the other phases constraints in mind [28]. Itera-

tion has been used in a limited form, using an instruction scheduling prepass

to determine costs more accurately for register allocation [10]. While these

techniques work well in this domain, this phase ordering problem is primarily

about optimization: poor schedules or allocations may result in lower perfor-

mance, but code will still execute correctly. With EDGE block formation,

forming overly large blocks will result in failure to compile.

Loop unrolling presents a phase-ordering challenge to many optimiza-

tions. For example, scheduling, register allocation, and constant propagation

could benefit from occurring after unrolling, since they take advantage of the

redundancies found in the unrolled code. Prior research has found that most

optimizations are best performed before loop unrolling [19]. Largely this is

because heuristics for dealing with large loops break down when applied to

the repetitive structure of an unrolled loop. Register allocation, for example,

tends to commit too many registers to the body of an unrolled loop, which

forces unneeded spills. In the context of EDGE processors, unrolling is prob-

lematic because it interacts with all other optimizations by changing the block

size. Nethercote et al. resolve this tension by compiling in two phases, the

first of which records the loop size after optimization [56]. Like pre-scheduling,

this approach can only estimate the effect of unrolling. Iterative block forma-

tion solves this problem by merging blocks, performing scalar optimizations,

17

checking constraints, and undoing if necessary. While both algorithms may

need to undo unrolling Nethercote et al. attempt to be conservative to limit

undoing. Because iterative block formation eliminates the need for estimation,

it is more aggressive, more accurate, and adds algorithmic flexibility.

2.3 Atomicity

Block-structured ISAs improve instruction fetch and issue bandwidth

by aggregating instructions into atomic regions [29, 50]. The compiler for a

block-structured ISA constructs enlarged blocks that contain a single path of

control [49]. The compiler combines basic blocks to increase the processor’s

fetch bandwidth and scheduling abilities, using an incremental technique that

combines basic blocks until meeting a threshold: block size and number of

exits. The block enlargement phase is similar to incremental block merging as

discussed in this dissertation, but the major phases differ because the block-

structured ISA compiler does not include if-conversion, loop unrolling/peeling,

or scalar optimizations in its iterative loop.

The execution model of a block-structured ISA differs from EDGE ar-

chitectures in several key ways. In a block-structured ISA, if an early exit

(fault) is taken from a block, the processor aborts and begins executing at the

target of the early exit. Side exits from EDGE blocks do not result in an abort,

merely predicated-out work; there is no notion of rollback at the ISA level, al-

though the microarchitecture does implement rollback (in a sense) when blocks

must be flushed due to misspeculation. A side exit in a block-structured ISA

18

causes the processor to squash the entire block and fetch a new block. EDGE

architectures use predication extensively to form large blocks, which relies less

on dynamic branch prediction, but requires a wider machine to tolerate the

overhead of predication. EDGE architectures also use dataflow encodings and

execution within blocks, which potentially allows for a more energy-efficient

implementation.

Transactional memory (TM) provides hardware support for atomic re-

gions [31]. While atomicity is a common feature, EDGE and TM serve very

different purposes. Transactional memory provides atomicity constructs to

user-level programmers, allowing them to define regions of code that must ex-

ecute atomically with respect to other atomic regions. Atomicity in EDGE

architectures is not visible to the application programmer; rather, the com-

piler constructs blocks from sequential code, which the architecture maintains

atomically. The goals of EDGE and TM differ, as EDGE seeks to improve

instruction throughput by eliminating branches and easing the extraction of

instruction-level parallelism. TM provides a mechanism for more easily ex-

ploiting thread-level parallelism, which is often exposed to the application

programmer as a replacement for fine-grained locking. Unlike EDGE blocks,

atomic transaction regions are not size-constrained and may contain arbitrary

control flow. We do note, however, that granularity is an important issue for

TM systems, where large transactions can potentially degrade performance if

frequently aborted [9].

Hardware atomicity has also been used to enable compiler optimiza-

19

tions [54, 55]. This work on optimizations enabled by hardware atomicity,

rather than how atomic regions should be selected: the compiler selects regions

to optimize heavily using standard profiling information. All paths outside of

this region are replaced with abort instructions, so that optimizations may

happen without regard for constraints imposed by these exiting branches. If

a condition occurs that would exit the hot region, the processor rolls back

state to the beginning of the region. Again, the differentiating factor is that

flush/rollback is not transparent to the ISA. Speculative optimizations are

more difficult to implement in an EDGE compiler, because EDGE ISAs do

not provide an explicit abort mechanism.

20

Chapter 3

EDGE Architectures

This chapter provides background information about block-atomic ar-

chitectures in general, and about the particular block-atomic ISA—Explicit

Data Graph Execution (EDGE)—used in this thesis. Section 3.1 overviews

block-atomic ISAs in general and why such architectures are desirable. Sec-

tion 3.2 describes the features of block-atomic EDGE ISAs, which use dataflow

execution to achieve high efficiency. Section 3.3 overviews compilation for

EDGE architectures, and Sections 3.4 and 3.5 describe the TRIPS and TFlex

microarchitectures, two early instances of EDGE ISAs.

3.1 Advantages of Block-atomic Architectures

Block-atomic instruction set architectures (ISAs) enable greater per-

formance and efficiency than superscalar designs by grouping instructions into

larger execution units. A processor implementing a block-atomic ISA fetches

and commits such blocks atomically and in-order. Atomic commit of blocks is

similar to atomic commit of instructions in conventional pipelined processors,

which allows a processor to support precise interrupts [69]. In-order commit

of blocks allows a familiar sequential programming model, in which the pri-

21

mary difference is that the smallest unit of work is a block rather than an

instruction.

Various types of blocks may be supported by a block-atomic ISA and

its compiler. In a RISC or CISC ISA, each instruction is trivially a block.

VLIW architectures use fixed-size instruction words, which are blocks con-

taining independent instructions. VLIW words are as wide as the issue width

of the machine, which is typically 4–16 instructions. Larger blocks can be ba-

sic blocks, superblocks [34], hyperblocks [47], or other compilation units. The

primary restriction on blocks is that they must not have internal control flow.

Data dependences between instructions are allowed, however, in contrast to

VLIW instruction words.

Processor performance benefits from the use of large atomic blocks [51].

Grouping instructions into blocks improves the front-end bandwidth of a pro-

cessor by simultaneously fetching large groups of instructions and by alleviat-

ing bandwidth pressure on the branch predictor [29]. Without the benefit of

large blocks, a superscalar processor larger than four-wide must often predict

multiple branches per cycle to fill functional units. By contrast, a block-

atomic ISA can combine several basic blocks, thus reducing the frequency of

branches. With fewer branches to interrupt the instruction stream, the proces-

sor can fetch a larger number of instructions per cycle without the complexity

of fetching many discontinuous basic blocks.

Another performance optimization opportunity provided by block-atomic

ISAs is the ability to exploit locality of temporary values [53]. Values produced

22

by an instruction are likely to be consumed by nearby instructions, and most

values have short live ranges. By communicating directly between instruc-

tions within a block, and writing to a global register file for inter-block com-

munication, Explicit Data Graph Execution (EDGE) architectures facilitate

distributed, out-of-order execution with low overhead. Section 3.2 describes

EDGE ISAs in greater detail.

Block-atomic ISAs provide an efficiency advantage as well when com-

pared to superscalar architectures. The performance of conventional super-

scalar processors is limited by power consumption due to the cost of discover-

ing sufficient parallel work in each cycle. Using pipelined execution of many

large blocks, a block-atomic ISA enables a larger instruction window within a

given power budget, which reveals greater instruction-level parallelism.

This dissertation will focus on EDGE ISAs, which use predication to

form large blocks of up to 128 instructions. EDGE architectures are an aggres-

sive compiler target due to the block size. This section describes EDGE ISAs,

in particular the TRIPS ISA, which is an early instantiation of an EDGE

architecture. We discuss two microarchitectural implementations of EDGE:

the TRIPS prototype, which is a physically realized processor, and the TFlex

microarchitecture, which is an evolving research platform.

3.2 EDGE ISAs

EDGE architectures exploit concurrency efficiently by combining block-

atomic and restricted, intra-block dataflow execution [11]. A program com-

23

piled for an EDGE architecture consists of a series of structurally constrained

blocks, which have restrictions on the number and type of instructions that

they can contain. The processor fetches and commits blocks in order, but may

execute them in a pipelined fashion, similar to instructions in a superscalar

processor. By committing blocks atomically and in order, an EDGE ISA can

support precise exceptions at block boundaries. By providing a strict order-

ing of memory accesses, an EDGE ISA can support conventional sequential

programming languages.

Within blocks, EDGE instructions communicate via direct dataflow.

Rather than reading operands from (and writing results to) a shared register

file, instructions encode the consumers of their results and send values to those

targets. This direct target encoding reduces the need for global, centralized

structures such as the register file and renaming logic, which can be a perfor-

mance bottleneck and consume a large amount of energy. Due to the reduced

need for centralized structures, an EDGE ISA enables a distributed microar-

chitectural implementation, which can utilize many functional units with less

global communication.

The TRIPS ISA is an instance of an EDGE ISA, which is implemented

by the TRIPS processor and the TFlex microarchitecture. The TRIPS ISA

uses blocks of up to 128 instructions. To facilitate creation of large blocks, the

ISA incorporates predication of nearly all instruction types. Using predication,

the compiler converts control dependences into data dependences to merge

multiple paths of control into a single block. By combining control paths, the

24

Parameter Constraint

Instructions 128
Register reads 32
Register writes 32
Load/Store IDs 32
Outputs A constant number of writes and stores

Exactly one branch

Table 3.1: TRIPS ISA block constraints

compiler creates larger blocks without excessive code expansion and improves

branch prediction accuracy by removing hard-to-predict branches. Because

EDGE blocks have architectural constraints, they are more restricted than

conventional hyperblocks, which are single-entry, multiple-exit regions of code

in which control flow is replaced by predication [47].

The TRIPS ISA places four fixed architectural restrictions on the con-

tents of blocks. These restrictions reduce hardware complexity at the expense

of software flexibility. Table 3.1 summarizes these constraints. They are: (1) a

maximum of 128 instructions per block; (2) a maximum of 32 loads and stores

may issue per block; (3) a maximum of 8 register reads and 8 register writes

to each of four register banks; and (4) a block must always produce a fixed

number of outputs (stores, writes, and branches). The compiler for an EDGE

ISA uses per-block SSA to ensure that all outputs are produced regardless

of the predicate path taken through the block [66]. Section 3.3 describes the

overall compiler structure.

While TRIPS and TFlex share this ISA, the microarchitectural im-

plementation differs. The TRIPS hardware implementation demonstrates the

25

a) Control-flow graph b) Unrolled CFG

 -

c) Hyperblocks e) Scheduled &
 assembled code

d) Optimized
 hyperblocks

read_0

andi_1 srli_17

or_3

andi_25 srli_34srli_47

read_11

mov_f_10

mov_f_32

read_2

or_26

or_39

and_5slli_8mov_f_14 and_27

slli_30

mov_f_33

and_40 slli_43 mov_f_46

read_18

subi_19 subi_36 subi_48

tlt_24 tlt_37 tlt_50 write_73

teqi_6extuw_9

enter_4

teqi_28

teqi_41

xori_7mov_t_10

mov_f_45

movi_23

extuw_31xori_29

andi_38 mov_t_32

write_75

movi_35

extuw_44 write_70

xori_42 mov_t_45

mov_t_46

write_72 bro_f bro_t

movi_49

Front-end
 - parsing
 - generate CFG

High-level transformations
 - loop unrolling
 - loop peeling, flattening
 - inlining

Code generation
Block formation
 - more unrolling
 - if-conversion
 - predication

 Register allocation
 Backend optimizations
 - peephole optimizations

Scheduler
 - Inserts moves
 - Places instructions
 - Generates assembly

Figure 3.1: Phases of the TRIPS compiler.

feasibility of a tile-based, distributed microarchitecture. It uses heterogeneous

tiles that implement execution units, registers and caches. TFlex is a homo-

geneous tiled architecture that fully distributes all resources.

3.3 Compiling for EDGE ISAs

The research compiler used for the TRIPS ISA, Scale, is a retargetable

compiler with C and Fortran front-ends and back-end code generation support

for several RISC instruction sets, such as Alpha, SPARC, and PowerPC, in

addition to the TRIPS ISA back-end [48]. Scale is designed to be a modular,

high performance compiler with many classical optimizations performed on a

machine-independent intermediate representation, which makes it an excellent

starting point for novel ISA research. Most of the TRIPS compiler research

focuses on the back-end of the compiler, although heuristics are varied in the

front-end optimizations to take advantage of the large register file and block

temporaries in the TRIPS prototype.

26

Figure 3.1 shows the overall structure of the TRIPS compiler flow. The

compiler front-end parses source code and transforms it to an abstract syntax

tree (AST), at which level the compiler performs function inlining. The AST

is lowered to a machine-independent control-flow graph (CFG), where classical

optimizations including loop unrolling (of for loops), strength reduction, code

motion, etc. are performed. The Scale front-end supports feedback-directed

optimization using profiling information; the compiler can instrument pro-

grams to collect basic block, edge or path profiles, and read them during a

second compilation pass.

After front-end optimizations are complete, the compiler performs a

lowering pass, which transforms the machine-independent IR into a list of

instructions in standard three-operand format that correspond to TRIPS as-

sembly language instructions. The compiler arranges these instructions into

an EDGE block flow graph (EFG). Because no predication is initially used, the

EFG nodes correspond one-to-one with basic blocks in the control flow graph.

The compiler progressively transforms this format into blocks that satisfy the

TRIPS ISA constraints. In this stage the compiler performs block formation

using if-conversion, additional loop unrolling, and loop peeling. Chapter 4 de-

scribes the block formation algorithms invented for this process. During block

formation the compiler maintains a predicate flow graph (PFG) for each block,

which enables the use of SSA to satisfy output constraints [66].

Satisfying the ISA output constraints described in Table 3.1 requires

inserting store and write nullifications. This complex algorithm is described

27

in detail elsewhere [66, 68]. The complexity of null insertion has a significant

impact on block formation. Because null insertion and fanout can change

instruction count in non-linear and unpredictable ways, block formation cannot

easily estimate the effects of merging a basic block without actually performing

if-conversion, applying the nullification algorithms, and checking the result.

This complexity motivates the iterative approach described in Chapter 4.

After forming blocks, the compiler allocates registers [59]. Because reg-

ister allocation may insert spill code, the block constraints may be violated.

To resolve this issue, the compiler performs a block splitting pass to reduce

the size of invalid blocks containing spill code. Initially, block splitting was

to be the primary method for ensuring the block constraints were met, given

large blocks formed by the front end. However, it proved too error-prone and

produced suboptimal code compared to an iterative method, because the block

formation problem is overly constrained by the time block splitting occurs. Fi-

nally, the compiler emits code in TRIPS Intermediate Language (TIL), which

is a RISC-like assembly language designed for easy readability by humans.

The instruction scheduler depicted in Figure 3.1 reads TIL and pro-

duces TRIPS Assembly Language (TASL) where all instructions are assigned

dataflow identifiers that the processor will use to place instructions on ALUs

at runtime. With some knowledge about the microarchitectural topology, the

scheduler optimizes performance by reducing the critical path through the pro-

gram, reducing latency between dependent instructions and maximizing par-

allelism [16, 52]. From TASL, the conventional steps of assembly and linking

28

Processor 1

Processor 0

O
n

-C
h

ip
 N

e
tw

o
rk

EEEE

R R R R

D

D

D

D

I

I

I

I

I G

EEEE

EEEE

EEEE

G: Global Control

 (predict/fetch)

R: Register File

 I: Instruction Cache

D: Data Cache

 E: Execution

 (ALU array)

DMA: DMA

 SDC: SDRAM

 C2C: Chip-to-Chip

 EBC: External Bus

TRIPS Tiles

TRIPS Controllers

L2 Cache/Memory

(16 NUCA tiles)

SDC

DMA

EBC

SDC

DMA

C2C

EEEE

EEEE

EEEE

EEEE

R R R R

D

D

D

D

G
I

I

I

I

I

Figure 3.2: TRIPS processor die photo with outlined tiles.

into an executable are handled by modified versions of the GNU binutils [76].

The TRIPS compiler is a collaborative effort with many other re-

searchers. The compiler front-end and machine-independent optimizations

were maintained by James Burrill [48]. Aaron Smith implemented back-end

code generation for TRIPS and many of the TRIPS-specific optimizations [66,

67]. Register allocation was implemented by Jon Gibson and Behnam Robat-

mili [59]. Katherine Coons implemented the scheduler used in this work [16].

Earlier versions of the scheduler were contributed by Sundeep Kushwaha and

Ramadass Nagarajan [52]. The TRIPS assembler and linker were developed

by Bill Yoder [76].

3.4 TRIPS Microarchitecture

The TRIPS processor is a wide-issue, large-window machine with a

distributed microarchitecture that implements an EDGE ISA. The TRIPS

29

microarchitecture can issue 16 instructions per cycle from a window of up

to 1024 instructions (eight blocks of up to 128 instructions each). Within

each block, eight instructions are mapped to each functional unit to minimize

contention and communication latencies [16, 52]. Using speculative next-block

prediction, the microarchitecture supports eight blocks in flight, thus yielding

the maximum instruction window size of 1024 instructions. The processor

commits the oldest in-flight block after it produces all of its outputs: up to

32 stores, up to 32 register writes, and a single branch decision. Each block

contains up to 32 register reads and writes in addition to the 128 regular

instructions.

The TRIPS microarchitecture is a heterogeneous design, using five dif-

ferent types of tiles to implement the processor core. The global control tile

(G) is responsible for managing branch prediction, fetch, flush, and commit

protocols; the instruction tiles (I) contain the instruction cache; the data tiles

(D) contain the data cache; the register tiles (R) contain the register file; and

the execution tiles (E) contain the issue queues and ALUs. Figure 3.2 shows

a die photo of the processor with these tiles outlined to show their locations.

The tiles are connected via micronetworks that communicate control messages,

instructions, and data.

3.5 TFlex Microarchitecture

Dynamic multicore processors, which adapt their parallel resources to

the workload at hand, have been shown to provide the best performance trade-

30

8Kbit
next block
predictor

4KB L1

I-cache

4KB
header
cache

8KB L1

D-cache

40-entry

load/store
queue

Memory
network
in/out

Block
control 128-entry

register
file

Register
forwarding

logic/queues

OPN
in queue

OPN
out queue

Operand
buffer

Operand
buffer

Control
networks

S
el

ec
t
lo

g
ic

Figure 3.3: Microarchitecture of one TFlex Core

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Thread 1

Thread 2

T3
T4

T5

readmovstorestorestorestore
store

Blocks
Instructions

Cores

Figure 3.4: Mapping blocks to composable TFlex cores

31

off given a mix of sequential and parallel work [32]. Block-atomic execution

enables an EDGE processor to execute programs on few or many cores by

executing blocks independently on cooperating cores, using a shared register

file and memory only for coarse grained, inter-block communication [37, 60].

While composability can be achieved using a RISC or CISC ISA as in Core

Fusion, limitations such as fine-grained register communication using a central-

ized register renaming unit and relatively frequent control decisions physically

limit composability to four cores [35].

The goal of the TFlex microarchitecture is to create a composable,

lightweight processor (CLP) that can be reconfigured to handle a variety of

workloads [37]. A TFlex processor consists of many simple cores that the

system can compose to accelerate the execution of a single thread, as depicted

in Figure 3.4. When multiple cores execute a single thread, TFlex dynamically

maps each block to a single core, which allows multiple blocks execute in

parallel on different cores [60]. When running a workload with many threads,

each core can independently execute a thread. When running few threads with

greater ILP needs, many cores can be combined to form more powerful logical

processors. With composability, TFlex can adapt to the characteristics of the

programs running on it.

To achieve composability, the individual cores must be capable of act-

ing independently. Each tile must have its own cache and register file. Unlike

the TRIPS processor where these resources are placed along the edges of the

execution grid, each TFlex tile contains registers and cache as shown in Fig-

32

ure 3.3. When combining cores, these resources become parts of a larger logical

register file and cache. When executing a program on a large logical processor,

each atomic block may be mapped to some subset of the cores.

TFlex is implemented in simulation only, unlike TRIPS, which has

been realized in hardware. A simulator implementation allows variety with

architectural policies and microarchitectural implementations. Chapter 7 will

discuss how the EDGE block formation problem can vary given differing mi-

croarchitectural implementations. This dissertation shows that performance

is not entirely portable across microarchitectural configurations, as the best

compiler policies for small and large core counts differ substantially.

33

Chapter 4

Iterative Block Formation

EDGE architectures rely on the compiler to form high-quality blocks

for good performance. These compilers typically perform if-conversion, loop

unrolling, and scalar optimizations in a fixed order. This approach limits the

compiler’s ability to exploit or correct interactions among these phases. EDGE

architectures exacerbate this problem by imposing structural constraints on

blocks, such as instruction count and instruction composition.

This chapter describes iterative block formation, which iteratively ap-

plies if-conversion, peeling, unrolling, and scalar optimizations until converg-

ing on blocks that are as close as possible to the structural constraints. To

perform peeling and unrolling, iterative block formation generalizes tail dupli-

cation, which removes side entrances to acyclic traces, to remove back edges

into cyclic traces using head duplication. Simulation results using an EDGE

architecture show that iterative block formation improves code quality over

discrete-phase approaches with heuristics for VLIW and EDGE. This algo-

rithm offers a solution to block phase ordering problems and can be configured

to implement a wide range of policies.

34

4.1 Introduction

To form blocks, a compiler has several transformations at its disposal.

If-conversion enlarges blocks by converting control dependences to data depen-

dences [4]. While performing if-conversion, a compiler may apply tail duplica-

tion to remove side entrances to a region. Loop unrolling removes branches by

creating multiple copies of a loop body, and either recognizing that the loop

test is unnecessary or replacing it with predication. Loop peeling pulls initial

iterations out of the loop body, to allow scheduling of instructions from those

iterations with surrounding code. By applying these transformations, the com-

piler can remove control flow instructions and expose parallelism within the

block.

Because these transformations all change the composition of the blocks,

phase-ordering problems can arise. For example, a compiler may select dif-

ferent unroll factors for a loop depending on whether the loop body has been

if-converted. Conversely, if-conversion may be more or less effective on an

already unrolled loop body. Beyond these phase ordering problems, scalar

optimizations present an additional challenge. By performing if-conversion or

loop unrolling a compiler can create opportunities for optimization; those opti-

mizations, however, may change the desired if-conversion strategy or unrolling

factor.

Constrained block-atomic architectures like EDGE present an addi-

tional challenge for compilers by placing size and content restrictions on blocks.

These restrictions increase the performance sensitivity of optimizations be-

35

cause poorly sized blocks execute less efficiently on a block-atomic microar-

chitecture. Furthermore, strict limits transform a performance optimization

into a correctness criterion. While overly aggressive if-conversion or unrolling

may simply result in slow code on a conventional architecture, it may cause

the compiler to generate invalid code for a block-atomic architecture. While

it may be possible to correct such errors at the end of code generation—via

block splitting—such an approach typically leads to suboptimal code and is

best avoided when possible [45, 66]. Thus it is important for the compiler to

consider the effect of optimizations on block size at all phases of code genera-

tion.

This chapter presents two techniques for dealing with the above phase

ordering problems. The first contribution is an iterative, incremental approach

to block formation, which allows the compiler to continuously monitor the size

of a block as it is formed. Prior work on hyperblock formation forms blocks

by examining all basic blocks in a region and ranking them for inclusion in

a hyperblock. Incremental block formation considers only the successor basic

blocks of a block as candidates for inclusion. At each step the block can be re-

optimized to take advantage of newly exposed opportunities, which improves

the packing of the block. While improving the fullness of blocks is only one

aspect of optimization, iterative hyperblock formation allows the compiler to

use heuristics to select the best successor blocks for inclusion. This approach

both allows the compiler to satisfy the ISA block constraints, and resolves the

phase-ordering tension between block formation and scalar optimizations.

36

To solve the phase-ordering problem between if-conversion and un-

rolling/peeling, this dissertation introduces head duplication. Head duplica-

tion is a transformation analogous to tail duplication. Where tail duplication

eliminates merge points created by forward branches by duplicating code, head

duplication eliminates merge points created by backward branches, which oc-

cur at loop headers. This transformation effectively duplicates the loop body,

thus implementing unrolling and peeling. By casting these transformations as

tail duplication, the compiler can apply unrolling and peeling as needed during

the course of block formation.

Iterative block formation with head duplication preserves the compiler’s

ability to use heuristics in selecting blocks for inclusion. Prior approaches to

hyperblock formation use the features of each basic block or path through a

region [46, 47, 72]. Iterative block formation is more limited in scope: it con-

siders only the immediate successors of a block as candidates for inclusion,

although larger regions of the graph may be considered as part of the heuris-

tics. Iterative block formation encapsulates this heuristic in a single priority

function at the heart of the algorithm. This chapter evaluates the effect of

iterative block formation on several basic policies. Chapter 7 presents a more

detailed exploration of the policy space for iterative block formation.

We evaluate iterative block formation using simulation of the TRIPS

EDGE architecture described in Section 3.4. These experiments show that this

approach improves TRIPS microbenchmark cycle counts by 2 to 11% on aver-

age when compared to classical phase orderings. These results also establish

37

a strong correlation between block count reduction and performance improve-

ment. A functional simulator shows that iterative block formation reduces

block counts of the SPEC2000 benchmarks, indicating potential performance

improvement on real applications.

By resolving phase ordering problems among block formation, loop un-

rolling, loop peeling, and scalar optimizations, iterative block formation with

head duplication enables effective compilation for block-atomic architectures.

Combining these techniques yields an elegant, single-pass algorithm that en-

ables high-quality code generation and improves the robustness of the com-

piler. Our implementation of iterative block formation has significantly re-

duced complexity in the TRIPS compiler back end. The self-checking nature

of the algorithm reduces the possibility of subtle dependences between phases,

one of the most common sources of bugs in the compiler.

4.2 Phase Ordering Challenges

Structural architectural constraints on block formation exacerbate a

phase ordering problem between block formation, loop unrolling, loop peeling,

and scalar optimization. Block formation creates scalar optimization oppor-

tunities that are difficult to express in the control-flow domain. Two such

examples are instruction merging, which combines instructions from distinct

control-flow paths, and implicit predication, where the compiler predicates

only the head instruction in a dependence chain, thus implicitly predicating

the successors [67]. Since these optimizations typically eliminate instructions

38

(a) Original CFG

A

B

C

E

F

H

I

G

D

3

3

A

B

E

H

I

CD

FG

(b) After hyperblock

 formation

CD

CD

CD

CD

FG

FG

FG

FG

A

H

I

(c) After unroll

 and peel

B

CD

CD

CD

E

FG

FG

FG

H

A

E

H

I

(d) Ideal

B

CD

CD

CD

E

FG

FG

FG

CD

CD

CD

CD

FG

FG

FG

FG

Figure 4.1: Block formation example.

or fanout, their application may enable the compiler to include more basic

blocks in the block, improving code density.

Loop unrolling and peeling present a similar challenge. If the com-

piler performs these transformations before block formation, it may if-convert

multiple iterations and combine them into large blocks. Without performing

block formation on the body of the loop, however, the compiler cannot deter-

mine an appropriate unroll factor. Figure 4.1a shows a CFG extracted from

the SPEC benchmark ammp, which consists of an outer loop with two inner

loops where all the loops must perform their exit test on each iteration. Such

loops are termed while loops, but do not assume the C “while” loop construct.

While-loop unrolling requires block formation to predicate each iteration, un-

like for-loop unrolling, which can remove intermediate tests. This example

assumes that profiling indicates that each loop typically iterates three times.

39

Figure 4.1b shows block formation in which the compiler first if-converts

the bodies of the inner while loops. Figure 4.1c shows the code when the

compiler uses the profile to peel three iterations, and then unrolls the loop

four times to fill the block for the less frequent case. Ideally, the compiler

would now repeat block formation to produce the code in Figure 4.1d.

Under different conditions, the ideal phase ordering may include an-

other pass of peeling: if the loops execute either three or four times in the

common case and the compiler cannot fit four peeled iterations in a single

block until after scalar optimizations, the ideal compiler would peel again.

Thus, each static phase ordering of block formation, peeling, unrolling and

scalar optimizations may miss opportunities to create better blocks.

4.3 Iterative Block Formation

Iterative block formation incrementally merges basic blocks and itera-

tively applies optimizations to ensure that each block is well constructed and

tightly packed with useful instructions. The algorithm incorporates loop peel-

ing and unrolling by generalizing tail duplication to remove back edges.

4.3.1 Head and Tail Duplication

Compilers use tail duplication to expand a block by duplicating code

below a merge point and eliminating side entrances. On a VLIW architecture,

the compiler copies the merge point, and changes the pertinent branch to

target the copy. Other than the branch, the compiler does not need to modify

40

A

B C

D

A

B

D

C

A

B

D

C

D’

A

B

D

C

D’

A

B

D’

D

C

(a) Original CFG (b) Partial

hyperblock

formation

(c) Code

duplication

(d) CFG

transformation

(e) If-conversion

Figure 4.2: Classical tail duplication.

either the copied or the original code.

An EDGE compiler, however, must predicate the merge point for two

reasons. First, a branch does not immediately terminate an EDGE block; in-

stead, the architecture requires that a block produce all of its outputs (register

writes and stores, in addition to the branch) before committing. Second, un-

predicated instructions within the block execute when they receive operands.

Therefore, the instructions in an unpredicated merge point would send results

to the outputs of the block, even if the processor takes the side exit. Essen-

tially, duplicating the merge point makes it control-dependent on the exit test,

and correct dataflow execution requires the compiler to convert this control

dependence to a data dependence.

Furthermore, the EDGE compiler must transform the resultant block

to meet the structural constraints (i.e., the block must produce a fixed number

of outputs) [66]. Thus the side exit must produce the same number of outputs

as the main path, potentially adding size overhead to the block, and runtime

overhead if the side exit is taken.

Figure 4.2a shows an example of tail duplication in which the compiler

41

A

B

C

A

B

C

B’

A

B’

B

C

A

B’

B

C

(a) Original CFG (b) Code

duplication

(c) CFG

transformation

(d) If-conversion

Figure 4.3: Head duplication implements peeling.

chooses to combine A, B, and D. The compiler first if-converts B and merges

it with A (Figure 4.2b). The compiler then applies tail duplication to D to

eliminate the side entrance. It copies D to create D′ (Figure 4.2c). Next, it

modifies the CFG, redirecting AB → D to D′ (Figure 4.2d). The compiler then

if-converts D′, predicating the instructions on the original branch condition for

A→ B, and merges the result into the block (Figure 4.2e).

Compilers typically perform block formation on acyclic regions within

a CFG. Head duplication generalizes block formation to include cyclic regions,

effectively implementing peeling and unrolling. Encountering a block that is

the target of both an edge from the current block and a loop back edge is similar

to encountering a block with a side entrance; thus the compiler can apply the

same tail duplication process. Tail duplication creates outgoing edges from

the duplicated block to the successors of the original. If the original block was

a loop, the new edge will either be a loop entrance (peeling) or a back edge

(unrolling).

Consider the CFG in Figure 4.3a. Since B is a loop header, tail dupli-

cation is insufficient for combining A and B. Head duplication peels a copy

42

A

B

C

A

B

C

B’

A

B

B’

C

B

B’

A

C

(a) Original CFG (b) Code

duplication

(c) CFG

transformation

(d) If-conversion

Figure 4.4: Head duplication implements unrolling.

of B to merge with A. The compiler copies B to make B′ (Figure 4.3b),

then redirects edge A → B to B′, adds B′ → B, and for all B → X, inserts

B′ → X (Figure 4.3c). Finally, the compiler if-converts and merges B′ and A

(Figure 4.3d).

Figure 4.4 shows how head duplication also implements loop unrolling.

Consider creating a block starting with basic block B. Since the back edge

points to B, the compiler can unroll and still satisfy the single entry constraint.

Head duplication creates a copy of the loop body B′ (Figure 4.4b). The com-

piler then replaces B → B with B′ → B, inserts B → B′, and B′ → C

(Figure 4.4c). The last step if-converts and merges B′ into B (Figure 4.4d). If

the compiler were to apply additional unrolling directly to this CFG, it could

only unroll by powers of two. To remove this limitation, the unrolling proce-

dure saves the original loop body and appends one additional iteration at a

time.

4.3.2 Incremental Block Formation

Iterative block formation integrates unrolling, peeling, tail duplication,

if-conversion and scalar optimizations to form blocks incrementally. Figure 4.5

43

procedure ExpandBlock(HB : block)

1: candidates := Successors(HB)
2: while candidates is not empty do
3: S := SelectBest(candidates)
4: candidates := candidates − {S}
5: if not LegalMerge(HB , S) then
6: continue
7: else if MergeBlocks(HB , S) == Success then
8: candidates := candidates

⋃
Successors(S)

9: end if
10: end while

procedure MergeBlocks(HB , S : block)

1: HBcopy := Copy(HB)
2: Scopy := Copy(S)
3: HBS := Combine(HBcopy , Scopy)
4: Optimize(HBS)
5: if not LegalBlock(HBS) then
6: return Failure
7: else if NumPredecessors(S) == 1 then
8: Replace(HB , HBS) // no code duplication
9: Remove(S)

10: else if HB → S is a back edge and HB == S then
11: UnrollLoop(HB , S)
12: else if S is a loop header and HB → S is not a back edge then
13: PeelLoop(HB , S)
14: else
15: TailDuplicate(HB , S)
16: end if
17: return Success

Figure 4.5: Iterative block formation algorithm.

44

shows the pseudocode for the algorithm. The procedure ExpandBlock starts

with a block HB and selects a successor S to merge according to a heuristic.

The compiler then calls MergeBlocks, which attempts to merge S into HB ,

duplicating code if necessary. If the merge is successful, the compiler adds the

successors of S to the set of candidates.

MergeBlocks first copies HB and S to scratch space and attempts to

if-convert and merge S into HBS . The compiler optimizes the resulting block,

and then checks to determine whether the block violates the structural con-

straints. If so, the merge fails and the compiler considers other successors. By

testing the merge in scratch space before transforming the CFG, the imple-

mentation avoids a more complicated undo step.

If the merge is successful, the compiler must transform the CFG appro-

priately. If HB → S is the only entrance to S, the compiler can simply remove

S from the CFG and replace HB with HBS (lines 7–9 in MergeBlocks). Oth-

erwise, it must perform code duplication. Lines 10–15 of MergeBlocks show

the cases where the compiler performs unrolling, peeling, and tail duplication.

The compiler uses head duplication to implement unrolling and peeling and tail

duplication for other cases. The Optimize step attempts to eliminate instruc-

tions in the merged block. The compiler currently applies dominator-based

global value numbering and predicate optimizations that reduce the number

of instructions that use each predicate [67].

45

4.4 Policy

Iterative block formation constructs blocks that obey architectural con-

straints while increasing code density. To achieve high performance, however,

the algorithm must apply heuristics that select the most profitable basic blocks

to include in each block. This block selection policy can balance several char-

acteristics of high-performance blocks.

The two simplest heuristics, breadth-first and depth-first, each em-

phasize one of two opposing goals. By merging basic blocks in breadth-first

order, the compiler guarantees the inclusion of some useless instructions, but

attempts to decrease the branch misprediction frequency and limit tail dupli-

cation. The depth-first policy risks a higher misprediction rate and performs

more tail duplication, but seeks to include a greater number of useful instruc-

tions.

Branch predictability: Removing conditional branches is important

for EDGE architectures because of their large instruction windows. In the

TRIPS prototype, each processor has a 1024-instruction window consisting of

eight blocks, seven of which are control-speculative. A branch misprediction

and subsequent pipeline flush prevents effective utilization of this window.

The compiler can improve predictability during block formation by eliminating

unpredictable conditional branches. One heuristic that eliminates conditional

branches is to end blocks at merge points so that each has a single exit, however

this policy may result in under-full blocks.

46

Limiting tail duplication: On a dataflow architecture, tail duplica-

tion requires additional predication below the side exit, including predication

of the merge point. This requirement introduces data dependences on the

outcome of the test in the duplicated code, while in the original program

the instructions were control independent. These dependences may degrade

performance, since the resultant code cannot execute speculatively, but must

wait on the resolution of a possibly time-consuming test. This effect is espe-

cially problematic when the duplicated merge point contains a loop induction

variable update that is on the critical path through an otherwise parallel loop.

Loop peeling and unrolling: Because iterative block formation folds

loop transformations into the block formation algorithm, the compiler can ap-

ply block selection policies to loops as well. To perform peeling accurately,

the compiler can use loop trip count histograms to augment an edge frequency

profile. A loop peeling policy can then evaluate the benefit of unrolling ad-

ditional loop iterations versus including post-loop code by using a threshold

function to pick an appropriate peeling factor.

Local and global heuristics: Local heuristics consider only the char-

acteristics of the current block when choosing among the candidate successors.

Because of the architectural constraints on TRIPS blocks, a local approach

works well for TRIPS block formation. By incrementally merging basic blocks,

the block gradually converges on the upper bound of the constraints. Because

the compiler adds blocks individually to satisfy structural constraints, the algo-

rithm focuses on selecting one of a block’s immediate successors for inclusion.

47

Using lookahead can increase the power of local heuristics. For example,

a heuristic that improves branch predictability favors blocks with a single exit.

Such a heuristic might first determine if a block has one exit, and then use

lookahead to estimate if the compiler can include enough additional basic

blocks to reach the next merge point, thus constructing a larger, single-exit

block.

Although local heuristics seem most suitable for incremental block for-

mation, the algorithm can use global information to inform block selection

by performing a pre-pass analysis. To implement path-based VLIW heuris-

tics [46, 47] using iterative block formation, the compiler analyzes the CFG

to create a prioritized list of basic blocks, and then merges blocks in priority

order, when possible.

Dependence height: The best-known block selection heuristic for

VLIW architectures analyzes all paths through a region to determine which

basic blocks to include [46]. Because a VLIW hyperblock is statically sched-

uled, the dependence height of the longest path determines the execution time

of the block, even if that path is not taken at runtime. Paths are therefore pri-

oritized to favor those that execute frequently, consume few resources, and have

short dependence heights. These heuristics attempt to avoid over-constraining

the static schedule or over-saturating the processor’s resources, while still in-

cluding the most useful paths and removing unpredictable branches.

For EDGE ISAs, minimizing dependence height is less important. EDGE

instructions issue dynamically when their operands arrive, and the architec-

48

Inlining

For-loop unrolling

Scalar optimizations

Code generation

If-conversion

Loop peeling

While-loop unrolling

Predicate optimizations

Register allocation

Reverse if-conversion

Block splitting

Fanout insertion

Instruction positioning

Front End Hyperblock Formation Register Allocation Instruction Scheduling

Figure 4.6: Compiler flow with iterative block formation.

ture can commit a block as soon as it produces its outputs. Therefore, if a

short path through an EDGE block completes before a longer one, the archi-

tecture detects block termination and does not wait for the longer path to

finish. Although speculative instructions on an untaken path may contend for

resources with instructions on a taken path, this contention reflects constraints

on issue width rather than on schedule height.

4.5 TRIPS compiler

We implement iterative block formation in Scale [48, 66], a retargetable

compiler with a back end for TRIPS. Figure 4.6 shows the overall compiler

flow. The compiler front end operates on a language and machine-independent

control-flow graph representation. Scale performs inlining and for-loop un-

rolling first, followed by classical scalar optimizations. The compiler then low-

ers the program representation to a RISC-like form. Using this representation,

the compiler performs block formation, followed by register allocation, fanout

insertion to replicate values for multiple consumers, and finally scheduling.

Since register allocation and fanout insertion add additional instruc-

49

tions and occur after block formation, the compiler must estimate final block

sizes while forming blocks. Although block formation tries to construct blocks

of the appropriate size and load/store count, the register allocator may insert

spill code that violates the block constraints. If a block has spills that cause

it to violate a constraint, the compiler performs reverse if-conversion on the

block, and repeats register allocation. Scale rarely needs to split blocks in this

manner, both because TRIPS has a large number of architectural registers

and because the compiler attempts to avoid inserting spill code in nearly full

blocks. Once register allocation completes and all blocks are valid, the sched-

uler inserts fanout instructions, assigns locations to all instructions in their

respective blocks, and translates them to TRIPS assembly language.

4.6 Experimental Results

We evaluate iterative block formation using a TRIPS cycle-level timing

simulator, which has been verified to be within 4% of the cycle counts gener-

ated by the TRIPS prototype hardware design on a set of microbenchmarks.

This simulator models all aspects of the microarchitecture, including global

control, data path pipelines, and communication delays within the processor.

Because detailed simulation is prohibitively slow (approximately 1000 instruc-

tions per second), we restrict the evaluation to microbenchmarks derived by

extracting loops and procedures from SPEC2000, and with signal-processing

kernels from the GMTI radar suite, a 10x10 matrix multiply, sieve (a prime

number generator), and Dhrystone.

50

BB UPIO IUPO (IUP)O (IUPO)
cycles % % % %

ammp 1 1544356 18.2 68.6 68.6 65.9
ammp 2 1021042 13.6 59.0 59.0 60.2
art 1 83309 4.5 12.1 4.9 6.0
art 2 128499 -7.5 1.0 -5.3 3.4
art 3 638918 76.6 77.0 74.4 76.1
bzip2 1 478746 22.1 22.1 22.1 22.1
bzip2 2 334299 32.6 32.0 32.0 32.0
bzip2 3 556743 34.6 34.6 34.6 34.5
dct8x8 51988 -0.6 -0.6 -6.3 -6.3
dhry 234345 13.5 22.5 23.1 23.5
doppler GMTI 85229 21.8 13.2 14.3 16.6
equake 1 114324 0.7 0.7 2.3 12.4
fft2 GMTI 130496 25.9 21.1 25.2 27.9
fft4 GMTI 98538 4.7 7.3 6.6 4.9
forward GMTI 180900 0.5 2.2 2.0 3.8
gzip 1 29377 22.2 22.2 20.8 48.4
gzip 2 98414 54.8 46.4 48.3 54.9
matrix 1 71814 -25.2 37.9 38.4 42.3
parser 1 395076 46.5 46.5 46.5 46.5
sieve 443064 -13.1 20.9 23.7 22.6
transpose GMTI 185803 4.2 4.2 1.6 1.5
twolf 1 527166 38.9 39.7 38.9 38.6
twolf 3 588011 0.5 0.5 0.5 0.5
vadd 105407 -2.1 7.9 5.4 9.4
Average 16.2 25.0 24.2 27.0

Table 4.1: Percent improvement in cycle counts of EDGE blocks over basic
blocks (BB) with various orderings of Unrolling (U), Peeling (P) Incremental
If-conversion (I), and Scalar Optimizations (O). Parentheses indicate merged
phases.

51

4.6.1 Comparison to Static Phase Ordering

Table 4.1 compares the performance of block formation with discrete

phases of unrolling and if-conversion to the single-phase, but iterative, incre-

mental block formation. Column 2 shows the baseline cycle count of each

benchmark using basic blocks as TRIPS blocks. Basic blocks are a good

baseline because they are defined by the front end of the compiler, and do

not depend on the block formation algorithm or heuristics. The remaining

columns apply if-conversion (I), unrolling/peeling (UP), and scalar optimiza-

tions (O) in various orders. Phases grouped together in parentheses indicate

that the transformations are applied incrementally, using head duplication to

implement unrolling and peeling, and iterative optimization to improve code

density. All results use a greedy breadth-first policy and use incremental if-

conversion to avoid violating the block constraints.

The UPIO and IUPO columns show discrete phase orderings of struc-

tural transformations followed by scalar optimizations. UPIO performs loop

unrolling and peeling before incremental if-conversion and tail duplication.

This approach improves performance by an average of 16% over basic blocks.

The second phase ordering (IUPO in Column 4) performs if-conversion before

loop unrolling and peeling. It improves performance an additional 8.8% on

average compared to UPIO since the unroller has more accurate block counts

and size estimates for loops with control flow after if-conversion than before.

The (IUP)O column shows that iterating peeling and unrolling appears

to offer no benefit over the distinct phases in IUPO on these benchmarks,

52

despite adding the capability to generate blocks like Figure 4.1d. Most of these

benchmarks consist simply of for loops with high trip counts. Because Scale

applies for-loop unrolling in the front end, the only benefit of head duplication

is to merge the test for the execution of the post-conditioning loop with the

body of the unrolled loop. Sometimes merging this test helps performance

slightly (e.g., fft2 GMTI and sieve), and sometimes it hurts slightly (e.g., art 1

and art 2). The best candidates for head duplication are ammp 1 and ammp 2,

which contain while loops with low trip counts. However, the compiler’s block

size estimates are not yet sufficiently accurate to combine peeled iterations of

these loops with surrounding code (see Section 4.5).

Integrating scalar optimizations into block formation (the (IUPO) col-

umn) attains an additional 2% performance improvement because the compiler

can pack blocks more tightly and perform more if-conversion and unrolling.

The most significant improvement, gzip 1, occurs because the compiler uses

if-conversion and scalar optimizations to fit the entire body of the innermost

loop in one block, dramatically reducing the total number of blocks executed.

The m/t/u/p statistics in Table 4.2 show how often the compiler applies

if-conversion (m), tail duplication (t), unrolling (u), and peeling (p). For exam-

ple, the performance improvement of ammp 1 in all columns following UPIO

occurs because the compiler unrolls and peels several additional iterations of

the critical loops. Using (IUPO) on ammp 1 enables peeling of an additional

loop iteration, but this transformation happens to create a less-predictable

branch pattern and increases the number of mispredicted branches by 50%.

53

UPIO IUPO (IUP)O (IUPO)
m/t/u/p m/t/u/p m/t/u/p m/t/u/p

ammp 1 18/11/3/0 18/11/11/7 18/11/11/7 18/11/13/8
ammp 2 39/11/3/0 39/11/8/3 39/11/8/3 40/2/10/2
art 1 11/1/3/5 12/0/3/4 13/0/3/2 13/0/4/2
art 2 4/1/2/5 6/0/2/2 8/1/2/1 7/1/4/3
art 3 23/1/2/3 24/0/3/2 25/1/3/1 25/0/3/2
bzip2 1 7/0/0/0 7/0/0/0 7/0/0/0 7/0/0/0
bzip2 2 9/1/3/5 10/0/3/5 10/0/3/5 10/1/3/5
bzip2 3 10/0/3/0 10/0/3/1 10/0/3/1 10/0/3/1
dct8x8 4/0/0/0 4/0/0/0 4/0/0/0 4/0/0/0
dhry 63/2/4/5 64/3/6/9 66/4/6/8 64/4/10/12
doppler GMTI 7/2/10/9 8/1/11/9 8/1/11/9 8/1/12/11
equake 1 6/0/0/0 6/0/0/0 6/0/0/0 7/0/0/0
fft2 GMTI 11/3/1/3 12/2/1/2 13/3/1/1 13/4/1/1
fft4 GMTI 7/1/0/1 8/0/0/0 8/0/0/0 8/1/0/0
forward GMTI 10/2/1/3 10/3/1/4 11/4/1/3 11/3/3/7
gzip 1 9/3/0/0 9/3/0/0 9/3/0/0 12/2/0/0
gzip 2 5/2/3/6 6/2/3/4 7/2/3/2 6/2/6/7
matrix 1 10/0/0/1 10/0/3/5 10/1/3/5 10/1/4/6
parser 1 12/0/0/0 12/0/0/0 12/0/0/0 12/0/0/0
sieve 6/3/7/8 7/1/7/4 7/2/7/4 7/2/9/5
transpose GMTI 6/0/0/0 6/0/0/0 6/0/0/0 7/1/0/1
twolf 1 10/5/1/2 11/4/1/1 12/4/1/0 15/1/1/0
twolf 3 12/0/0/0 12/0/0/0 12/0/0/0 12/0/0/0
vadd 5/1/0/1 5/1/1/5 6/2/1/5 6/2/2/5

Table 4.2: Static count of blocks merged/tail duplicated blocks/unrolled
iterations/peeled iterations (m/t/u/p), with various orderings of Unrolling
(U), Peeling (P) Incremental If-conversion (I), and Scalar Optimizations (O).
Parentheses indicate merged phases.

54

On the microbenchmarks, the best heuristic for forming TRIPS blocks

improves performance compared to basic blocks by 27% on average. Itera-

tive block formation outperforms classical optimization phase orderings by an

average of between 2 and 11%.

4.6.2 VLIW and EDGE Heuristics

The above results show that iterative block formation offers potential

performance benefits given the right heuristics. Iterative block formation is

flexible enough to implement a variety of policies as discussed in Section 4.4.

We compare performance using three heuristics: the VLIW heuristic proposed

by Mahlke et al. [46, 47], a depth-first heuristic that selects the most frequent

path, and a breadth-first heuristic that removes conditional branches.

Table 4.3 shows the performance of the VLIW and EDGE heuristics

on TRIPS. Columns 3 and 4 show the VLIW block selection heuristic applied

without and with iterative optimization, respectively. Without iterative op-

timization the VLIW heuristic achieves a 6.1% average speedup over basic

blocks, compared to 10.7% with iterative optimization, demonstrating that

iterative block formation improves the performance of this heuristic. Col-

umn 5 shows the depth-first heuristic, which achieves a small 5.7% speedup.

Breadth-first merging shows the greatest improvement, at 27%.

Several of the largest performance differences among these results occur

because tail duplication incurs additional predication on a dataflow architec-

ture. The most extreme example of this effect is bzip2 3, where breadth-first

55

BB VLIW Iterative VLIW DF BF
ammp 1 1544356 64.8 61.7 62.8 65.9
ammp 2 1021042 3.8 4.1 1.7 60.2
art 1 83309 3.3 2.6 7.0 6.0
art 2 128499 0.3 7.2 6.9 3.4
art 3 638918 45.0 45.0 29.3 76.1
bzip2 1 478746 -25.4 -25.4 -37.4 22.1
bzip2 2 334299 -59.0 0.9 -40.6 32.0
bzip2 3 556743 -67.9 -68.1 -91.7 34.5
dct8x8 51988 -0.6 18.3 -7.5 -6.3
dhry 234345 17.2 17.2 19.6 23.5
doppler GMTI 85229 13.1 16.6 19.7 16.6
equake 1 114324 0.7 13.6 12.4 12.4
fft2 GMTI 130496 28.0 28.0 28.7 27.9
fft4 GMTI 98538 5.6 6.6 10.2 4.9
forward GMTI 180900 4.7 -1.0 5.4 3.8
gzip 1 29377 49.3 46.1 12.1 48.4
gzip 2 98414 30.1 29.2 32.0 54.9
matrix 1 71814 37.9 39.2 40.0 42.3
parser 1 395076 25.1 27.0 45.1 46.5
sieve 443064 11.2 16.6 1.5 22.6
transpose GMTI 185803 4.2 -0.9 2.5 1.5
twolf 1 527166 -60.8 -42.6 -41.9 38.6
twolf 3 588011 7.4 3.7 4.8 0.5
vadd 105407 7.9 11.2 15.1 9.4
Average 6.1 10.7 5.7 27.0

Table 4.3: Percent improvement in cycle count over basic blocks (BB) us-
ing VLIW heuristics, VLIW with iterative optimization, depth-first (DF) and
breadth-first (BF) EDGE heuristics.

merging achieves a 34.5% speedup while depth-first and VLIW degrade per-

formance by 68.1% and 91.7%, respectively. While breadth-first merges all

paths through the main loop, the depth-first and VLIW heuristics exclude

an infrequently-taken block, and therefore must tail duplicate the final block

in the loop, which contains the induction variable increment. The induction

variable is then data-dependent on the earlier test, instead of being indepen-

56

dent. This dependence results in a slowdown even over basic blocks, where

the increment can be executed speculatively.

Improved branch prediction accuracy is another important effect. In

parser 1, the VLIW heuristic excludes several rarely taken paths with relatively

large dependence heights. Because these branches are rarely taken, they cause

mispredictions when they occur, resulting in an 11-fold increase in the mispre-

diction rate (0.4% using breadth-first versus 4.5% with VLIW), which reduces

the effective size of the processor’s issue window. The depth-first heuristic

does not suffer branch mispredictions because it is able to include all paths

through the loop, since there is ample space in the block after merging the

most frequent path.

4.6.3 Estimated Performance with Block Counts

The cycle-level simulator is too slow to simulate the full SPEC bench-

marks. Since successful transformations reduce the number of blocks executed,

thus increasing the issue window utilization and decreasing block overhead,

block counts and program cycle counts should correlate. We demonstrate this

correlation and present block count results for SPEC2000.

The best static phase ordering achieves a 2.1x improvement in number

of blocks executed over basic blocks on the microbenchmarks, while iterative

block formation achieves a 2.3x improvement. To first order, the relation-

ship between the number of blocks executed and the cycle count is roughly:

cyclestotal = cyclesbase +blocks×overhead , where cyclestotal is the total number

57

R
2
 = 0.7751

0

200000

400000

600000

800000

1000000

1200000

0 50000 100000 150000

Block count reduction

C
y
c
le

 c
o

u
n

t
re

d
u

c
ti

o
n

Figure 4.7: Cycle count reductions versus block count reductions.

of cycles the program takes to execute, cyclesbase is the number of cycles to

perform the computation (ignoring block boundaries), blocks is the number

of blocks, and overhead is the fixed architectural overhead associated with

mapping a block.

This equation is an oversimplification, because it does not account for

increased parallelism exposed by block merging, nor interference from includ-

ing speculative, useless instructions in a block. To evaluate the accuracy of

this estimate, Figure 4.7 plots the change in cycle counts against the change

in block counts (as compared to basic blocks) for all the data presented in

Table 4.1. The relationship between block count reduction and cycle count re-

duction is roughly linear (r2 = 0.78 using a linear regression test), with a few

outliers due to ammp 1, in which reducing the block count by unrolling while

loops dramatically improves performance. This result suggests that reduction

in block count is a good but imperfect metric of performance improvement.

The correlation between block count reduction and cycle count reduc-

58

Phased Iterative
BB (M) UPIO IUPO (IUP)O (IUPO)

bzip2 248.8 40.8 45.9 46.5 50.4
crafty 16.7 42.7 46.5 49.3 55.3
gap 20.6 11.7 11.8 11.8 11.9
gzip 86.5 59.4 60.0 60.0 62.3
mcf 28.1 61.2 69.8 70.1 63.8
parser 87.2 51.7 57.0 57.1 57.1
twolf 15.6 57.4 59.6 60.6 62.1
vortex 41.2 63.7 63.8 63.8 62.9
vpr 2.9 60.1 61.2 61.5 62.8
ammp 12.5 65.4 72.9 73.9 73.9
applu 1.6 42.4 42.4 43.9 45.8
apsi 5.9 47.3 47.3 47.5 48.9
art 331.8 65.0 65.0 70.1 72.6
equake 100.1 57.3 57.8 58.1 59.0
mesa 870.3 51.8 51.8 51.8 51.8
mgrid 591.6 4.3 4.3 4.5 5.3
sixtrack 479.3 54.1 54.2 54.2 53.5
swim 2.8 30.1 30.1 30.1 31.7
wupwise 1469.7 47.5 46.9 49.2 52.9
Average 48.1 49.9 50.7 51.8

Table 4.4: Percent improvement in block counts of SPEC benchmarks over
basic blocks (BB) with various combinations and orderings of Unrolling (U),
Peeling (P) If-conversion (I), and Scalar Optimizations (O). Parentheses indi-
cate merged phases.

tion justifies the use of block counts (gathered using a fast, functional simula-

tor) to estimate the performance effect of these algorithms on the SPEC2000

benchmarks. Table 4.4 shows the block count results for 19 of 21 FORTRAN

and C benchmarks (at the time of this writing, the toolchain is not stable

for 176.gcc and 253.perlbmk), where the baseline (BB) measures millions of

basic blocks executed. The remaining columns report percent improvement,

using the same configurations and format as Table 4.1. These results use the

MinneSPEC small reduced dataset [38], since the ref datasets require too much

59

Phased Iterative
BB (B) UPIO IUPO (IUP)O (IUPO)

bzip2 181.4 -16.8 -11.0 -21.5 5.5
crafty 1098.7 50.9 51.2 56.7 63.0
gap 1739.1 60.9 62.5 57.8 66.6
gcc 81.7 19.5 18.9 -0.4 24.6
gzip 154.9 5.8 6.8 -50.0 1.7
mcf 469.4 -31.1 -28.2 -34.3 6.7
parser 1196.9 9.7 14.4 13.4 25.8
perlbmk 239.0 43.0 43.2 43.0 46.9
twolf 1699.9 51.0 51.7 52.9 56.2
vortex 1947.6 20.3 20.6 20.6 23.6
vpr 571.3 66.7 65.7 65.0 70.8
ammp 803.1 -12.1 6.7 3.7 24.7
applu 594.7 6.9 11.9 5.3 6.9
apsi 1071.3 14.4 17.2 17.7 18.4
art 165.9 44.8 46.4 46.4 59.2
equake 241.9 10.3 9.6 12.4 14.7
mesa 734.9 45.3 46.6 42.6 45.7
mgrid 276.5 14.8 14.9 13.6 15.1
sixtrack 0.0 0.0 0.0 0.0 0.0
swim 272.5 1.3 2.0 0.3 1.2
wupwise 660.5 34.8 38.8 44.3 43.0
Geo. Mean 36.5 40.4 34.1 54.8

Table 4.5: Percent improvement in cycle counts of SPEC benchmarks over
basic blocks (BB) with various combinations and orderings of Unrolling (U),
Peeling (P) If-conversion (I), and Scalar Optimizations (O). Parentheses indi-
cate merged phases.

simulation time, even using a less detailed simulator. The block count results

show the same trends as the cycle-accurate results on the microbenchmarks,

although head duplication is in general more effective and scalar optimizations

are slightly less effective than in the microbenchmark results.

Using the TRIPS hardware, we gather cycle-accurate performance re-

sults for the same benchmark set. This data is shown in Table 4.5. Similar

general trends occur in performance; the worst static phase ordering (unrolling,

60

block formation, optimization) achieves a 36% performance improvement over

basic blocks, while the fully iterative algorithm achieves a 54.8% performance

improvement. Head duplication by itself does not appear to improve per-

formance, despite reducing block count, as applying only head duplication

without iterative optimization achieves a 34.1% performance improvement.

4.7 Summary

This chapter described iterative block formation with head duplication.

We have shown that this method is more effective at filling blocks and achieves

higher performance than other, static approaches. The principle of combining

phases to achieve greater compiler flexibility allows the system to make better

optimization decisions than are possible without this approach.

Iterative block formation is also more robust than other approaches.

Prior to implementing iterative block formation, the compiler relied on block-

splitting to form legal blocks. This approach creates many poorly understood

dependences between phases and is very difficult to debug from an engineering

standpoint. Iterative block formation, by contrast, continuously considers the

architectural block constraints, and is therefore much more robust to the effects

of optimizations.

We find a noticeable correlation between block size and performance

in this work, which shows that as the block count of an executing program

decreases, the cycle count also decreases linearly. This finding implies that

making small blocks larger has proportionally more effect on performance than

61

making large blocks somewhat larger. As Chapter 5 will show, the presence of

small blocks is a significant problem for block-atomic architectures. Despite

this relationship, iterative block formation is able to achieve relatively good

speedups over static phase orders, even on a microbenchmark workload that

already has relatively large blocks.

The results in this chapter indicate that iterative block formation is

more effective than a static phase ordering. The following chapters of this

dissertation will explore the limits of iterative block formation. Chapter 5

describes the fundamental limits of block formation due to control flow con-

straints, and Chapter 7 describes a principled approach to discovering heuris-

tics for use with iterative block formation.

62

Chapter 5

Compiler Evaluation

The opportunity to evaluate industrial-strength software on an experi-

mental hardware platform is a rarity in modern compiler research. The engi-

neering effort required to build a modern microprocessor is so great that few

university teams undertake it. Furthermore, the effort and insight required to

write a high-performance compiler for a new architecture often requires several

years after first silicon. The TRIPS hardware team has had the opportunity

to build a silicon prototype of a novel processor, which is fully functional and

validated with no known bugs [27, 62]. The TRIPS software team rose to

the occasion with a high-quality research compiler that can handle real-world

benchmarks such as the SPEC CPU2000 suite, with 21/21 benchmarks passing

validation.

In this chapter we evaluate the performance of the TRIPS system on

compiled code, specifically the SPEC CPU2000 benchmarks. We compare to

the best commercial processor available at the time of the TRIPS bring up,

the Intel Core 2 microarchitecture, to provide the most aggressive comparison

point possible. Our goal with this comparison is to determine whether the real

world performance of a TRIPS system justifies a move to a radically different

63

ISA. We find that on the SPEC benchmarks, TRIPS achieves performance

parity on SPECFP, but falls short on SPECINT.

Examining the detailed performance counter statistics indicates a few

problems with the TRIPS system and compiler. Several integer benchmarks

suffer from high instruction cache miss rates and high branch misprediction

rates. These issues indicate problems with the block-atomic execution model,

which result from a mismatch between the capabilities of the hardware and the

capabilities of the software. Because TRIPS uses fixed-size, 128-instruction

blocks, the compiler must be able to effectively pack blocks with useful in-

structions as well as limit code duplication to avoid excessive i-cache misses.

Evidence suggests that the system does not successfully meet this goal.

To better understand the software component of the evaluation, we

present a dissection of the compiler’s block formation capabilities. We identify

all possible cases where the compiler is unable to merge blocks, and combine

this with dynamic trace information to see what constructs result in small

blocks. The distribution of block sizes as well as the fundamental nature of

the causes suggest that the compiler would need heroic efforts to fill a fixed-

size block. This chapter suggests some of these techniques, but engineering

effort prevents a full evaluation.

This evaluation leads to the conclusion that processors using a block-

atomic architecture such as EDGE must support variable-size blocks. Without

such support, the penalty for under-full blocks is simply too great when execut-

ing realistic software workloads. In Chapter 6 we present one such microarchi-

64

tecture and evaluate its performance. Results demonstrate that variable-size

blocks effectively eliminate instruction cache bottlenecks and provide further

opportunities for optimization.

5.1 Comparative Performance Evaluation

This section presents the comparison between the TRIPS system and

several Intel platforms. It outlines the methodology used to achieve the fairest

possible comparison and summarizes the results of the performance evaluation.

5.1.1 Methodology

We compare performance on several hardware platforms using the built-

in performance counters. In addition to the TRIPS processor and the Core 2,

we supply performance measurements on the Pentium III and Pentium 4. Ta-

ble 5.1 summarizes the microarchitectural properties of the various platforms.

To account for the wide variance in process technologies across these

platforms, we use cycle counts rather than wall clock time as a performance

metric. Cycle count is an imperfect metric for comparison, since commercial

microarchitectures are tuned to a particular technology and cycle time. In

particular, the NetBurst microarchitecture of the Pentium 4 emphasizes cycle

time at the expense of IPC. However, we expect that the TRIPS microarchi-

tecture, which has a partitioned design with few global wires, could achieve

a cycle time close to that of the Core 2, if implemented in a modern process

with a custom layout.

65

Issue Proc Mem Proc/Mem L1 Cap. L2 Mem
System Width Speed Speed Ratio (D/I) Cap. Cap.

(MHz) (MHz) (KB) (MB) (GB)
TRIPS 16 366 200 1.83 32 / 80 1 2
Core 2 4 1600 800 2.00 32 / 32 2 2
Pentium 4 4 3600 533 6.75 16 / 150 2 2
Pentium III 3 450 100 4.50 16 / 16 0.5 0.256

Table 5.1: Reference platforms.

A potential pitfall with this comparison is that the low clock frequency

of the TRIPS CPU relative to its DRAM (366 vs. 200 MHz) could make

memory accesses unrealistically inexpensive when compared to the reference

platforms. We normalize this effect by underclocking the Core 2 such that the

ratio of its core clock frequency to DRAM frequency (1600 vs. 800 MHz) is

similar to that of the TRIPS system. We do not perform such normalization

for the Pentium III or Pentium 4.

We compile all benchmarks on a platform with a common set of opti-

mization flags, rather than customizing flags on a per-benchmark basis. This

setting better represents realistic practice, and reduces the possibility of per-

benchmark tuning, which represents available engineering effort rather than

fundamentals. The TRIPS compiler was set to its highest optimization level,

-Omax, and enabled tail duplication during block formation, which achieves a

small average speedup across the benchmark suite. In this configuration Scale

performs its full set of scalar optimizations with heuristics set to use regis-

ters liberally, iterative block formation with integrated unrolling and peeling

(as described in Chapter 4), and inlining with 100% code increase. Code for

the Intel platforms was compiled with gcc -O3, an open source compiler with

66

Figure 5.1: Speedup on SPECINT relative to Core 2/gcc.

reasonable optimized performance. To push the Core 2 to its extreme we also

experimented with Intel’s icc compiler at its highest optimization level.

We compare performance on the SPEC CPU2000 C and Fortran77

benchmarks. We omit C++ and Fortran90 as they are unsupported by the

TRIPS compiler. Additionally, we omit gap and sixtrack for stability reasons—

while these benchmarks run to completion in less-optimized configurations, but

do not produce correct output at higher optimization levels. While prior work

uses smaller benchmarks and hand-optimized code, this dissertation focuses on

the SPEC benchmarks. While hand-optimized code is useful for pushing the

limits of the microarchitecture, this dissertation is primarily concerned with

the abilities of the compiler. As such, the more realistic SPEC benchmarks

are a better target.

67

Figure 5.2: Speedup on SPECFP relative to Core 2/gcc.

5.1.2 Performance Results

Figure 5.1 compares SPECINT performance and Figure 5.2 compares

SPECFP performance across the tested platforms. The graphs show perfor-

mance as speedup over the Core 2 platform where the benchmarks are compiled

with gcc. A few trends are notable. On SPECFP TRIPS achieves average

equivalent performance to Core 2/gcc, although with icc the Core 2 outper-

forms TRIPS by a factor of 1.6. TRIPS fares noticeable worse on SPECINT,

however, achieving only 40% of the performance of Core 2/gcc.

Compared to the Pentium III and Pentium 4, however, the TRIPS sys-

tem fares much better: performance improves by 2.3x and 2.1x respectively on

SPECFP, and achieves 63% and 70% of the Intel platform’s performance on

SPECINT. This result shows how quickly industry reacted as power became

a limiting factor; per-clock performance dramatically improved from the Net-

Burst to Core 2 microarchitecture as predicted performance improvements due

68

to deep pipelining and frequency scaling proved too limited and too power-

hungry [1, 33].

Several individual benchmarks results are notable. In SPECFP, TRIPS

achieves a 2.5x speedup over Core 2/gcc on art. This speedup is due to a com-

piler transformation in an important loop which reduces the tree height of an

arithmetic expression and allows the processor to exploit its wide execution

bandwidth. This benefit is not limited to TRIPS alone, however, as Core 2/icc

achieves slightly greater performance of 3.3x. On SPECINT, perlbmk and

vortex stand out for their remarkably poor performance on TRIPS, 5.8x and

7.9x slower respectively than Core 2/gcc. Because perlbmk is an interpreter

for Perl, it is characterized by extremely small blocks due to frequent func-

tion calls. This behavior is the worst case scenario for TRIPS, because the

compiler is unable to expose significant parallelism to the hardware, and the

overhead of block-atomic distributed execution overwhelms the work done in

each block. The performance of vortex is somewhat suspect, as vortex heavily

taxes the memory allocator. The TRIPS toolchain uses a simple malloc im-

plementation suitable for embedded systems, while x86 platforms use a highly

tuned allocator built into glibc based on dlmalloc [42]. The TRIPS allocator

implements the free list as a long singly-linked list, which frequently requires

long walks to find suitable allocation sites, where the x86 allocator uses a more

efficient data structure.

To better understand the performance results, we collected detailed

statistics from the hardware performance counters available in TRIPS and the

69

Per 1000 useful instructions
Core 2 TRIPS TRIPS Core 2 TRIPS TRIPS Average

cond. br. cond. br. call/ret I-cache I-cache load useful insts
misses misses misses misses misses flushes in flight

bzip2 1.3 1.6 0.0 0.0 0.0 0.09 342.5
crafty 4.5 3.0 0.5 1.7 17.2 0.35 151.8
gcc 7.4 7.0 1.8 3.1 18.5 0.52 73.0
gzip 4.8 4.3 0.0 0.0 0.0 0.04 206.1
mcf 14.0 6.3 0.0 0.0 0.0 0.13 373.6
parser 2.0 3.2 0.1 0.0 0.6 0.04 —
perlbmk 2.5 0.4 8.3 0.0 13.0 0.19 106.9
twolf 8.5 4.8 0.1 0.0 8.2 0.36 275.2
vpr 0.5 1.4 0.5 0.0 3.2 0.40 221.8
ammp 0.2 1.5 0.1 0.0 1.0 0.05 —
applu 0.0 0.7 0.0 0.0 0.0 0.01 496.6
apsi 0.0 2.4 0.0 0.0 0.0 0.11 249.7
art 0.4 0.0 0.0 0.0 0.0 0.01 692.2
equake 0.2 0.6 0.0 0.0 0.9 0.08 337.9
mesa 1.4 1.6 0.0 0.0 3.5 0.04 199.4
mgrid 0.0 0.1 0.0 0.0 0.0 0.00 519.8
swim 0.0 1.0 0.0 0.0 0.0 0.00 416.1
wupwise 0.0 0.7 0.5 0.0 0.8 0.04 496.9

Table 5.2: Performance counter statistics for SPEC.

70

Core 2. Table 5.2 shows these results. We collect branch predictor statistics

(conditional and call/return for TRIPS, conditional only for Core 2) and in-

struction cache miss rates. We correlate the TRIPS statistics with the effective

instruction window size as an additional performance indicator.

The performance counter results indicate significant problems with the

capacity of the TRIPS instruction cache. Three benchmarks (crafty, gcc, and

perlbmk) show more than 12 instruction cache misses per 1,000 instructions.

These miss rates severely limit the performance of the applications compared

to the Core 2, which suffers a much lower rate of misses. Branch prediction

is not as severe a problem, although perlbmk shows a relatively high rate of

call/return misses, due to an undersized call target buffer. When these factors

are considered, the TRIPS processor is able to use a much smaller fraction

of its instruction window on SPECINT than on SPECFP; because a large

window is key to performance of EDGE architectures, SPECINT suffers.

5.2 Block Size Efficiency

To understand the role of software in the previous section’s performance

results, we examine the compiler’s ability to form full blocks in the SPEC

benchmarks. Given the poor instruction cache performance on SPECINT—

despite a larger L1 i-cache than the Core 2—it seems that the compiler’s

ability to fill blocks effectively is more limited on full benchmarks than in the

microbenchmarks presented in Chapter 4.

This section analyzes the compiler’s ability to form full, fixed-size blocks

71

and identifies structural characteristics of source code that limit the compiler’s

success. To compile effectively for a block-atomic ISA, the compiler must con-

struct blocks that contain sufficient useful instructions at runtime. In prior

work, the first EDGE microarchitectures, TRIPS and TFlex, demonstrate

good performance on compute-intensive code with a fixed-size block, but had

less success with more complex control flow [27, 37]. The TRIPS prototype

evaluation revealed frequent misses to the L1 instruction cache and under-

utilization of the instruction window with fixed-size, 128-instruction blocks,

thus motivating a more flexible approach.

We find that the compiler often cannot fill blocks effectively even when

targeting a less ambitious, smaller block size. To form large dataflow blocks in

control-intensive code the compiler must extensively predicate, thus convert-

ing control dependences into data dependences. As we show in Section 7.5,

predication, which sacrifices control speculation and may increase dependence

height, is not as effective on control-intensive codes as speculating down a sin-

gle predicted branch path. Using the more flexible microarchitecture proposed

in Chapter 6, the compiler reduces block size when needed to avoid excessive

predication, while still making effective use of cache and issue resources.

5.2.1 Methodology

We can measure the average fullness of blocks experimentally by com-

piling and simulating the SPEC CPU2000 benchmarks. We use the SPEC

benchmarks because they are fairly large programs that reflect realistic work-

72

loads and because they contain several control-intensive programs that pose

a significant challenge for block formation. Block size depends on the com-

piler’s optimizations of course, so for these numbers we use the most aggressive

optimizations in terms of forming the largest blocks possible.

To compute an average block size we weight each block’s size by its

execution frequency. This weighted average is more meaningful than a static,

unweighted average, because it reflects the fact that certain blocks are executed

more frequently than others, and that some are never executed. The weighted

measurement is sensitive to the data set used, which in these experiments is

the MinneSPEC small reduced data set [38]. This reduced dataset is necessary

because these numbers can only be acquired through simulation—the TRIPS

prototype hardware lacks the logic necessary to distinguish fetched NOPs from

real instructions. The data include all fetched instructions, and do not account

for the fact that some of these instructions are predicated out or that others

are overhead, such as store nulls and fanout.

We measure the efficiency of blocks for several possible upper bounds:

32, 64, and 128 instructions. By measuring efficiency across this range and

comparing this data to energy efficiency and performance metrics, we hope to

provide future designers with insight into how to select a desired block size.

5.2.2 Block Fullness

Figure 5.3 shows the dynamically-weighted average instructions per

block with maximum fixed block sizes of 32, 64, and 128 instructions. Useful

73

32 64 96 128
Max block size

0

32

64

96

128
A

v
g
.
in

s
tr

u
c
ti
o
n
s
 p

e
r

b
lo

c
k

Useful

Total

Ideal

(a) SPECINT

32 64 96 128
Max block size

0

32

64

96

128

A
v
g
.
in

s
tr

u
c
ti
o
n
s
 p

e
r

b
lo

c
k

Useful

Total

Ideal

(b) SPECFP

Figure 5.3: Dynamic average total and useful instructions per block with var-
ious maximum block sizes.

instructions include only those instructions that contribute to the block’s out-

puts; instructions with non-matching predicates are excluded. The compiler’s

ability to fill blocks is limited, and reducing the granularity helps to only a

limited extent. The SPECINT benchmarks’ blocks are particularly difficult

to fill as the maximum block size increases. Although efficiency improves as

the upper bound decreases, the number of instructions per block decreases

drastically as well, which suggests that for a fixed window in terms of blocks

(such as on the TRIPS prototype) a larger block size will lead to a larger

window, at the cost of additional energy spent fetching NOPs. Table 5.3 shows

the efficiency as a percentage of maximum block size. As results in Chapter 6

show, implementing variable-size blocks improves efficiency without reducing

the maximum block size.

As will be shown in the following section, efficiency does not improve

74

Maximum Block Size
Benchmark 32 64 128

bzip2 0.62 0.56 0.44
gzip 0.59 0.53 0.50
mcf 0.67 0.67 0.71
parser 0.52 0.51 0.40
vpr 0.53 0.48 0.43
applu 0.49 0.44 0.35
art 0.75 0.65 0.79
equake 0.48 0.39 0.29
mesa 0.50 0.45 0.39
mgrid 0.41 0.50 0.48
swim 0.50 0.41 0.30
wupwise 0.68 0.66 0.69

average 0.56 0.52 0.48

Table 5.3: Per-benchmark efficiency of blocks for fixed maximum sizes of 32,
64, and 128 instructions.

more dramatically for a variety of reasons. Many blocks that are small and

medium-sized are unchanged, while larger blocks are divided up and run into

limitations. Thus it is not surprising that the real number of instructions drops

significantly as the maximum upper bound decreases.

5.2.3 Control Flow Limitations

We instrumented the compiler to produce a reason for why each pair

of blocks were not merged. Thus for every branch between basic blocks in

the control flow graph the compiler outputs a cause. The precise causes are

described later in this section. We produce an execution trace consisting of all

blocks, and create a histogram of cause frequency by correlating pairs of blocks

75

in the trace with pairs from the compiler’s cause file. By relating the reasons

for block cuts to the size of the blocks and their frequency of execution, we

can discover the principle causes of under-full blocks.

There are some pairs of blocks that can occur that the compiler will not

be able to analyze. For example, indirect function calls may have unknown

targets, and function returns may go to any number of locations unknown to

the function itself. These situations are detected using the TRIPS toolchain

naming conventions for blocks, and thus do not present a problem for analysis.

We did not compile libraries with instrumentation, so they are opaque to this

analysis, so we separate all blocks occurring within libraries. We do, however

separate calls into libraries from calls within user code, as they cannot be

inlined without binary analysis, and would prevent dynamic linking.

Figure 5.4 provides the histogram of block sizes and cut reasons for

SPEC CPU2000 benchmarks compiled with a fixed maximum block size of 128

instructions. This histogram shows the dynamic frequency of blocks in various

size classes, and each bar of the histogram is divided according to which of the

following factors prevented the compiler from merging a particular block with

the next in execution order. We have grouped the blocks into size classes based

on the first block of each pair (described above), which explains the unintuitive

presence of “Full Blocks” with few instructions—the following block is quite

large. This histogram shows a generally “U-shaped” distribution, where small

blocks and large blocks are most common. To explain this distribution, we

enumerate the most common reasons why the compiler stops enlarging a block.

76

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Block size

0

5

10

15

20
P

er
ce

n
t

o
f

b
lo

ck
s

ex
ec

u
te

d

Full blocks
Loops
Calls
Libraries

Figure 5.4: Distribution of block sizes in SPEC CPU2000 benchmarks,
weighted by execution frequency. The categories indicate the reason for the
compiler’s inability to merge that block with the next in the execution trace.

• Full Blocks: In the simplest case, block formation stops when merging

another basic block would violate size constraints. This constraint is

most frequently encountered with large blocks, but occurs occasionally

with small blocks when the following block is large. A limitation of our

current compiler is that it merges basic blocks entirely or not at all, but

we have explored splitting basic blocks and found that this limitation

is a minor one. Commonly, we find that the limiting factor in merging

an additional basic block is not the raw instruction count of the block

itself, but the overhead instructions due to fanout (of data values or,

more likely, predicates) or to write/store nullification. Nullification can

be particularly problematic since it requires the addition of code along

every mutually exclusive predicate path through the block.

77

• Loops: We classify separately the case where a loop cannot be addi-

tionally unrolled or peeled due to block size constraints. This condition

is a subset of the more general block size limitations, but we separate it

due to the particular importance of loops.

Loops present several problems to the compiler for both peeling and

unrolling, and depending on whether the loop body can be condensed

into a single block. We enumerate the four possible cases. (1) A loop can

be condensed into a single block, but cannot be additionally unrolled due

to block size limitations. (2) A loop can be condensed, but cannot be

peeled into surrounding code due to size limitations. (3) A loop cannot

be condensed into a single block, and thus is not considered for back-

end unrolling. (4) A loop cannot be condensed, and thus will not be

considered for peeling into surrounding code.

To overcome some of these limitations, loops could be unrolled past a

single block to better align with the block size. For instance, an 80-

instruction loop could—in theory—be unrolled three times, and carved

into two 120-instruction blocks.

Unrolling loops to fill multiple blocks has several problems, however.

First, if the loop has any non-trivial control flow, it is not clear how to di-

vide it neatly into multiple blocks. Second, filling blocks is not a heuristic

that guarantees success; creating one less-full block may be better than

three completely full blocks, because one block reduces instruction cache

pressure and may align better with the dependence structure of the loop.

78

Third, it is simply rare that such a fortuitous division of iterations into

blocks occurs, due to control flow, dataflow overheads, and the vagaries

of actual loop sizes.

Due to these difficulties in implementing correct multi-block unrolling

and achieving reasonable performance with it, we exclude it from our

evaluation. This experience motivates the use of variable-size blocks

because it is easier and less error-prone to rely on the hardware to deal

with irregularly-sized loops by dynamically unrolling them to fill the

available window.

• Calls: A function call must end a block, because blocks execute atomi-

cally and cannot be “re-entered” upon return from a function call. Func-

tion calls break up control flow in a way that the compiler cannot easily

overcome during block formation. Aggressive inlining helps by inlining

function calls, and the results in Figure 5.4 include up to 100% code

growth from inlining, which is an aggressive value. Indirect function

calls are particularly problematic because they cannot be inlined with-

out speculation.

We note two cases where our compiler is more conservative than neces-

sary with calls. The first is that any basic block containing a call will

not be predicated. The second is that function epilogues will never be

tail-duplicated. These scenarios cause a relatively large number of small

blocks, because calls and epilogues are themselves small, and frequent

79

0 10 20 30 40 50 60 70 80 90 100 110 120 128

Block size

0

5

10

15
P

er
ce

n
t

o
f

b
lo

ck
s

ex
ec

u
te

d

Full blocks
Loops
Calls
Libraries

Figure 5.5: Distribution of block sizes in SPEC CPU2000 benchmarks, after
implementing call merging and epilogue duplication. While block fullness is
improved, performance suffers.

function calls will necessary entail frequent calls and epilogues. Fig-

ure 5.5 shows the block-cut histogram with these issues resolved. While

the number of small blocks decreases, we noticed that performance is

substantially worse with these transformations, particularly epilogue-

duplication, up to 25% worse on average. This degradation is because

calls and epilogues perform a great deal of memory and register opera-

tions, which need to be nullified or predicated down other paths; thus

the overhead introduced is not worth the gain in block size.

• Libraries: Bars marked “Libraries” include both calls into libraries and

blocks within libraries. Calls into libraries pose a particular problem

because they cannot be resolved until link time. While post-link opti-

mization is possible on some systems (though it is unsupported by Scale),

libraries pose an additional problem, because they are frequently linked

dynamically. Dynamic linking has a system level benefit for compati-

80

bility and security reasons, as well as for reducing the overall memory

usage of the system. Unless the dynamic linking system can also per-

form binary-level inlining and optimization, calls into libraries will likely

remain opaque. (The library functions themselves, however, can be al-

most arbitrarily optimized, as we have done with particular mathemati-

cal functions such as floating-point division and square root.)

• Indirect branches: Indirect branches are usually generated to han-

dle switch statements. When the switch statement is sufficiently simple

these indirect branches can be converted to predicated branches and

thus merged into a single block. For more complex switch statements,

however, this alternative is impractical and inefficient. In practice, since

indirect branches occur rarely in the SPEC CPU2000 benchmarks, they

are not considered here a significant impediment to block formation. In

the future, however, that the popularity of dynamic and object-oriented

languages with virtual dispatch may dramatically increase the frequency

of indirect branches. Thus it will be important to either solve this prob-

lem using speculative compilation techniques—preferably using a dy-

namic compiler; or by architecting around the problem by supporting

variable-size blocks.

To demonstrate the high variability in block size and cut rationale that

occurs in practice, we provide the detailed analysis for the 19 SPEC bench-

marks that are compatible with our infrastructure. Several benchmarks exhibit

81

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Block size

0

5

10

15

P
er

ce
n

t
o

f
b

lo
ck

s
ex

ec
u

te
d

Full blocks
Loops
Calls
Libraries

Figure 5.6: Cut analysis of 256.bzip2

roughly the U-shaped curve shown above. 176.gcc, which is arguably the most

complex SPEC benchmark, has such a distribution as shown in Figure 5.9.

186.crafty and 254.gap, shown in Figures 5.7 and 5.8 respectively, have a sim-

ilar distribution, but each benchmark contains a spike in the center of the size

range. The spikes in crafty at 56 instructions and gap at 80 instructions pro-

vide evidence supporting an architecture with fine-grained variable-size blocks,

rather than simply supporting a large and small size.

Two benchmarks with notable distributions are 164.gzip and 301.apsi,

shown in Figures 5.10 and 5.18. These benchmarks are dominated by blocks

of size 80. Inspecting the traces reveals a single dominant block for each of

the two benchmarks, one from longest match in gzip, and one from apsi in

apsi. The presence of such significant blocks in the center of the range of sizes

argues further for variable-size blocks. If the maximum block size were simply

reduced to 64, the compiler would be unable to form such a large block, but

with the maximum fixed at 128, over 30% of the block space is wasted. These

programs require a more flexible approach.

82

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Block size

0

5

10

15

20

25
P

er
ce

n
t

o
f

b
lo

ck
s

ex
ec

u
te

d

Full blocks
Loops
Calls
Libraries

Figure 5.7: Cut analysis of 186.crafty

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Block size

0

5

10

15

20

25

30

P
er

ce
n

t
o

f
b

lo
ck

s
ex

ec
u

te
d

Full blocks
Loops
Calls
Libraries

Figure 5.8: Cut analysis of 254.gap

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Block size

0

5

10

15

20

25

P
er

ce
n

t
o

f
b

lo
ck

s
ex

ec
u

te
d

Full blocks
Loops
Calls
Libraries

Figure 5.9: Cut analysis of 176.gcc

83

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Block size

0
5

10
15
20
25
30
35
40
45
50

P
er

ce
n

t
o

f
b

lo
ck

s
ex

ec
u

te
d

Full blocks
Loops
Calls
Libraries

Figure 5.10: Cut analysis of 164.gzip

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Block size

0

5

10

15

20

25

30

P
er

ce
n

t
o

f
b

lo
ck

s
ex

ec
u

te
d

Full blocks
Loops
Calls
Libraries

Figure 5.11: Cut analysis of 181.mcf

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Block size

0

5

10

15

20

25

30

35

40

45

P
er

ce
n

t
o

f
b

lo
ck

s
ex

ec
u

te
d

Full blocks
Loops
Calls
Libraries

Figure 5.12: Cut analysis of 197.parser

84

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Block size

0

5

10

15

20

25

30

P
er

ce
n

t
o

f
b

lo
ck

s
ex

ec
u

te
d

Full blocks
Loops
Calls
Libraries

Figure 5.13: Cut analysis of 253.perlbmk

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Block size

0

5

10

15

20

P
er

ce
n

t
o

f
b

lo
ck

s
ex

ec
u

te
d

Full blocks
Loops
Calls
Libraries

Figure 5.14: Cut analysis of 300.twolf

85

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Block size

0

5

10

15

20

25

P
er

ce
n

t
o

f
b

lo
ck

s
ex

ec
u

te
d

Full blocks
Loops
Calls
Libraries

Figure 5.15: Cut analysis of 175.vpr

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Block size

0

5

10

15

20

25

30

P
er

ce
n

t
o

f
b

lo
ck

s
ex

ec
u

te
d

Full blocks
Loops
Calls
Libraries

Figure 5.16: Cut analysis of 188.ammp

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Block size

0

5

10

15

20

P
er

ce
n

t
o

f
b

lo
ck

s
ex

ec
u

te
d

Full blocks
Loops
Calls
Libraries

Figure 5.17: Cut analysis of 173.applu

86

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Block size

0
5

10
15
20
25
30
35
40
45
50

P
er

ce
n

t
o

f
b

lo
ck

s
ex

ec
u

te
d

Full blocks
Loops
Calls
Libraries

Figure 5.18: Cut analysis of 301.apsi

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Block size

0

5

10

15

20

25

30

P
er

ce
n

t
o

f
b

lo
ck

s
ex

ec
u

te
d

Full blocks
Loops
Calls
Libraries

Figure 5.19: Cut analysis of 179.art

87

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Block size

0

5

10

15

20

25

30
P

er
ce

n
t

o
f

b
lo

ck
s

ex
ec

u
te

d

Full blocks
Loops
Calls
Libraries

Figure 5.20: Cut analysis of 183.equake

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Block size

0

5

10

15

20

25

30

35

P
er

ce
n

t
o

f
b

lo
ck

s
ex

ec
u

te
d

Full blocks
Loops
Calls
Libraries

Figure 5.21: Cut analysis of 177.mesa

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Block size

0

5

10

15

20

25

P
er

ce
n

t
o

f
b

lo
ck

s
ex

ec
u

te
d

Full blocks
Loops
Calls
Libraries

Figure 5.22: Cut analysis of 172.mgrid

88

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Block size

0

5

10

15

20

25

P
er

ce
n

t
o

f
b

lo
ck

s
ex

ec
u

te
d

Full blocks
Loops
Calls
Libraries

Figure 5.23: Cut analysis of 171.swim

The high proportion of small blocks that cannot be merged due to fun-

damental structural constraints in the code suggests that variable-size blocks

may prove beneficial. The compiler can form large blocks, and in many cases

it does. The benefits of these large blocks are offset, however, by scenarios in

which the compiler fundamentally cannot form larger blocks due to structural

constraints. Variable size blocks allow the compiler to exploit the advantages

of large blocks when the compiler can form them, without wasting resources

when the compiler cannot. Supporting variable-sized blocks complicates the

microarchitecture, however, and the next chapter details the changes required.

5.3 Summary

This chapter analyzes the performance of the TRIPS system from the

perspective of the compiler’s capabilities. We show performance of the TRIPS

system on compiled code and compare it to a leading superscalar processor as

89

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Block size

0

5

10

15

20

P
er

ce
n

t
o

f
b

lo
ck

s
ex

ec
u

te
d

Full blocks
Loops
Calls
Libraries

Figure 5.24: Cut analysis of 168.wupwise

of 2008, Intel’s Core 2. We supply detailed performance counter statistics to

explain the performance differential, and then provide an in-depth analysis of

the compiler’s block formation capabilities, and the causes of its shortcomings.

These findings motivate significant microarchitectural and compiler optimiza-

tions that are explored in the rest of this dissertation.

The performance comparison between TRIPS and commercially avail-

able platforms yields mixed results. While prior work has shown that hand-

coded TRIPS programs can achieve high performance relative to compiled

code on other platforms, TRIPS performance on large, compiled bencmarks

(SPEC CPU2000) does not generally compare favorably to commercial plat-

forms. While floating-point performance is competitive, integer performance

falls far behind. The evidence currently does not support transitioning to

EDGE ISAs for performance reasons.

The evidence suggests that the cause of poor performance, particularly

90

on control-intensive integer benchmarks, is the small size of blocks found in

these applications. EDGE ISAs, and TRIPS in particular, rely on the compiler

to create very large blocks of instructions in order to amortize the overheads

of block-atomic execution and expose sufficient parallelism within the window

to tolerate the latencies of distributed execution. The average block size of

SPEC INT benchmarks does not provide sufficient efficiency to the processor.

Evidence that block formation is one of the causes of poor performance can

be seen by inspecting performance counters: instruction cache misses are far

higher on TRIPS than on commercial platforms.

By instrumenting the TRIPS compiler we categorize all possible blocks

to determine what are the most frequent causes of very small blocks. This eval-

uation indicates that the causes of small blocks are fundamental and difficult to

engineer around. The most significant cause of small blocks are function calls,

which—short of massive inlining that could itself negatively effect program

performance—cannot be removed. This discovery indicates that block-atomic

execution has a serious shortcoming when faced with modern software devel-

opment techniques in which small, frequent function calls are the norm.

At the same time, the distribution of block sizes gives hope for block-

atomic execution. While small blocks are very common, the compiler is also

frequently able to create very large, full blocks of instructions. This result

indicates that a large block size is feasible, if the microarchitecture can also

tolerate the multitudes of small blocks without a tremendous performance

handicap. Effectively the microarchitecture should be able to hybridize block-

91

atomic execution with superscalar execution to achieve the best of both worlds.

If performance is close to a superscalar when only small blocks are present, then

large blocks can become a performance opportunity rather than a requirement.

Such a hybrid design effectively compensates for the compiler’s shortcomings

while taking advantage of its capabilities.

The distribution of block sizes suggests that—rather than simply low-

ering the maximum block size—the architecture and microarchitecture should

be able to use variable-size blocks to suit the compiler’s capabilities. A variable

block size with sufficient granularity is able to reduce waste in the processor’s

instruction cache and potentially support a large number of blocks in flight.

Chapter 6 addresses the design of such a microarchitecture and evaluates its

performance.

While this chapter has overall painted a pessimistic view of TRIPS per-

formance, we believe there is significant long-term potential for these ideas.

TRIPS is necessarily a research design which pushes certain technological de-

cisions to an extreme level. The decided-upon partitioning of resources does

not necessarily match the best partitioning for any particular technology node,

nor does it tune many microarchitectural structures to their fullest. Compar-

ing a research design to commercial designs running conventional, commercial

workloads is this worst-case scenario for such a project, and TRIPS performs

relatively well given its immaturity. With microarchitectural innovations, both

proposed in this dissertation and elsewhere, as well as continued compiler op-

timizations, the performance of EDGE architectures will continue to increase.

92

Chapter 6

Variable-Size Blocks

As Chapter 5 shows, the compiler cannot consistently form large blocks

of instructions due to control flow conditions such as function calls and loops.

Furthermore, the frequency of function calls forces the creation of very small,

frequently executed blocks. This condition implies that reducing the maxi-

mum block size will improve block fullness only slightly, as we have shown.

To significantly improve the efficiency—in terms of useful instructions per

block—the microarchitecture must support variable-size blocks. This chapter

presents the design, implementation, and evaluation of an instruction set and

microarchitecture that supports variable-size blocks.

Variable-size blocks are particularly helpful in the context of a com-

posable dynamic multicore such as TFlex. Dynamic multicores promise the

ability to adapt to a changing workload by allocating increased resources to

the sequential portion of a program, thereby alleviating Amdahl’s serial bot-

tleneck [32]. We show that programs exhibit very different performance char-

acteristics with respect to block size. While large blocks benefit data-intensive

applications, control-intensive applications seem to perform best with limited

block sizes. With variable-size blocks, a single microarchitecture can accom-

93

modate both extremes, and can adapt to the particular needs of the workload.

To support variable-size blocks effectively requires a slightly different

instruction set than a fixed-size block architecture such as TRIPS. In partic-

ular, reducing the size of the block header is important to improving cache

utilization. While the changes required are relatively minor, it is important

to note them precisely to understand the design of the microarchitecture. We

describe the ISA in Section 6.2.

We demonstrate a microarchitectural implementation of variable-size

blocks. Variable-size has meanings at several levels of the processor: main

memory, L2 cache, L1 instruction cache, and instruction window. We intro-

ducing variability at each level and describe the microarchitectural support

necessary. Allowing variable-size blocks in the instruction window is particu-

larly interesting, because it entails allowing multiple blocks in-flight per core, a

significant design departure from earlier TFlex designs. While this capability

entails an increase in microarchitectural complexity, we show that its perfor-

mance benefits can be considerable, particularly when executing a program on

a small number of cores.

Using a TFlex simulator modified to accept variable size blocks allows

us to compare the performance impact of various block sizes, as well as the

impact of variability. We experiment with several maximum block sizes to de-

termine the impact of increasing block size. These trends are strongly program

dependent. Large blocks are primarily helpful for data-intensive, floating-point

applications; integer applications show much less improvement. Furthermore,

94

we show that by supporting more small blocks in flight, performance can be

improved on integer benchmarks that favor small blocks.

With these trends in mind we argue that the microarchitecture should

be flexible enough to take advantage of large blocks when it is fruitful to do

so. Simply reducing the block size from 128 to 64 would improve performance

on integer benchmarks, but sacrifice floating-point performance. Instead, the

microarchitecture should provide support for smaller blocks as well as large

blocks when that is beneficial. We experiment with these configurations over

a full range of composed configurations. These results indicate that inte-

ger benchmarks are less scalable to high core counts, and may be run with

greater efficiency by supporting more, smaller blocks in flight on fewer cores.

In Chapter 7 we explore compiler heuristics for several core counts, to see if

the compiler can automatically detect such scenarios.

We show in this section that the granularity of atomic execution units

is an important machine parameter. The particular block size chosen for an

application can have significantly varied impact on performance depending

on the application. Because of the compiler’s ability to deal with fixed-size

blocks, there is no one-size-fits-all approach that works well for all applications.

Thus some level of variability should be supported by the microarchitecture

to achieve good performance.

95

6.1 Atomicity and Composability in EDGE Architec-
tures

To explain the implementation of variable-size blocks (and multiple

sizes of fixed blocks) we first review the baseline TFlex microarchitectural

execution model and describe the aspects which are important to block struc-

tured execution. We first explain block-atomic execution as it is implemented

in TFlex. We follow by discussing composability, since that is an important

architectural parameter in this study. Composability dramatically affects the

choices of block-size (and vice-versa) and as we shall see in Chapter 7 also

affects the best heuristics for compilation.

6.1.1 Block-Atomic Execution

The smallest atomic execution unit in an EDGE architecture is the

block, which contains a header that summarizes global communication and

a body of individual instructions. The microarchitecture fetches, issues, and

commits blocks atomically. At least one block is non-speculative. Next-block

prediction may speculate subsequent blocks and thus more than one block

is typically in flight. Regardless, the entire block commits, or it is flushed

from the pipeline due to a misspeculation. The header indicates which global

registers the block reads and writes. Summarizing the register information at

the block level helps the architecture correctly rename registers when multiple

blocks are in flight.

Within a block, instructions communicate directly in dataflow fashion.

96

This characteristic is key to the scalability of an EDGE architecture. Because

the ISA uses a hierarchical namespace–global registers between blocks, and

temporary dataflow names within blocks–the processor can efficiently support

a large number of instructions in flight by putting several large blocks in flight.

These reads and writes are the global communication mechanism between

blocks. RISC and CISC ISAs also globally communicate with registers, but

at the granularity of a single instruction and each access is through a shared

register file and rename table. Point-to-point communication within a block

eliminates these shared structure accesses and provides scalability to block-

atomic architectures.

6.1.2 EDGE Support for Composability

Dynamic multicore processors, which adapt their parallel resources to

the workload at hand, have been shown to provide the best performance trade-

off given a mix of sequential and parallel work [32]. Block-atomic execution

enables an EDGE processor to execute programs on few or many cores by

executing blocks independently on cooperating cores, using a shared register

file only for coarse grained communication [37, 60]. While composability can

be achieved using a RISC or CISC ISA as in Core Fusion, fine-grained reg-

ister communication and relatively frequent control decisions physically limit

composability to a small number of cores [35].

In this chapter we evaluate performance on the TFlex microarchitecture

simulator, which models a composable EDGE chip multiprocessor consisting

97

8Kbit
next block
predictor

4KB L1

I-cache

4KB
header
cache

8KB L1

D-cache

40-entry

load/store
queue

Memory
network
in/out

Block
control 128-entry

register
file

Register
forwarding

logic/queues

OPN
in queue

OPN
out queue

Operand
buffer

Operand
buffer

Control
networks

S
el

ec
t
lo

g
ic

(a) Microarchitecture of One Core

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Thread 1

Thread 2

T3
T4

T5

readmovstorestorestorestore
store

Blocks
Instructions

Cores

(b) Mapping Blocks to Composable Cores

Figure 6.1: TFlex: A Composable Chip Multiprocessor EDGE Architecture

of moderately powerful cores [37]. The base microarchitecture dynamically

composes cores, as depicted in Figure 6.1(b). We vary these microarchitectural

parameters in Section 6.4 to understand the effect of various block sizes on the

instruction cache and issue queue.

TFlex can compose multiple processors to accelerate the execution of

a single thread, as depicted in Figure 6.1(b). When multiple cores execute a

single thread, TFlex dynamically maps each block to a single core [60] allowing

multiple blocks execute in parallel on different cores. To execute variable-size

blocks in this architecture requires a modified instruction cache and issue queue

design, as well as scaling up the renaming logic and block control. The next

subsection overviews the instruction queue and issue logic support required by

a fixed-size design. Section 6.3.2 describes the variable-sized block design, and

Section 6.4 evaluates the performance of fixed- and variable-size designs.

98

6.2 Instruction Set Support

Instruction set support for variable-size blocks is straightforward. The

primary task is to reduce the size of the block header to a single cache-line

to avoid wasting space with smaller blocks. Variable-size blocks will also be

compressed in memory to 32-byte boundaries, which entails branches and calls

must be appropriately offset. This section details the necessary modifications.

To take advantage of variable-size blocks at the 32-byte granularity,

the block header should also be no more than 32 bytes, or else the advantage

gained by fine-grained variability will be completely lost. The TRIPS block

header already contains some metadata. The variable-size extensions encode

the block size more precisely (four bits, to indicate each of 16 possible sizes).

The remainder of the header is taken up by a store mask, to detect block

completion, and read/write masks to allow register forwarding to be set up

immediately upon fetch. We reduce the size of the register set to 64 to enable

all possible reads and writes to be encoded in the 32-byte header.

The remainder of the TRIPS block header contains read and write in-

structions, which are often no-ops. To remove these instructions from the

header, we encode read instructions as ordinary instructions that are sched-

uled in the body of a block. These special read instructions issue from the

issue queue as ordinary instructions, and once issued retrieve a value from

the register encoded in the instruction. The value is then forwarded to the

targets of the read, in a manner similar to load instructions. Because reads

are often on the critical path of a block it is important to get them in flight

99

early. We propose executing reads during decode, as the instructions are being

transferred from the cache to the queue. Because these instructions require no

functional units, scheduling should not be complicated by this optimization.

Writes are a simpler matter, because they are destinations only and do

not have to encode targets. To eliminate writes from the header we simply

encode the precise register number in the instruction itself, rather than a

location within a write queue as was done in the TRIPS ISA. The reduction

of registers from 128 to 64 is important here to ensure there are enough bits

in the instruction to encode the register. By encoding the register number

directly rather than relying on implicit bits, we also simplify the compiler’s

register allocation task, because bank restrictions are no longer necessary. We

do not, however, evaluate the effect of this restriction, because spills are in

practice extremely rare even with the reduced register set.

To simplify the interpretation of the results presented in this chapter,

all benchmarks are compiled using this modified ISA, including the results

for fixed size blocks. This decision allows for easy implementation of smaller

block sizes as well as more direct comparison between fixed and variable-

size performance measurements, while holding the compiler constant. The

performance impact of the ISA change itself was negligible, usually < 1%.

6.3 Microarchitecture

The chief advantage of fixed-size blocks is the simplicity of hardware im-

plementation and ease of distributed execution. The advantage of variable-size

100

blocks is more flexibility and better resource utilization, at the cost of increased

complexity. This section contrasts the microarchitectural support necessary

for fixed-size blocks with the support necessary for variable-size blocks, and de-

scribes the advantages and disadvantages of each scheme. For more complete

details on the implementation of variable size blocks, we refer to TRIPS de-

sign documents. We describe a few possible design alternatives for variable-size

blocks to improve performance, as well as the configuration that is evaluated

in Section 6.4.

6.3.1 Fixed-Size Blocks

The instruction cache design with fixed-size blocks is simple. Each

block occupies a cache region, which is physically partitioned into lines. Par-

ticular lines are reserved for the start of a block. Because a single cache tag

corresponds to an entire block, hit detection is fast, and there are no partial

conflicts between blocks. If the cache tag matches, then the entire block is

present. On a miss, the cache evicts the entire victim block and fetches the

new block from a lower level of the memory hierarchy.

This design has two advantages. The first is simplicity. Because blocks

are either present or not present, checking for a hit is a single, fast tag com-

parison. The second advantage is distribution. If the instruction cache is

partitions the blocks across multiple tiles or cores, as in TRIPS and TFlex,

the architecture detects the hit at a single predetermined location, and finds

the remaining body chunks at predetermined locations. It makes no additional

101

tag comparisons.

The obvious disadvantage to caching fixed-size blocks is underutiliza-

tion when blocks are not full. For large programs with complex control flow,

this penalty can be significant. On the TRIPS microarchitecture, several

SPECINT benchmarks suffered upwards of 10 instruction cache misses per

1,000 instructions, severely limiting performance [27].

Issue queue design is also simple for fixed-size blocks. Each core is

given enough instruction window slots to accomodate a fixed number N of

blocks in flight, and instructions within the queue are located by concatenat-

ing their location within the block with the block’s offset into the physical

queue. Another consideration is register renaming: since renaming is done on

at the block granularity, supporting a single large block size reduces the total

renaming hardware necessary.

6.3.2 Variable-Size Blocks

This section describes the changes to the TFlex microarchitecture de-

scribed in Section 6.1 that are needed to support variable-sized blocks. We

discuss changes to the instruction cache and issue logic below. In addition

to these changes, supporting variable-size blocks requires support for poten-

tially more total blocks in flight, which requires additional register renaming

resources and additional block control logic.

An instruction cache supporting variable-size blocks operates similarly

to a conventional instruction cache. Cache lines are tagged by address and hits

102

are detected on a per-line granularity. With this organization, an instruction

block occupies only the number of lines required by its actual size. Because

a block can start at any cache line, each line must contain storage for tags.

With these additional tags the cache can store more total blocks, but must

manage the tags for each line within a block, rather than a single tag per

block. Furthermore, when a logical cache is distributed to multiple cores,

it is possible that lines corresponding to the same block reside on different

cores. In TFlex, memory addresses are distributed across all participating

cores using a hash of the address. We model remote instruction caches as in

the baseline microarchitecture. The additional latency we model for fetching

from remote cores assumes the same distributed fetch protocol as the baseline

TFlex microarchitecture.

Variable-size blocks require more complex conflict detection in the cache

because of the possibility that blocks can partially conflict. There are essen-

tially two methods of dealing with this complexity. The first method simply

mimics a conventional processor by fetching lines on demand and stalling while

servicing misses. This method does not attempt to optimize miss detection,

rather waiting until a particular cache line is needed to report the miss. The

second method detects misses earlier by marking the first line of a block as

invalid whenever any line is evicted. This method requires additional bits per

line that identify the block header. We model the first method, which is more

conservative both in terms of performance and complexity.

Variable-size blocks in the instruction cache provide better cache uti-

103

lization because they do not need NOPs to pad each block to the required

length. When cache capacity is small compared to the size of the program,

this property is very important to good performance. The complexity of a

variable-size design is similar to that of superscalar caches, but more complex

than a fixed-size design.

A variable-size issue queue requires additional resources for renaming.

Renaming requires expensive content-addressable memories for wakeup and

logic for detecting dependences. It is not scalable to extremely large instruc-

tion windows. Power and complexity limitations have held superscalar proces-

sors to around 100 in-flight instructions, and similar limitations constrain the

number of in-flight blocks. A large number of renaming registers are needed,

as are large issue queues and a highly accurate branch predictor. Increasing

the effective size of the instruction window by allowing more blocks in flight

when blocks are smaller is a critical performance optimization, however. In

Section 6.4 we evaluate variable-size blocks assuming maximal renaming re-

sources, up to 256 blocks in flight. This limitation is not incomparable to

the size of the instruction window in instructions of a modern superscalar

processor.

Distributing a window of variable-size blocks is more complex than with

fixed-size blocks. To support a variable number of blocks in the window re-

quires an additional table of indices to map each block into the window, since

a static slice cannot be known. For this work, we assume that blocks are

mapped to a single core. This mapping simplifies the design of a window for

104

variable-size blocks, since all the instructions in each block are local to a par-

ticular core. Distributing smaller blocks across several tiles as in TRIPS would

increase the overhead of executing smaller blocks, reducing the performance

advantage of implementing variable-size blocks.

6.4 Architectural Results

To evaluate the importance of block size and granularity, we simulate

a range of sizes on all composed topologies. We measure the effects of block

size in isolation; block size in conjunction with mapping multiple blocks per

core; and finally full variability. We describe the methodology and results in

the following subsections.

6.4.1 Methodology

We evaluate the effects of block size and variability using a cycle-level

simulator based on the TFlex microarchitecture [37]. We extend this simulator

with ISA support for variable-size blocks, the ability to vary the maximum

block size, and the ability to vary the number of in-flight blocks supported

by each core. The simulator supports configurations of up to 32 cores, where

each core has the microarchitectural parameters described in Table 6.1. As

described in Section 6.1, the issue window size at each core depends on the

architectural block size and the number of blocks per core supported by the

microarchitecture.

We evaluate the effects of block granularity on composability by con-

105

Parameter Configuration
Instruction cache 32 KB; 1-cycle hit; 4-way set associative

Branch predictor Local/Gshare tournament predictor (8K+256 bits, 3-cycle la-
tency) with speculative updates
Entries: Local: 64(L1) + 128(L2), Global: 512, Choice: 512,
RAS: 16, CTB: 16, BTB: 128, Btype: 256

Data cache 32 KB; 2-cycle hit; 2-way set associative; 1 read/1 write port;
44-entry LSQ

Issue width Limited dual issue (up to 2 integer and 1 floating-point)
Issue window Depends on block size
L2 cache 4 MB S-NUCA [36]; 5–27 cycle hit latency depending on address
Main memory Average unloaded latency: 150 cycles

Table 6.1: Microarchitectural parameters of each TFlex core

ducting each experiment on configurations containing 1 through 32 cores, and

measure performance at a combination of block sizes and core counts. The

block size given is the maximum architecturally defined size, and the core

count is the number of composed processors participating in the execution of

each single thread.

The compiler produces blocks up to the specified maximum size, and

the processor uses those blocks as the unit of work. The results use the default

compiler block formation heuristic from Section 7.2, parameterized by the

block size, unless otherwise specified.

We measure performance on the SPEC CPU2000 benchmarks using ref-

erence datasets. To keep simulation time tractable, we use the early SimPoint

methodology [64]. When providing average results we separate integer from

floating-point benchmarks, as these suites show trends that differ significantly

from one another, but are internally similar. We use single-threaded work-

loads, rather than multiprogrammed or multithreaded workloads, in order to

106

more fully explore the design space of an individual core, the composition of

cores, and their interactions for a single thread.

6.4.2 One Block Per Core

First we evaluate the effect of block size on performance in a system

with one block executing on each composed core. Each core thus executes

a block and the number of blocks in flight is a function of the number of

participating cores. We measure performance for block sizes of 32, 64, and

128 instructions, and for core counts from 1 to 32. In this system, the max-

imum possible instruction window size—assuming completely full blocks—is

equal to the block size multiplied by the number of cores. These cores are

not microarchitecturally equivalent, of course, since supporting smaller blocks

allows building smaller issue queues. However, these configurations separate

the performance effect of the block size from other microarchitectural issues,

such as the speculation depth, and they explore scalability of a single thread

as a function of the number of participating cores.

Figure 6.2 shows the geometric mean speedup of the SPECINT and

SPECFP benchmarks, normalized to the cycle count of a single TFlex core

with support for 32-instruction blocks. The performance trends differ markedly

between SPECINT and SPECFP. At all block sizes, floating-point perfor-

mance scales well with core count, while integer performance does not. With

16 participating cores and 32-instruction blocks floating-point performance im-

proves by a factor of 4, while integer performance improves by a factor of 2.5.

107

1 2 4 8 16 32
Participating Cores

0

2

4

6

8

10

12

S
p

e
e

d
u

p

 32 64 128
Max block size:

(a) SPECINT

1 2 4 8 16 32
Participating Cores

0

2

4

6

8

10

12

S
p

e
e

d
u

p

 32 64 128
Max block size:

(b) SPECFP

Figure 6.2: Performance with one fixed-size block per core and maximum fixed
block size of 32, 64, and 128 instructions. Thus, fewer hardware resources are
required with smaller maximum block sizes.

108

Furthermore, performance continues to improve up to 32 cores on floating-

point programs while integer performance changes little from 8 to 16 cores,

and actually reduces at 32.

The effect of fixed-size blocks on performance is also markedly different

between SPECINT and SPECFP. On SPECFP, the difference between 32-

and 128-instruction blocks ranges from a factor of 1.6 at one core to a factor

of 2.2 at 32 cores. While 32-instruction blocks achieve a speedup of 4.4 at

32-cores on SPECFP, 128-instruction blocks achieve an 11x speedup.

On SPECINT benchmarks, 32-instruction blocks perform only slightly

worse than 64, which in turn matches or exceeds the performance of 128.

The best-performing block size and core combination is 64 instructions blocks

with eight participating cores. The performance characteristics of integer

benchmarks are explained by the code characteristics described in Chapter 5.

Blocks in integer benchmarks are frequently small, thus yielding no benefit

for large architectural block sizes. When integer benchmark blocks are large,

they are typically deeply predicated, which leads to the inclusion of many

useless instructions. Also, many control dependences are converted to data

dependences, replacing narrow speculation from branch prediction with wide

speculation from predication.

6.4.3 Multiple Blocks Per Core

Because integer programs lend themselves naturally to smaller blocks,

allowing more small blocks in flight per core may yield better performance

109

1 2 4 8 16 32
Participating Cores

0

2

4

6

8

10

12

S
p

e
e

d
u

p

 32 64 128
 32 64 128
Max block size:

1 per core
n per core

(a) SPECINT

1 2 4 8 16 32
Participating Cores

0

2

4

6

8

10

12

S
p

e
e

d
u

p

 32 64 128
 32 64 128
Max block size:

1 per core
n per core

(b) SPECFP

Figure 6.3: Performance with 128 instructions per core and fixed-size blocks.
Thus, with maximum block sizes of 32, 64, and 128 instructions, there are 4,
2, and 1 blocks per core, respectively, and all configurations require the same
number of issue queue slots.

110

than fewer large blocks. For example, four 32-instruction blocks in flight per

core requires the same issue queue space as a single 128-instruction block, but

may lead to better resource utilization. While supporting more blocks in flight

increases complexity, especially with a large number of composed cores, the

additional performance may be worth that cost.

Figure 6.3 shows performance with multiple blocks per core for smaller

maximum sizes. The increased window size generally translates to significant

performance improvements, particularly at low core counts where the specula-

tion depth is low. Interestingly, the maximum performance on the SPECINT

benchmarks always occurs when a maximum of 16 blocks are in flight: four

cores with 32-instruction blocks, two cores with 64, and one core with 128.

SPECINT performance in this configuration saturates quickly. The

global best speedup of 3x over the baseline occurs at four cores with 64-

instruction blocks. Even one core with 32-instruction blocks, however, yields a

2.2x speedup. Most of the performance comes from the increased window size

rather than the improved issue width. The smaller blocks have an advantage

at lower core counts because they are less deeply predicated and thus do not

waste the machine’s limited resources on misspredicated instructions; instead

they use limited predication and take advantage of more accurate dynamic

branch prediction. Only once the machine has a large issue width does it

make sense to use larger blocks. The larger window and increased issue width

enable the overheads of predication, and speculating further via branch pre-

diction does little good due to the geometric increase in branch missprediction

111

frequency.

SPECFP benchmarks do not perform nearly as well with smaller blocks.

Even though all hardware configurations provide a 128-instruction window

per core, larger block sizes still outperform smaller blocks. The reason for

this is that intra-block communication is much more efficient than inter-block

communication. Since SPECFP blocks are generally full of useful instructions

with very little predication, there is no downside to using large blocks, and

the efficiency of communication produces a significant performance win.

These results motivate the flexibility of the variable-size blocks archi-

tecture. Ideally, a system should be able to achieve the high floating-point

performance of 128-instruction blocks, while still achieving efficient perfor-

mance on integer benchmarks with smaller block sizes.

6.4.4 Variable-Size Blocks

We measure performance with variable-size blocks at an eight-instruction

granularity as described in Section 6.3.2. As in the previous sections, we use

1–32 cores to show the effect at each configuration. We use maximum block

sizes from 32 to 128 instructions, as in previous sections. Note that these

maximum block sizes do not necessarily reduce the efficiency of the machine

as they do in the fixed-size block experiments. Because each configuration

supports variable-size blocks with eight-instruction granularity, the maximum

block size is primarily a compiler target. Using larger or smaller maximum

block sizes may allow for various microarchitectural simplifications, but we do

112

1 2 4 8 16 32
Participating Cores

0

2

4

6

8

10

12

S
p

e
e

d
u

p

 32 64 128
 32 64 128
Max block size:

Fixed
Variable

(a) SPECINT

1 2 4 8 16 32
Participating Cores

0

2

4

6

8

10

12

S
p

e
e

d
u

p

 32 64 128
 32 64 128
Max block size:

Fixed
Variable

(b) SPECFP

Figure 6.4: Performance with 8-instruction granularity variability in the in-
struction window with various maximum block sizes using 128 instructions per
core.

113

Granularity
Benchmark 8 16 32 64 128

bzip2 0.94 0.87 0.79 0.60 0.44
gzip 0.95 0.90 0.77 0.64 0.50
mcf 0.96 0.91 0.87 0.77 0.71
parser 0.94 0.88 0.75 0.57 0.40
vpr 0.94 0.89 0.79 0.61 0.43
applu 0.94 0.84 0.70 0.52 0.35
art 0.97 0.93 0.89 0.83 0.79
equake 0.93 0.81 0.64 0.46 0.29
mesa 0.94 0.86 0.73 0.56 0.39
mgrid 0.96 0.86 0.78 0.61 0.48
swim 0.94 0.83 0.66 0.48 0.30
wupwise 0.95 0.92 0.85 0.77 0.69

average 0.95 0.88 0.77 0.62 0.48

Table 6.2: Efficiency, in terms of real instructions to total words fetched, of
variable-size blocks with different granularities.

not address that issue.

Table 6.2 shows the efficiency of several granularities of variable-size

blocks, from eight instructions up to 128 instructions . These efficiencies are

much higher than those achieved by reducing the maximum block size, as

shown in Table 6.3, which we repeat here from Chapter 5 for convenience. At

the eight-granularity, 95% of the instruction words fetched are real instructions

rather than NOPs, much higher than the 56% efficiency achieved by fixed-size

blocks when the maximum size is reduced to 32 instructions. While there are

several possible granularities, this section evaluates the performance of eight-

instruction granularity only. The complexity of implementing variable-size

blocks is roughly equivalent at any granularity down to the cache line level, so

114

Maximum Block Size
Benchmark 32 64 128

bzip2 0.62 0.56 0.44
gzip 0.59 0.53 0.50
mcf 0.67 0.67 0.71
parser 0.52 0.51 0.40
vpr 0.53 0.48 0.43
applu 0.49 0.44 0.35
art 0.75 0.65 0.79
equake 0.48 0.39 0.29
mesa 0.50 0.45 0.39
mgrid 0.41 0.50 0.48
swim 0.50 0.41 0.30
wupwise 0.68 0.66 0.69

average 0.56 0.52 0.48

Table 6.3: Per-benchmark efficiency of blocks for fixed maximum sizes of 32,
64, and 128 instructions.

there is no compelling reason to evaluate the interior points.

Figure 6.4 shows the performance of this microarchitecture. Variable-

size blocks improve performance at small core counts, particularly on SPECINT

benchmarks, which frequently contain very small blocks. However, overall the

performance improvement is limited because the baseline compiler is not aware

of variable-size blocks, and thus does not optimize the SPECINT benchmarks

by using smaller, more tightly-packed, less-predicated blocks. This result moti-

vates an investigation of compiler support for such architectures, which Chap-

ter 7 explores. Ideally, the compiler would be able to identify programs that

exhibit behavior similar to SPECINT or SPECFP and optimize accordingly.

One particularly important data point to notice is the performance im-

115

provement of variable-size blocks on SPECINT with one TFlex core and a

maximum block size of 128 instructions. This scenario is the best case for

variable-size blocks and succeeds in improving performance by 40%. This per-

formance increase is due to several factors that variable-size blocks explicitly

target. (1) Integer benchmarks have particularly small blocks and generally

have large executables, both of which increase instruction cache pressure. (2)

A single TFlex core has only 32 KB of instruction cache, so optimizing for

cache efficiency is more effective. The TRIPS prototype had only 64 KB of

body cache, so TFlex configurations larger than two cores have much larger

caches than TRIPS. This design decision was influenced by the performance

evaluation described in Chapter 5. (3) Because a single-core, 128-instruction

block design can only support a single block in flight, small blocks extremely

limit control speculation. Supporting variable-size blocks allows the processor

to regain the benefits of speculation in this constrained environment.

In this experiment, the maximum upper bounds on block size do not

necessarily have any microarchitectural meaning. If one were to build a mi-

croarchitecture that supports 128-instruction blocks with eight-instruction vari-

ability and execute binaries compiled with a maximum block size of 32, one

would achieve precisely the performance indicated by the 32-instruction block

data set in Figure 6.4. This processor is much more flexible than any fixed

design. Two reference points where this flexibility stands out are: integer

benchmarks with 32-instruction blocks on two cores; and floating-point bench-

marks with 128-instruction blocks on 32-cores. On the integer programs, this

116

configuration gives performance close to the global maximum with high power

efficiency by using few cores. On the floating-point programs, this configura-

tion gives extremely good performance, much higher than any other configu-

ration. Furthermore, if one were to execute these workloads simultaneously,

as will likely be the case in future CMP systems, the ability to execute integer

code on a small number of cores with high performance will allow the system

to allocate more cores for data-parallel floating-point tasks, thus maximizing

total system performance.

While variable-size blocks yield performance improvements over any

of the three fixed block sizes evaluated in the previous section, this perfor-

mance improvement is secondary to the increase in flexibility. By supporting

variable-size blocks, a single microarchitecture can achieve both high perfor-

mance on integer benchmarks at low core counts by using smaller blocks, and

high floating-point performance at large counts by using smaller blocks. How-

ever, since the maximum block size is 128, the compiler must use heuristics

to determine the appropriate block size for a benchmark. The ability of the

compiler to detect appropriate situations in which to create large blocks is

therefore the focus of the following chapter.

6.5 Summary

As Chapter 5 demonstrated, support for variable-size blocks is neces-

sary to efficiently use processor resources. While TFlex is better-provisioned

than TRIPS in terms of instruction cache space and the number of blocks

117

supported in flight, we still see improvements in performance by implement-

ing variable-size blocks, particularly when executing in small configurations.

Variable-size blocks are effective at reducing the frequency of instruction cache

misses, and allow a much more effective utilization of the available instruction

queue.

The most striking result is the extent to which integer benchmark per-

formance changes little as the block size is increased from 32 to 128 instruc-

tions. Correlating this result with the number of useful instructions in the

window indicates that the larger blocks are proportionally less full, that they

contain fewer useful instructions due to predication, and they are likely to be

mispredicted. This indicates, and our experimental data confirms, that exe-

cuting more small blocks per core is beneficial to integer performance. This

situation occurs both for reasons of microarchitectural efficiency, and for com-

piler reasons. The smaller upper bound on block size acts as a de facto heuristic

for the compiler, limiting the extent to which it can apply predication. As we

shall see in the following chapter, limiting predication is a useful heuristic

when resources are limited.

While integer benchmarks are shown to benefit little from large blocks

or multiple-cores, the opposite holds true for floating-point benchmarks. Be-

cause these programs have ample data-parallelism and a high ratio of compu-

tation instructions to control transfers, adding more cores allows the machine

to improve performance. Similarly, creating larger blocks requires less pred-

ication than with integer benchmarks, so the machine can take advantage of

118

efficient dataflow execution without introducing the overhead of predication.

To achieve the best performance in these benchmarks, the processor should

therefore support large block sizes and allow composition of many cores.

To automatically take advantage of the differences in these classes of

benchmarks, the compiler must be able to identify where it is useful to form

large blocks and where it is not. While it is possible that programmers with

application knowledge could select an appropriate block size for their applica-

tion, the common case is that such optimizations are not used. An automatic

system would be much more powerful and accessible. As the following chapter

describes, such characteristics are difficult to extract from the program source.

One possible angle is to consider the fraction of useful instructions: as shown

in Section 5.2.2, integer programs generally have fewer useful instructions per

block, and the fullness decreases as the block size grows. While it may not

be possible to statically identify these characteristics, a dynamic optimization

system may be able to take advantage of them.

As workloads become increasingly diverse, the ability of a dynamic

multicore to adapt to its workloads will become an ever-more valuable opti-

mization. Future processors will increasingly be called upon to execute a mix of

largely serial, control-intensive operations and data-intensive operations. Even

within the same program, serial bottlenecks can greatly hinder the speedup of

an overall application, a situation that dynamic multicores are better equipped

to handle than static alternatives. By introducing the additional parameter

of variable-size blocks, the microarchitecture becomes increasingly adaptable

119

to the workload. Such control-intensive programs can be run more efficiently

on fewer cores, freeing more parallel resources to improve the performance of

parallel applications.

To achieve this ultimate goal in a manner transparent to the application

programmer will require a synthesis of architectural/microarchitectural and

compiler techniques. This chapter has shown the architecture and microarchi-

tecture necessary to provide flexibility. Furthermore we have shown that said

flexibility can improve performance if the applications can be matched to the

appropriate compiler and microarchitectural configuration. In the following

chapter we explore the compiler side to show whether and how the compiler

can take advantage of microarchitectural flexibility by identifying situations

where smaller or larger blocks are beneficial.

120

Chapter 7

Block Formation Heuristics

To form effective blocks, the compiler must employ a block formation

policy. Prior work on block formation considers both if-conversion policy, typ-

ically handled by hyperblock formation heuristics, and loop unrolling/peeling,

which are usually handled separately. With iterative hyperblock formation,

the compiler must combine these heuristics into a single priority function.

The appropriate heuristics should indicate when to apply predication, merg-

ing, and unrolling, by balancing a variety of factors that interact in complex

ways. This chapter describes the factors at work in determining policy, how

the compiler measures and applies these factors, and describes an approach

using machine learning to rapidly search the policy space [72]. The particular

machine learning algorithm is not a contribution of this dissertation, as it has

been described in prior work; however, we use the mechanism to discover novel

characteristics of an EDGE machine.

Iterative, incremental block formation as described in Chapter 4 pro-

vides a straightforward framework for implementing heuristics. At each step

of block enlargement, the compiler considers the outgoing edges of a block,

ranks them according to some metric, and selects the best (or none). Chap-

121

ter 4 demonstrated a few possible policies to show the generality of incremental

block formation; this chapter considers what those policies should be.

Chapter 6 showed that—with variable-size blocks in place—significant

performance improvements can be realized by tailoring the compiler’s heuris-

tics to the benchmarks. The integer benchmarks, for example, tend to favor

smaller, less deeply predicated blocks, while the floating-point benchmarks

benefit from extremely large blocks. The results from the prior chapter use

a maximum upper bound on block size as an “inadvertent” heuristic: we dis-

covered the above performance rules simply through experimentation. Ideally

the compiler should be able to make good block formation decisions simply by

inspecting the code.

Programs have numerous features that the compiler could use to make

its decisions. Each feature should describe a characteristic of the code, and

have some definable relationship to performance. While there is some recent

research on crafting compilers that can automatically construct features, we

take a more traditional approach in which the compiler writer lists all possible

code features that seem useful [43]. We then use these features to construct

policy functions, which combine features using common arithmetic operators,

that the compiler uses to decide which blocks are most profitable. In Sec-

tion 7.4 we list the features we implemented in Scale.

Because policy functions can be arbitrary arithmetic expressions, the

policy space is large, complex and nonlinear. To explore this large space,

we use machine learning. While we have some intuition about what policies

122

might be effective and produced a few handcrafted policies, we desired a more

systematic approach to searching the policy space. We use a standard genetic

programming approach to learning policies [39, 72]. This approach has been

demonstrated on conventional hyperblock formation to give speedups in excess

of 25% over a highly-hand tuned heuristic. We use the technique as a method

for gaining insight about the architecture and compiler involved in this system.

Because benchmarks behave very differently when given varying num-

bers of cores, we apply learning techniques to create specialized policies for

one, eight, and 32 cores. This heuristic exploration reveals that the best pol-

icy differs strikingly at low cores counts. With large topologies predication

is desirable, because it can reduce the number of branch mispredictions and

associated pipeline flushes. With small topologies, however, predication is

a performance liability because it over-saturates the limited resources of the

processor. The best heuristic discovered for one or two cores uses no predica-

tion at all. Interestingly, it does use tail duplication to merge unconditional

branches.

We show some improvements using learned policies overall. We train

on a reduced set of microbenchmarks to keep simulation time tractable, and

show good speedups over that suite. The results, however, do not appear to

generalize well to SPEC. While the one-core heuristic still performs exception-

ally well, the other heuristics appear to be over-specialized to the benchmarks

they were trained on, and do not significantly outperform the baseline heuris-

tic. This behavior is a common problem with machine learning techniques, but

123

it does demonstrate that there is room for significant compiler-driven speedup,

even if the correct heuristics remain elusive.

7.1 Compiler Structure

We implement block formation heuristics in Scale (described in Sec-

tion 3.3) using iterative, incremental block formation (described in Chapter 4.

This iterative approach allows the compiler to solve phase ordering problems

between block formation, loop transformations, and scalar optimizations. We

use all available back-end optimizations, including global value numbering [65],

predicate minimization [67], and various peephole optimizations.

The compiler’s block formation policy consists of two nested traversals.

The outer traversal of the EDGE block flow graph selects which blocks to

enlarge. The inner traversal starts from a block to enlarge, and selects suc-

cessors to merge. For the outer traversal, we perform a postorder traversal of

the loop structure tree. The compiler merges blocks in innermost loops first,

then traverses outer loops. While operating on the outer loops the compiler

can perform peeling and/or unrolling on the inner loops. Within each loop

body, the compiler chooses which block to enlarge next using a topological sort

such that a block will not be enlarged until all of its predecessor blocks have

been enlarged. This order ensures that when a block is enlarged, its successor

blocks are still basic blocks and are thus more amenable to merging. This

organization allows the compiler to easily combine unrolling and peeling with

the rest of block formation, without needing to rely on subtle heuristics to

124

guide the compiler towards unrolling or peeling.

After selecting the next block to enlarge, the compiler makes one critical

decision repeatedly: given the existing block, which (if any) of its successors

should be merged into it. The compiler makes this decision based on a heuristic

function that selects the most desirable next block, described in more detail

in the following sections. To merge blocks the compiler performs if-conversion

where necessary, which replaces branches with predication. If the merged block

has a side entrance, the compiler applies head or tail duplication to ensure that

the block has a single entry point. The compiler performs scalar optimizations

on the resulting block and ensures it meets the architectural constraints on

block size, register reads and writes, loads, and stores. If the block exceeds

these constraints, the compiler discards the merge and chooses another next

block, if one exists.

To determine the next block to merge the compiler considers all im-

mediate successors of the block to be enlarged. For each block the compiler

computes the value of a set of features, where features are properties of the suc-

cessor block, the predecessor block, or the combination of the two. Examples

of features include branch probability, block size, and dependence height; a full

list is given in Section 7.4. Feature values are combined using an arithmetic

heuristic function to produce a priority value, and the block with the high-

est priority value is merged first. Priority functions consist of the operators

defined in Table 7.1.

The compiler uses hierarchical heuristic functions to express priority

125

Hierarchy
(R1, R2) R1 R2

Real Operators
Function Representation
−R1 -R1

R1 + R2 R1 + R2

R1 −R2 R1 - R2

R1 ·R2 R1 * R2

R1/R2 R1 / R2

RR2
1 R1 ** R2{
R1 if B1

R2 if ¬B1
B1? R1 : R2{

R1 ·R2 if B1

R2 if ¬B1
B1? R1 @ R2

Boolean Operators
R1 < R2 R1 < R2

R1 < R2 R1 > R2

R1 = R2 R1 == R2

¬B1 ∼R1
B1 ∧B2 R1 && R2

B1 ∨B2 R1 || R2

Table 7.1: Operators used to construct cost functions.

prob 1/size

Figure 7.1: An example cost function that selects first by branch probability,
then by the inverse of block size.

126

within a heuristic. A hierarchical heuristic consists of a sequence of arithmetic

heuristics. To evaluate the priority of two blocks, the compiler begins with the

highest-level arithmetic heuristic; if this value is equal for two blocks, it looks

to the next arithmetic heuristic. This approach allows the heuristic writer to

define tie breakers. For example, the policy in Figure 7.1 first selects based

on branch probability and then based on the inverse of block size. In certain

circumstances the compiler may decide not to continue merging blocks. To

express this condition we define a zero cost element. Blocks with priority

below zero will not be merged.

7.2 Default Block Formation Heuristic

To compare the various heuristics, we implement a baseline heuristic

that corresponds to the “breadth-first” heuristic described in Chapter 4. The

baseline heuristic merges blocks according to their order in a topological sort.

This ordering ensures that no basic block will be merged before the compiler

attempts to merge its predecessors. By imposing that condition the compiler

limits unnecessary tail duplication. A further optimization performed by the

baseline heuristic is to always perform loop unrolling or peeling first, before

merging non-loop code. Because loops tend to be frequently executed this

heuristic generally improves performance.

Because the heuristic function is critical to performance, we explore

other possible functions to find better strategies. The following sections detail

the considerations of block formation, the features implemented to make block

127

formation decisions, and the machine learning approach we used to explore

the policy space. We also examine the performance of various policies with

respect to the number of participating cores to determine if the configuration

significantly changes the best policy.

7.3 Block Formation Heuristics

To determine which merges are most profitable, the compiler must con-

sider several factors. This section overviews the tradeoffs and performance con-

siderations that the compiler must weigh when determining the best merge.

To appropriately balance these concerns, the compiler writer must identify

features that measure each attribute, then develop a policy that uses those

features to select the best blocks. Because TFlex can be configured with

many core counts, we discuss the effect of core count on each consideration

where applicable.

Register communication vs. Fanout: Values produced in one block and

consumed in a successor block are transmitted through a global register file,

whereas values produced and consumed within the same block use more effi-

cient direct instruction communication. Thus, merging a producer and con-

sumer block may benefit both latency and power consumption. If a value has

many consumers within a given block, however, it requires fanout instructions,

which may offset the benefits of merging. Composing cores on large substrates

changes this tradeoff because it increases the communication overhead be-

tween blocks, making it more desirable for the compiler to merge producers

128

and consumers.

Prediction vs. Predication: By converting hard-to-predict control depen-

dences into data dependences, predication can improve prediction accuracy.

Merging a block may therefore be beneficial if the branch is hard to predict at

runtime. This capability is a double-edged sword, however, because convert-

ing predictable control flow to data flow may delay resolution of the control

decision, sacrifice branch correlation information, and introduce a data depen-

dence where a branch predictor would be free to speculate. Unfortunately,

while profile information suggests the frequency with which a branch will be

taken, it does not necessarily indicate how predictable that branch will be. On

larger configurations, branch predictability is generally more important than

on smaller configurations, because the opportunity cost of branch mispredic-

tion is greater. A larger processor’s instruction window may go largely unused

unless the branch predictor is highly accurate.

Code bloat: The compiler helps determine how effectively the instruction

cache is used. If the compiler does not fill a block then the assembler pads

it with NOPs, reducing the effective instruction cache capacity. Likewise, in-

structions with non-matching predicates may needlessly consume space in the

instruction cache. Optimizations such as loop unrolling, function inlining, and

tail duplication increase instruction cache pressure via code duplication. On a

composable processor, these considerations may be particularly important for

small configurations with a more limited instruction cache capacity.

129

Useful instructions: The compiler is instrumental in forming a large effec-

tive instruction window. The effective instruction window includes only useful

in-flight instructions. Useful instructions exclude NOPs, mis-speculated in-

structions, and instructions with non-matching predicates. The compiler may

increase the effective window size by filling blocks with instructions, including

predicated instructions, but the majority of these instructions must be useful

at runtime for the compiler to be effective.

With accurate and consistent profiles the compiler can use a “narrow”

strategy that merges blocks on hot paths to maximize useful instructions. In

exchange, however, the compiler increases code bloat due to tail duplication to

avoid side entries, and the compiler sacrifices opportunities for control specula-

tion at runtime. Alternatively, the compiler can choose a “wide” strategy that

includes multiple control paths, but ensures that some of those instructions

will be useless.

Composability affects this tradeoff because a small configuration lim-

its execution resources, such as functional units and instruction window slots,

and therefore the compiler must ensure that they only perform the most crit-

ical work. Small configurations will not tolerate useless instructions. Larger

configurations, however, have ample functional units and instruction window

space, so these resources can more readily be used to speculate. The addi-

tional resources tolerate some useless work if it does not interfere with useful

and correctly speculated work. With ample resources, this strategy may im-

prove performance, though it may decrease power efficiency.

130

Parallelism: On a substrate with two or more cores, multiple blocks can ex-

ecute in parallel on different cores. If dependences exist between these blocks,

however, then these parallel resources may be wasted. Heuristics that dis-

courage merging independent work into a block may therefore benefit larger

configurations. This criteria varies noticeably with the configuration because

very limited parallelism is available on a single core.

Code Structure: When applying incremental block formation, the order in

which the compiler considers blocks for merging can change the outcome of

the merge, even if all of the same blocks are eventually selected. Because the

compiler applies tail duplication immediately upon finding a side entrance, it

preemptively changes the code, even if the side entrance is merged. Thus, if

the compiler selects a merge point before selecting all paths leading to the

merge point, then the merge is tail-duplicated, even if the other paths are

eventually selected. The default topological sort naturally prevents this oc-

currence. Heuristic approaches, however, must account for this condition by

down-ranking merge points, if there are other paths leading to that merge.

7.4 Implemented Features

We implemented 63 features, each of which provides information re-

garding one or more of the tradeoffs described above. During block formation,

the compiler computes the value of each feature used in a heuristic function.

The implemented features are a combination of boolean and real-valued mea-

surements. Table 7.2 contains the boolean features and Table 7.3 and Table 7.4

131

Abbreviation Description

cd S is control dependent on P
dom P dominates S
looppreheader P precedes a loop header
pd S post-dominates P
pil P is in an innermost loop
ploopheader P is a loop header
sameiloop P and S belong to the same innermost loop
scd S is control dependent on another successor of P
sibe S contains a loop back edge
sil S is in an innermost loop
sl P and S belong to the same loop nest
slh P and S belong to the same loop
sloopheader S is a loop header
spd S post-dominates another successor of P
sswrs S writes a value read by its successor
std S descends from another successor of P
td Merging S into P requires tail duplication
wrblh S writes registers read by its loop header

Table 7.2: Boolean-valued features

132

Abbreviation Description

cdh Maximum dependence height of the combined block
cfgheight Height of S in the control flow graph
crr Reads common to P and S
crw Number of registers read by P also written by S
cwr Number of registers written by P also read by S
cww Writes common to predecessor and successor
dhr Ratio of P dependence height to combined
loopsize Size of loop containing P, in blocks
lsi Size of loop containing P, in instructions
npb Number of branches in P
npl Number of loads in P
nppreds Number of P’s predecessors
npreads Number of register reads in P
npreddoms Number of blocks dominated by P
nps Number of stores in P
npsuccs Number of P’s successors
npwrites Number of register writes in P
nsam Number of successors if P and S are combined
nsb Number of branches in S
nsdomsinloop Number of blocks dominated by S within the same loop
nsl Number of loads in S
nspreds Number of S’s predecessors
nsreads Number of register reads in S
nss Number of stores in S
nssuccs Number of S’s successors
nsuccdoms Number of blocks dominated by S
nswrites Number of register writes in S
nw New writes introduced by merging

Table 7.3: Real-valued features

133

Abbreviation Description

overhead Estimate of overhead instructions: null stores and writes
pdh Maximum dependence height of P
pfan Number of fanout instructions in P
phd Maximum dependence height in P of any predicate leading to S
phsb Size in blocks of the region dominated by P
phsi Size in instructions of the region dominated by P
prob Probability of taking branch from P to S
psize Size in instructions of P
ptag Rank of P in a topological sort of the control flow graph
sdh Maximum dependence height of S
sfan Number of fanout instructions in S
shps Number of blocks descending from S that are dominated by P
shsb Size in blocks of the region dominated by S
shsi Size in instructions of the region dominated by S
size Size in instructions of S
stag Rank of S in a topological sort of the control flow graph
usize Estimate of instructions in P that would be useless if S executes

Table 7.4: Real-valued features, continued

134

contain the real-valued features.

Each feature is computed for a pair of blocks: the predecessor P , which

is the block currently being enlarged, and the successor S, which is the target

being considered for merging. The features of S differ for each successor, while

the features of P remain constant until an additional block is merged. Some

features consider the combination of P and S. For example, the combined

dependence height, cdh, represents the longest data dependence path through

P and S. While the compiler could merge the blocks in scratch space to

determine a precise value for such features, that approach would likely be too

time-consuming. The compiler therefore estimates such feature values without

actually merging blocks. Still other features analyze blocks other than P

and S. For example, looppreheader examines the other successors of P to

determine if P precedes a loop. This feature can be used to determine if the

compiler should delay merging non-loop blocks in favor of peeling a succeeding

loop.

7.5 Machine Learning Results

The compiler can take advantage of the flexibility provided by variable-

size blocks to improve performance. We use machine learning to find good

block formation policies. In addition to learning good policies, we also try to

understand why these policies are effective. Furthermore, we describe the role

of composability: can the compiler do better if it knows what the hardware will

look like at run time? We employ machine learning to rapidly search the space

135

of heuristics. We select a technique based on genetic programming because

the results are human-interpretable, unlike many other learning methods.

7.5.1 Learning Methodology

We use meta-optimization, proposed by Stephenson et al. [72], to learn

EDGE block formation heuristics. The machine learning system represents

heuristic functions as N-ary trees of operators, with a mix of code features

and constants at the leaves. Each generation consists of 300 heuristics, with

the first generation initialized with a combination of hand-written and ran-

domly generated heuristics. We evaluate the performance of each heuristic in

a generation and use these scores to determine which organisms will survive

to the next generation. We additionally crossover and mutate organisms ran-

domly to introduce variation into the population and probabilistically discover

higher performance heuristics [39].

Because simulated execution of entire benchmarks—particularly a large

and complex suite such as SPEC CPU—is extremely time intensive, we instead

use a group of microbenchmarks for training and later apply the learned heuris-

tics to the full benchmarks. We draw a suite of microbenchmarks from SPEC

kernels, signal processing applications, and high-performance computing ker-

nels. The training runs target a particular configuration of composed cores,

thus learning heuristics specialized for 1-core, 8-core, and 32-core configura-

tions. We train specifically for these configurations to isolate differences in

compiler policy needed for different configurations.

136

Figure 7.2: Speedup of learned heuristics on microbenchmarks. Each bar is
normalized to the performance of the baseline heuristic running on the same
number of cores as the learned heuristic.

We use a two-phase training methodology. First, we specialize heuris-

tics for each microbenchmark. We seed the intial population with our best

hand-written heuristic for that benchmark, and fill out the population with

299 randomly-generated heuristics. We then evolve this population over 50

generations, using performance on that microbenchmark as the fitness func-

tion.

Figure 7.2 shows the speedup compared to the baseline heuristic for

each benchmark using this technique. Each bar in the figure represents a

different heuristic, which has been specialized for that particular benchmark

and that particular core count. Each bar is normalized to the performance of

the baseline heuristic running on the trained number of cores. For example,

ammp 1/32-cores is the ratio of cycles to complete ammp 1 using the baseline

137

heuristic and and 32 cores to the cycles to complete ammp 1 using the heuristic

trained on ammp 1 with a 32-core configuration. Thus, the bars show only the

speedup of learning over the baseline, rather than the absolute performance

gained by increasing the core count.

To describe the nature of these optimizations, two particular points are

worth discussing. The gzip 1 benchmark trained for 1-core execution achieves

a 2.2x speedup over baseline, the highest of any 1-core speedup. This heuristic

is particularly interesting because it effectively disables predication: the only

merges the compiler performs are unconditional branches. For a single core,

this makes sense, because predication overly saturates the machine resources.

With variable-size blocks implemented, the processor can speculate several

small blocks in advance, which negates the performance cost of small blocks.

The ammp 1 benchmark trained for 32-core execution shows a much

different trend. This benchmark achieves a striking 3.3x speedup over baseline.

The learned heuristic optimizes the benchmarks such that key inner loops are

unrolled and peeled optimally. At the end of the main loop, however, the

heuristic leaves a single basic block containing an induction variable update

unpredicated. While this decision costs block size, it dramatically improves

performance by allowing multiple speculative induction variable updates in-

flight at once, without waiting on predicates within the loop.

Once each benchmark has been trained individually, we next train

for a general heuristic across all benchmarks. We initialize the population

with the best learned heuristic for each benchmark as well as the best overall

138

hand-written heuristic. We augment this population with an additional 277

randomly-generated heuristics to complete a 300 member population. During

general learning, the system uses each heuristic to compile all the benchmarks.

It computes the geometric mean speedup over the baseline heuristic across the

benchmark suite, and uses that value as the fitness for the heuristic. Once all

heuristics are evaluated, the population evolves and the procedure repeats.

We evolve this population for an additional 12 generations to arrive

at an optimized heuristic for a particular core count. At this point the best

heuristic had largely stabilized, yielding few improvements from one generation

to the next. The “learned geomean” bar of Figure 7.2 shows the speedup using

this process. Somewhat unexpectedly, the heuristics for 1 and 8-core config-

urations was only mildly changed by the learning process. This result stands

in contrast to previous work using this method, which found that frequently

the initial, random population saw speedups over the built-in heuristic [72]. In

our case, however, we hand-tuned the heuristic on the same set of benchmarks

used for machine-learning, which undoubtedly provides a human advantage

not shared by the previous work.

An avenue we did not explore was to separately train benchmarks with

integer versus floating-point characteristics. Training based on this classifica-

tion would likely result in greater overall speedups, as the two categories of

programs have significantly different characteristics. Despite this potential,

the goal of this experiment was to learn heuristics that could automatically

handle code of any type. We therefore train over the entire set of microbench-

139

Config Speedup Heuristic

Hand-1 1.22 (npsuccs<2)

Learn-1 1.27 ((sswrs)?((2.0)/(shsi))@(npsuccs))==(1.0)

Hand-8 1.06 sloopheader*std*prob

std*(prob+0.01)*sl

prob*sl

Learn-8 1.16 ((sloopheader)*(std))*(((sloopheader)*(std))*(prob))

((std)*((prob)+(0.01)))*(sl)

(npwrites)*(cd)

Hand-32 1.11 sloopheader*std*prob

std*(prob+0.01)*sl

prob*sl

Learn-32 1.29 (((((1.0)-(84.317566))+(phd))<((nsreads)+(nss)))&&(((sl)||(sibe))

&&((nsuccdoms)<(cfgheight))))?((∼(spd))?(((∼(spd))?((shsb)
+((pdh)**(prob))):(((49.410812)+((pdh)**((∼(spd))*((prob)+(loopsize)))))
-((∼(spd))?((shsb)+((sswrs)?(16.669044)@(nsreads))):((loopsize)-(shsi)))))
+((sswrs)?(16.669044)@(loopsize))):

((loopsize)-(shsi))):(((std)&&(prob))?(prob):(0.0)) (cww)/(lsi)

Table 7.5: Heuristics with the best geometric mean speedup over baseline,
both hand-written and machine-learned.

marks rather than hand-picked subsets.

7.5.2 Learned Heuristics Discussion

Table 7.5 shows the best heuristics discovered, in terms of geometric

mean speedup, both by hand and by machine learning. This table shows a few

interesting outcomes of the machine learning process. The learned heuristics

for 1 and 8 cores are, as mentioned above, quite similar to the hand-learned

heuristic. In fact, the hand heuristic remained near the top of these popula-

tions for the entire training process. The speedups shown indicate that the

learning system was able to improve performance only slightly over the hand

heuristic. The 32-core learned heuristic performs significantly better than the

hand heuristic, but demonstrates a fundamental problem with machine learn-

ing as a tool for gaining insight: the resulting function is almost completely

140

uninterpretable.

We found that the best overall heuristic function for a 1-core configura-

tion differed significantly from the best heuristics for 8- and 32-core configura-

tions. The 1-core heuristic essentially never uses predication, as it only merges

a block when the branch is unconditional. The 8-core heuristic behaves very

similarly to the baseline heuristic described in Section 7.2, in that it generally

favors “wide” predication and limited tail duplication. The 32-core heuristic

demonstrates one of the weaknesses of machine learning as a tool for gaining

insight: the function generated by the learner is too complex for us to extract

a meaningful policy.

The 1-core heuristic is significant because it avoids predication, which is

an important feature of an EDGE ISA, and differs in this respect from the best

heuristics for larger topologies. A one-core configuration lacks the resources

to tolerate more widely predicated code as mispredicated instructions occupy

scarce issue and execution slots that could be put to better use. At the same

time, the 128-instruction window provided by a single core is small enough to

be effectively used by the branch predictor. Larger configurations, by contrast,

suffer from geometrically increasing misprediction rates without the use of

predication.

Furthermore, the 1-core heuristic is unlikely to be useful without sup-

port for variable-size blocks. By avoiding predication, the compiler creates

many small blocks, because it is rare to chain more than a few unconditional

branches together. Variable-size blocks make such a heuristic possible by re-

141

ducing the penalty for executing small blocks. As the core count increases,

however, the likelihood of misprediction reduces the effectiveness of variable-

size blocks in this scenario. Therefore the benefits of this heuristic are likely

confined to relatively small configurations.

While composability remains an effective technique for improving per-

formance of the same binary executable by aggregating cores, these results

suggest that the performance of smaller configurations can be significantly im-

proved. Chapter 6 showed that by providing variable-size block support, inte-

ger benchmarks immediately benefit from executing smaller blocks on smaller

configurations. This combination could be quite effective in certain domains

with area and power constraints. This chapter has shown how to extend that

solution with compiler support, by developing heuristics tailored to particular

configurations.

Because the performance and heuristics for each benchmark vary widely

with the core count, a compiler that is aware of the configuration could realize

significant gains in performance. Such a capability could be useful for con-

strained systems where area or power are limited, where the compiler knows

that it must generate code for a small system. On more complex systems, one

could envision a dynamic optimizing compiler, which could receive feedback

from the processor about the composed topology. The compiler could then

adjust its heuristics to provide better-suited code to the underlying microar-

chitecture.

142

(a) SPECINT

(b) SPECFP

Figure 7.3: Speedup of heuristics learned for 1-, 8-, and 32-cores over baseline
heuristic on one core.

7.5.3 SPEC CPU Results

We use the learned heuristics for 1-, 8-, and 32-core configurations

to compile the SPEC benchmarks and measure their performance on all core

counts. Figure 7.3 shows the performance of these heuristics at all core counts,

normalized to the performance of a single core with the compiler’s baseline

heuristic.

The most striking success of learning is the 1-core learned heuristic,

143

which outperforms the baseline by 35% on SPECINT and 27% on SPECFP

when running on a single core. This heuristic performs well in 2-core con-

figurations as well, but tapers off at four or more cores, performing roughly

equivalently on INT, and as much as 22% below the baseline on FP.

Heuristics for 8- and 32-core topologies are mixed: they achieve ap-

proximately the same performance as the baseline on SPECINT, but fall short

on SPECFP, particularly with eight or more cores. Compared to the eight-

core heuristic, the baseline achieves 6% higher performance at eight cores and

14% at 32-cores. This result highlights the performance fragility of learned

heuristics. While performance gains were significant on microbenchmarks, the

results do not scale as well to full programs.

7.6 Summary

By using machine learning techniques we have learned a fundamental

property of the architecture: that predication limits performance when ma-

chine resources are limited. While this insight by itself has been noted for

other architectures, such as VLIW, it is novel in the context of block-atomic

EDGE architectures. Variable-size blocks are of course important to this re-

sult, because without variable-size blocks the opportunity cost of not using

predication to fill blocks is simply too high. By changing the relative costs of

executing blocks, we have changed the compiler’s best heuristics as well.

While we have successfully found interesting heuristics for a set of

benchmarks on which the compiler trained, more general heuristics remain

144

elusive. While the small core-count policy performs generally on SPECINT,

no policy significantly outperforms the baseline on SPECFP, or in most con-

figurations of SPECINT. While this perhaps validates the baseline as a reason-

able policy, it gives little insight into whether generally better policies could be

found. However, overspecialization is a general problem with machine learning

and in retrospect it is not surprising that we find that problem as well in this

work.

Since we did not appear to learn a heuristic that generally achieves the

best performing points for SPECINT and SPECFP, it may be worthwhile to

question the limitations of this system. It is possible that a dynamic system

that can monitor performance counters could perform much better. While such

a system is beyond the scope of this work, there are many other advantages to a

dynamic system that would make it worthwhile for this class of architectures.

145

Chapter 8

Conclusions

The computing industry is at an inflection point. The primary driver of

single-CPU performance—increasing frequency by building deeper pipelines—

came to an end with Intel’s cancellation of the NetBurst microarchitecture.

Conventional techniques for improving single-threaded performance using out-

of-order superscalar techniques have reached a point of diminishing returns due

to complexity. Even improvements in frequency and power consumption due

to Dennard scaling appear to have dramatically slowed or stopped. Demand

for increased performance, however, continues unabated. As a community

we need innovative systems solutions to meet this continued demand even as

conventional approaches come to an end.

EDGE architectures attempt to address this problem by organizing in-

structions in large blocks, which use dataflow internally. This organization

enables power-efficient out-of-order execution using a distributed microarchi-

tecture. Furthermore, the design allows extremely high levels of parallelism to

be exploited, by increasing the ratio of functional and arithmetic units to con-

trol logic. The TRIPS prototype processor puts these hypotheses to the test

with a fully-realized implementation of an EDGE ISA. To achieve these the-

146

oretical advances however, EDGE architectures require compiler support for

new optimizations. Key among these compiler optimizations are block forma-

tion, which has been the focus of this dissertation, and instruction scheduling,

which has been research elsewhere. We believe that these compiler tasks are

more tractable than the approaches needed for alternative designs. Existing

chip multiprocessors, for example, seem to require automatic parallelization or

a programming model that makes manual parallelization tractable. It is still an

open question what combination of hardware and software techniques, if any,

will succeeded in delivering performance improvements through parallelism.

As this dissertation has shown, the performance of EDGE architectures

rests on the ability of the compiler to form blocks that contain ample amounts

of parallel work. We have presented an algorithm that achieves this goal under

many circumstances. Inspecting the performance of the compiler on realistic

benchmarks, however, reveals that we are a long way from a general ability to

construct full blocks that take advantage of an EDGE machine’s immense par-

allel resources. The complexity of control flow in modern programs frequently

makes forming large blocks difficult or impossible. Future EDGE microar-

chitectures should support such modifications as we propose for variable-size

blocks to avoid unnecessary performance penalties for block-atomic execution.

To conclude this dissertation, we review the contributions of the dis-

sertation towards understanding block-atomic compilation, and suggest future

avenues of research. While many of the early, fundamental issues regarding

EDGE compilation have been addressed by this dissertation (and others), there

147

are still significant problems to be solved to make EDGE architectures achieve

extremely high performance.

8.1 Dissertation Contributions

This dissertation has considered the roles of the compiler, architecture,

and microarchitecture in enabling efficient block-atomic execution. We began

with the question “Can a compiler form large blocks for an EDGE architec-

ture?” While frequently the answer this question can be answered affirma-

tively, we have dissected the scenarios in which it is not possible. This disser-

tation has presented compiler techniques for achieving large blocks, analyzed

the performance of those blocks, and suggested a combination of architectural

optimizations and compiler heuristics to further improve performance. To-

gether these techniques make block-atomic architectures a more compelling

platform for future research and development.

The first contribution of the dissertation is an iterative, incremental

algorithm for EDGE block formation that incorporates scalar optimizations,

loop unrolling and loop peeling into a single-pass framework. This algorithm is

significant for several reasons. Iterative hyperblock formation enables robust

compilation for a structurally-constrained block atomic architecture. Before

this iterative approach, we had considered approaches based on ideal block for-

mation followed by block-splitting. For the reasons described in prior chapters,

this approach was not tractable. Furthermore, iterative hyperblock formation

enables improved filling of EDGE blocks even when optimization opportunities

148

are available. Because merging blocks enables new optimization opportunities,

it is difficult to say statically which blocks should be merged. By iterating, we

reach the best fixed point. Finally, we unify loop unrolling and peeling under

the umbrella of head duplication, which allows it to fold cleanly into a unified

block formation algorithm.

Using this block formation algorithm we compare performance of com-

piled code against Intel’s Core 2 processor to determine the relative strength

of the TRIPS processor. This performance comparison demonstrated that

TRIPS could compete with a commercial processor on certain applications that

were highly parallel, data-intensive algorithms, particularly when we wrote

assembly code by hand. However we could not confirm the hypothesis that

TRIPS could generally outperform superscalar processors. We discovered that

particular design decisions and compiler difficulties particularly impacted the

performance of TRIPS. Strikingly, the instruction cache miss rate was signif-

icantly higher on TRIPS than that of the Intel processor, indicating a com-

bination of insufficient capacity (although the structure was 2.5 times larger

than the Intel cache), or an inability to form large blocks.

A detailed analysis of the compiler’s capabilities show that block forma-

tion is a fundamental problem for a compiler due to control flow constraints.

Function calls were the most significant source of very small (1–16 instruction)

blocks, despite extremely aggressive inlining. While we attempted to imple-

ment techniques that would mitigate this problem by predicating call sites

or epilogues, the predication overhead severely reduced performance despite a

149

modest improvement in block size. Furthermore, reducing the maximum block

size only improves average efficiency by a modest amount, due to the dual-

peaked nature of the block-size distribution. We concluded that to truly solve

the performance problems solved by under-full blocks, the microarchitecture

should support variable-size blocks.

To solve this problem we propose an instruction set revision that, with-

out changing the fundamentals of an EDGE architecture, enables efficient im-

plementation of variable size blocks. With minor instruction set modifications

we are able to support eight-instruction variability, which achieves over 95%

code size efficiency. We implement this capability in a composable microarchi-

tecture, TFlex, that shares similar characteristics to TRIPS but allows flexi-

ble allocation of core resources to threads. The variable-size blocks capability

translates into significantly increased performance in resource-constrained en-

vironments such as a single-core TFlex configuration.

With this increased from block size constraints we consider a range of

policy options for block formation. While there are several criteria which make

sense for block formation it is not immediately clear how to combine them for

the best effect, so we explore the space of policy options using a genetic algo-

rithm. We find that for small configurations the policy options are markedly

different from large configurations. Small configurations appear to benefit from

reduced use of predication. With variable-size blocks implemented, the smaller

blocks that result from not predicating are not a handicap, and with limited

machine resources it is more important not to do wasted, predicated-out work.

150

For large topologies it is more important to construct a larger window and re-

source constraints are less severe, thus predication is more beneficial.

With this combination of compiler techniques and architectural op-

timizations we have improved the ability of an EDGE system to efficiently

execute real-world code. We have combined compiler optimizations—both

mechanisms and policies—with a careful evaluation of the compiler’s capa-

bilities, and what capabilities it could potentially have. By redesigning an

aspect of the hardware (fixed-size blocks) to allow the compiler slack we have

not only improved the performance of the baseline system, but discovered a

novel opportunity for optimization by removing a significant constraint (rigid

adherence to block size) from the compiler.

8.2 Future Directions

While this dissertation has contributed a good deal towards high per-

formance compilation for block-atomic architectures, there is more research

to be done. Additional engineering could improve the compiler’s block for-

mation abilities (although there may be unforeseen problems along the way).

Evidence that the best block formation policies differ based on the microarchi-

tecture indicates that dynamic techniques could be a promising research area

in the future. We outline these areas of future work here.

Because function calls, and by extension inlining, significantly reduce

the compiler’s ability to form large blocks, improving the compiler’s ability to

remove function call boundaries could significantly improve block sizes. While

151

Scale uses a fairly typical overall compiler structure where inlining is performed

early on, a more flexible, whole-program optimization approach could be ap-

plied that could allow traditional optimizations across call boundaries, as well

as block formation. While whole-program optimization techniques have ex-

isted for some time, they have been applied infrequently in common compilers

because of the time overhead. However, some limited version of whole-program

compilation, perhaps restricted to block formation only, could prove helpful in

improving performance without unnecessarily increasing compile time.

Because calls into libraries and cross-module function calls account for a

sizable fraction of the problematic calls, post-link optimization may be worth-

while for a block-atomic architecture. Post-link optimization has become in-

creasingly common in production compilers, so it is clearly feasible in some

contexts. For EDGE block formation to be feasible post-link, the linked byte-

codes must be at a sufficiently high level of abstraction for block splitting and

register allocation to operate in a relatively natural manner. It would be rather

difficult to extract a useful representation from an already optimized TRIPS

binary, for example, due to the extensive use of block merging and predicate

optimizations.

Dynamic compilation using a just-in-time compiler or virtual machine

could significantly improve performance, both by providing the ability to opti-

mize across boundaries and by providing more extensive profiling information

for speculative optimizations. Dynamic optimization of an intermediate rep-

resentation immediately gives the system the benefits of a restructured static

152

compiler or of post-link optimization, as well as offering new opportunities

for speculative optimization, re-optimization, and profile-guided optimization.

Profiling could be particularly useful; while our heuristic experiments indi-

cated only mild biases in favor of frequently executed paths, the compiler

could combine block formation with speculative optimizations frequently used

by dynamic optimizers to achieve increased performance.

As presented in Chapter 7 different programs have markedly different

behavior. While this dissertation has presented some techniques for auto-

matically discovering and optimizing for this behavior, more could be done.

In a dynamic system, the processor could detect programs or phases of pro-

grams that require more or fewer parallel resources and allocate a slice of the

processor appropriately. Combined with the variable-size blocks capability of

Chapter 6, such a processor could achieve high efficiency and high performance

by executing control-intensive code on fewer cores, while allocating more cores

to data-intensive, highly parallel code.

A dynamic system with greater awareness of the specialized needs of

programs should be capable of taking advantage of these diverse characteris-

tics. As we have shown, smaller topologies benefit from different heuristics

than larger topologies, with predication being less desirable as the number of

participating cores decreases. A cooperative hardware/software system could

notify a dynamic optimizer when the core allocation of a program changes.

That optimizer could either re-optimize the program to execute more quickly

on the new topology, or could invoke a different version of the binary that was

153

precompiled. While this system would have increased complexity, the benefits

in terms of performance and power efficiency could be significant.

8.3 Final Thoughts

As parallelism becomes increasingly important to computer perfor-

mance, unconventional architectures will increasingly gain acceptance in the

broader community. EDGE architectures, and block-atomic processors more

generally, may find favor due to their ability to achieve out-of-order execution

with a large instruction window in a relatively efficient manner. Combined

with the ability to relatively easily compose large numbers of EDGE cores

together to improve performance, these characteristics may make EDGE par-

ticularly attractive going forward. However, compiler support for such archi-

tectures is still in its infancy, and it remains to be seen whether such a design

can exceed superscalar capabilities and scale to future technologies.

Because EDGE requires a radically new ISA, its widespread accep-

tance dependends on social as well as technical factors. Binary compatibility

has historically hindered market acceptance of new ISAs. The mass market

for desktop computers running the x86 instruction set entrenched that ISA

in many domains. Despite this history, several trends may ease the path to

market for new ISAs. The rise of mobile phones, tablets, and cloud computing

reduces the dependence of consumers on applications pre-compiled for a par-

ticular architecture. Furthermore, the performance of compiler technology for

binary translation has improved and may be used to provide compatibility for

154

legacy software. Even if binary compatibility remains important, however, the

rise of general-purpose computation on graphics processors shows that certain

application domains that demand high performance may be willing to shift to

a new architecture, if the performance gains are sufficient.

This dissertation has provided evaluation, insight, and algorithms to

improve the performance and efficiency of such architectures. By advancing

the state of the art in this area, the dissertation perhaps moves a step closer

to more widespread adoption of some of the ideas of block-atomic processing.

Regardless of whether such processors are ever taken up by the market, there is

scientific value in understanding their capabilities and limitations. This work

provides such an evaluation, and enables future compilers to build on what has

been done to create better solutions. By providing a detailed exploration of

the challenges faced in compiling for a block atomic architecture and solutions

to at least a few of those challenges, we show that such designs have significant

potential for power-efficient performance.

155

Bibliography

[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock

rate versus IPC: the end of the road for conventional microarchitectures.

In ISCA ’00: Proceedings of the 27th annual international symposium on

Computer architecture, pages 248–259, New York, NY, USA, 2000. ACM.

[2] A. Aiken and A. Nicolau. A realistic resource-constrained software

pipelining algorithm. In Workshop on Languages and Compilers for Par-

allel Computing, Irvine, CA, Aug. 1990.

[3] A. Aiken, A. Nicolau, and S. Novack. Resource-constrained software

pipelining. IEEE Transactions on Parallel and Distributed Systems,

6(12):1248–1270, 1995.

[4] J. R. Allen, K. Kennedy, C. Porterfield, and J. D. Warren. Conversion

of control dependence to data dependence. In Proceedings of the 10th

Annual Symposium on Principles of Programming Languages, pages 177–

189, 1983.

[5] D. I. August. Hyperblock performance optimizations for ILP processors.

Master’s thesis, University of Illinois at Urbana-Champaign, 1993.

[6] D. I. August, W.-m. W. Hwu, and S. A. Mahlke. A framework for

balancing control flow and predication. In Proceedings of the 30th annual

156

ACM/IEEE international symposium on Microarchitecture (MICRO ’97),

pages 92–103. IEEE Computer Society, 1997.

[7] D. I. August, W.-M. W. Hwu, and S. A. Mahlke. The partial reverse

if-conversion framework for balancing control flow and predication. In-

ternational Journal of Parallel Programming, 27(5):381–423, 1999.

[8] J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L.

Herrick, R. A. Nelson, D. Sayre, P. B. Sheridan, H. Stern, I. Ziller, R. A.

Hughes, and R. Nutt. The FORTRAN automatic coding system. In

IRE-AIEE-ACM ’57 (Western): Papers presented at the February 26-28,

1957, western joint computer conference: Techniques for reliability, pages

188–198, 1957.

[9] J. Bobba, K. E. Moore, H. Volos, L. Yen, M. D. Hill, M. M. Swift, and

D. A. Wood. Performance pathologies in hardware transactional memory.

In ISCA ’07: Proceedings of the 34th annual international symposium on

Computer architecture, pages 81–91, New York, NY, USA, 2007. ACM.

[10] D. G. Bradlee, S. J. Eggers, and R. R. Henry. Integrating register al-

location and instruction scheduling for RISCs. In Proceedings of the

fourth international conference on Architectural support for programming

languages and operating systems (ASPLOS ’91), pages 122–131. ACM,

1991.

[11] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K. John,

C. Lin, C. R. Moore, J. Burrill, R. G. McDonald, W. Yoder, and the

157

TRIPS team. Scaling to the end of silicon with EDGE architectures.

Computer, 37(7):44–55, 2004.

[12] L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval. Bulk disambiguation of

speculative threads in multiprocessors. In ISCA ’06: Proceedings of the

33rd annual international symposium on Computer Architecture, pages

227–238, 2006.

[13] P. P. Chang and W. W. Hwu. Trace selection for compiling large C

application programs to microcode. In MICRO 21: Proceedings of the

21st annual workshop on Microprogramming and microarchitecture, pages

21–29, Los Alamitos, CA, USA, 1988. IEEE Computer Society Press.

[14] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W.-m. W.

Hwu. IMPACT: an architectural framework for multiple-instruction-issue

processors. In ISCA ’91: Proceedings of the 18th annual international

symposium on Computer architecture, pages 266–275, New York, NY,

USA, 1991. ACM.

[15] P. P. Chang, S. A. Mahlke, and W.-m. W. Hwu. Using profile information

to assist classic code optimizations. Software Practice and Experience,

21(12):1301–1321, 1991.

[16] K. E. Coons, X. Chen, D. Burger, K. S. McKinley, and S. K. Kush-

waha. A spatial path scheduling algorithm for EDGE architectures. In

Proceedings of the 12th international conference on Architectural support

158

for programming languages and operating systems (ASPLOS ’06), pages

129–140. ACM, 2006.

[17] K. E. Coons, B. Robatmili, M. E. Taylor, B. A. Maher, D. Burger, and

K. S. McKinley. Feature selection and policy optimization for distributed

instruction placement using reinforcement learning. In Proceedings of the

17th International Conference on Parallel Architectures and Compilation

Techniques (PACT ’08), pages 32–42, 2008.

[18] K. Crozier. Structural and static analysis techniques for enhancing com-

piler support of predicated execution. Master’s thesis, University of Illi-

nois at Urbana-Champaign, 1999.

[19] J. Davidson and S. Jinturkar. An aggressive approach to loop unrolling.

Technical Report CS-95-26, University of Virginia, 1995.

[20] J. W. Davidson and S. Jinturkar. Aggressive loop unrolling in a retar-

getable optimizing compiler. In CC ’96: Proceedings of the 6th Interna-

tional Conference on Compiler Construction, pages 59–73, London, UK,

1996. Springer-Verlag.

[21] B. L. Deitrich and W.-M. W. Hwu. Speculative hedge: regulating

compile-time speculation against profile variations. In Proceedings of the

29th Annual IEEE/ACM International Symposium on Microarchitecture,

pages 70–79, 1996.

159

[22] J. R. Diamond, B. Robatmili, S. W. Keckler, R. van de Geijn, K. Goto,

and D. Burger. High performance dense linear algebra on a spatially

distributed processor. In Proceedings of the 13th ACM SIGPLAN Sym-

posium on Principles and Practice of Parallel Programming (PPoPP ’08),

pages 63–72, 2008.

[23] H. Esmaeilzadeh and D. Burger. Hierarchical control prediction: Support

for aggressive predication. In PESPMA ’09: Proceedings of the 2nd

Workshop on Parallel Execution of Sequential Programs on Multi-core

Architectures, pages 71–80, 2009.

[24] J. A. Fisher. Trace scheduling: A technique for global microcode com-

paction. IEEE Transactions on Computers, 30(7):478–490, 1981.

[25] J. A. Fisher. Very long instruction word architectures and the ELI-512.

In ISCA ’83: Proceedings of the 10th Annual International Symposium

on Computer Architecture, pages 140–150, 1983.

[26] J. A. Fisher, J. R. Ellis, J. C. Ruttenberg, and A. Nicolau. Parallel

processing: A smart compiler and a dumb machine. In Proceedings of

the 1984 SIGPLAN Symposium on Compiler Construction, pages 37–47,

1984.

[27] M. Gebhart, B. A. Maher, K. E. Coons, J. Diamond, P. Gratz, M. Marino,

N. Ranganathan, B. Robatmili, A. Smith, J. Burrill, S. W. Keckler,

D. Burger, and K. S. McKinley. An evaluation of the TRIPS computer

160

system. In ASPLOS ’09: Proceedings of the 14th International Confer-

ence on Architectural Support for Programming Languages and Operating

Systems, pages 1–12, 2009.

[28] J. R. Goodman and W.-C. Hsu. Code scheduling and register allocation

in large basic blocks. In ICS ’88: Proceedings of the 2nd international

conference on Supercomputing, pages 442–452. ACM, 1988.

[29] E. Hao, P.-Y. Chang, M. Evers, and Y. N. Patt. Increasing the instruction

fetch rate via block-structured instruction set architectures. In MICRO-

29: Proceedings of the 29th Annual IEEE/ACM International Symposium

on Microarchitecture, pages 191–200, 1996.

[30] W. Havanki, S. Banerjia, and T. Conte. Treegion scheduling for wide

issue processors. In Proceedings of the 4th International Symposium on

High-Performance Computer Architecture, page 266, 1998.

[31] M. Herlihy and J. E. B. Moss. Transactional memory: architectural sup-

port for lock-free data structures. In Proceedings of the 20th annual inter-

national symposium on Computer architecture (ISCA ’93), pages 289–300.

ACM, 1993.

[32] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era. Com-

puter, 41(7):33–38, 2008.

[33] M. S. Hrishikesh, D. Burger, N. P. Jouppi, S. W. Keckler, K. I. Farkas,

and P. Shivakumar. The optimal logic depth per pipeline stage is 6 to 8

161

fo4 inverter delays. In ISCA ’02: Proceedings of the 29th annual inter-

national symposium on Computer architecture, pages 14–24, Washington,

DC, USA, 2002. IEEE Computer Society.

[34] W.-M. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter,

R. A. Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab,

J. G. Holm, and D. M. Lavery. The superblock: an effective technique

for VLIW and superscalar compilation. Journal of Supercomputing, 7(1–

2):229–248, 1993.

[35] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez. Core fusion: ac-

commodating software diversity in chip multiprocessors. In ISCA ’07:

Proceedings of the 34th annual international symposium on Computer ar-

chitecture, pages 186–197, 2007.

[36] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non-uniform cache

structure for wire-delay dominated on-chip caches. In ASPLOS ’02:

Proceedings of the 10th International Conference on Architectural Support

for Programming Languages and Operating Systems, pages 211–222, 2002.

[37] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ranganathan, D. Gulati,

D. Burger, and S. W. Keckler. Composable lightweight processors. In

MICRO-40: Proceedings of the 40th Annual IEEE/ACM International

Symposium on Microarchitecture, pages 381–394, 2007.

[38] A. J. KleinOsowski and D. J. Lilja. MinneSPEC: A new SPEC bench-

162

mark workload for simulation-based computer architecture research. Com-

puter Architecture Letters, 1:7–11, 2002.

[39] J. Koza. Genetic Programming: On the Programming of Computers by

Means of Natural Selection. The MIT Press, 1992.

[40] J. Lah and D. E. Atkins. Tree compaction of microprograms. SIGMI-

CRO Newsletter, 14(4):23–33, 1983.

[41] M. Lam. Software pipelining: An effective scheduing technique for VLIW

machines. In ACM Conference on Programming Language Design and

Implementation, Atlanta, GA, June 1988.

[42] D. Lea. A memory allocator, 1996. http://gee.cs.oswego.edu/dl/html/malloc.html.

[43] H. Leather, E. Bonilla, and M. O’Boyle. Automatic feature generation

for machine learning based optimizing compilation. In CGO ’09: Pro-

ceedings of the 7th annual IEEE/ACM International Symposium on Code

Generation and Optimization, pages 81–91, Washington, DC, USA, 2009.

IEEE Computer Society.

[44] D. Li, B. Robatmili, S. Govindan, D. Burger, and S. Keckler. Hybrid

operand communication for dataflow processors. In PESPMA ’09: Pro-

ceedings of the 2nd Workshop on Parallel Execution of Sequential Pro-

grams on Multi-core Architectures, pages 61–70, 2009.

[45] B. A. Maher, A. Smith, D. Burger, and K. S. McKinley. Merging head

and tail duplication for convergent hyperblock formation. In MICRO-39:

163

Proceedings of the 39th Annual IEEE/ACM International Symposium on

Microarchitecture, pages 65–76, 2006.

[46] S. A. Mahlke. Exploiting instruction level parallelism in the presence

of conditional branches. PhD thesis, University of Illinois at Urbana-

Champaign, 1997.

[47] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann.

Effective compiler support for predicated execution using the hyperblock.

In MICRO 25: Proceedings of the 25th annual international symposium

on Microarchitecture, pages 45–54, 1992.

[48] K. S. McKinley, J. Burrill, M. Bond, D. Burger, B. Maher, B. Robatmili,

and A. Smith. The Scale compiler, 2007. http://ali-www.cs.umass.edu/-

∼scale/.

[49] S. W. Melvin and Y. N. Patt. Exploiting fine-grained parallelism through

a combination of hardware and software techniques. In ISCA ’91: Pro-

ceedings of the 18th Annual International Symposium on Computer Ar-

chitecture, pages 287–296, 1991.

[50] S. W. Melvin and Y. N. Patt. Enhancing instruction scheduling with

a block-structured ISA. International Journal of Parallel Programming,

23(3):221–243, 1995.

[51] S. W. Melvin, M. C. Shebanow, and Y. N. Patt. Hardware support

for large atomic units in dynamically scheduled machines. In MICRO-

164

21: Proceedings of the 21st Annual Workshop on Microprogramming and

Microarchitecture, pages 60–63, 1988.

[52] R. Nagarajan, S. K. Kushwaha, D. Burger, K. S. McKinley, C. Lin, and

S. W. Keckler. Static placement, dynamic issue (SPDI) scheduling for

EDGE architectures. In International Conference on Parallel Architec-

tures and Compilation Techniques, pages 74–84, Antibes Juan-les-Pins,

France, Oct. 2004.

[53] R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keckler. A design

space evaluation of grid processor architectures. In Proceedings of the

34th annual ACM/IEEE international symposium on Microarchitecture

(MICRO ’01), pages 40–51. IEEE Computer Society Press, 2001.

[54] N. Neelakantam, D. R. Ditzel, and C. Zilles. A real system evaluation

of hardware atomicity for software speculation. In ASPLOS ’10: Pro-

ceedings of the 15th International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 29–38, 2010.

[55] N. Neelakantam, R. Rajwar, S. Srinivas, U. Srinivasan, and C. Zilles.

Hardware atomicity for reliable software speculation. In ISCA ’07: Pro-

ceedings of the 34th annual international symposium on Computer archi-

tecture, pages 174–185, 2007.

[56] N. Nethercote, D. Burger, and K. S. Mckinley. Convergent compilation

applied to loop unrolling. Transactions on High-Performance Embedded

Architectures and Compilers I, pages 140–158, 2007.

165

[57] J. C. H. Park and M. Schlansker. On predicated execution. Technical

Report HPL-91-58, HP Laboratories, 1991.

[58] B. R. Rau. Iterative modulo scheduling: an algorithm for software

pipelining loops. In Proceedings of the 27th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture, pages 63–74, 1994.

[59] B. Robatmili, K. Coons, D. Burger, and K. S. McKinley. Register bank

assignment for spatially partitioned processors. pages 64–79, 2008.

[60] B. Robatmili, K. E. Coons, D. Burger, and K. S. McKinley. Strategies

for mapping dataflow blocks to distributed hardware. In MICRO-41:

Proceedings of the 41st Annual IEEE/ACM International Symposium on

Microarchitecture, pages 23–34, 2008.

[61] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,

S. W. Keckler, and C. R. Moore. Exploiting ILP, TLP, and DLP with

the polymorphous TRIPS architecture. In ISCA ’03: Proceedings of the

30th Annual International Symposium on Computer Architecture, pages

422–433, 2003.

[62] K. Sankaralingam, R. Nagarajan, R. McDonald, R. Desikan, S. Drolia,

M. S. Govindan, P. Gratz, D. Gulati, H. Hanson, C. Kim, H. Liu, N. Ran-

ganathan, S. Sethumadhavan, S. Sharif, P. Shivakumar, S. W. Keckler,

and D. Burger. Distributed microarchitectural protocols in the trips

prototype processor. In MICRO 39: Proceedings of the 39th Annual

166

IEEE/ACM International Symposium on Microarchitecture, pages 480–

491, Washington, DC, USA, 2006. IEEE Computer Society.

[63] P. B. Schneck. Automatic recognition of vector and parallel operations

in a higher level language. In ACM ’72: Proceedings of the ACM annual

conference, pages 772–779. ACM, 1972.

[64] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution anal-

ysis to find periodic behavior and simulation points in applications. In

PACT ’01: Proceedings of the 2001 International Conference on Parallel

Architectures and Compilation Techniques, pages 3–14, 2001.

[65] L. T. Simpson. Value-driven Redundancy Elimination. PhD thesis, Rice

University, 1996.

[66] A. Smith, J. Burrill, J. Gibson, B. Maher, N. Nethercote, B. Yoder,

D. Burger, and K. S. McKinley. Compiling for EDGE architectures. In

International Symposium on Code Generation and Optimization, 2006.

[67] A. Smith, R. Nagarajan, K. Sankaralingam, R. McDonald, D. Burger,

S. W. Keckler, and K. S. McKinley. Dataflow predication. In MICRO-

39: Proceedings of the 39th Annual IEEE/ACM International Symposium

on Microarchitecture, pages 89–102, 2006.

[68] A. L. Smith. Explicit Data Graph Compilation. PhD thesis, The Uni-

versity of Texas at Austin, 2009.

167

[69] J. E. Smith and A. R. Pleszkun. Implementation of precise interrupts

in pipelined processors. In Proceedings of the 12th annual international

symposium on Computer architecture (ISCA ’85), pages 36–44. IEEE

Computer Society Press, 1985.

[70] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors.

In ISCA ’95: Proceedings of the 22nd annual international symposium on

Computer architecture, pages 414–425, 1995.

[71] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry. A scalable

approach to thread-level speculation. SIGARCH Computer Architecture

News, 28(2):1–12, 2000.

[72] M. Stephenson, S. Amarasinghe, M. Martin, and U.-M. O’Reilly. Meta

optimization: improving compiler heuristics with machine learning. In

PLDI ’03: Proceedings of the ACM SIGPLAN 2003 conference on Pro-

gramming language design and implementation, pages 77–90, 2003.

[73] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal

of the Royal Statistical Society. Series B (Methodological), 58(1):267–288,

1996.

[74] S. Triantafyllis, M. J. Bridges, E. Raman, G. Ottoni, and D. I. August.

A framework for unrestricted whole-program optimization. In PLDI

’06: Proceedings of the 2006 ACM SIGPLAN conference on Programming

language design and implementation, pages 61–71, 2006.

168

[75] N. J. Warter, S. A. Mahlke, W.-M. W. Hwu, and B. R. Rau. Reverse

if-conversion. In Proceedings of the 1993 ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI ’93), pages

290–299. ACM, 1993.

[76] B. Yoder, J. Burrill, R. McDonald, K. Bush, K. Coons, M. Gebhart,

S. Govindan, B. Maher, R. Nagarajan, B. Robatmili, K. Sankaralingam,

S. Sharif, A. Smith, D. Burger, S. W. Keckler, and K. S. McKinley. Soft-

ware infrastructure and tools for the TRIPS prototype. In MoBS ’07:

The Third Annual Workshop on Modeling, Benchmarking and Simulation.

169

Vita

Bertrand Allen Maher was born in Skokie, Illinois on May 3rd, 1982,

the son of Howard and Rita Maher. He received the Bachelor of Science in

Electrical Engineering and Computer Science from Yale University in 2004,

and entered the Ph.D. program at the University of Texas at Austin in the

same year. He earned the Master of Science degree in Computer Science from

the University of Texas at Austin in 2007.

Permanent address: 1813 Clemson Dr.
Richardson, TX 75081

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

170

