
CopyrightbyRajagopalan Desikan2005

The Dissertation Committee for Rajagopalan Desikan
erti�es that this is the approved version of the following dissertation:
Distributed Sele
tive Re-Exe
ution for EDGEAr
hite
tures

Committee:Douglas C. Burger, SupervisorLizy Kurian JohnStephen W. Ke
klerCraig M. ChaseDonald S. FussellKathryn S. M
Kinley

Distributed Sele
tive Re-Exe
ution for EDGEAr
hite
tures
byRajagopalan Desikan, B.E., M.S.

DISSERTATIONPresented to the Fa
ulty of the Graduate S
hool ofThe University of Texas at Austinin Partial Ful�llmentof the Requirementsfor the Degree ofDOCTOR OF PHILOSOPHY
THE UNIVERSITY OF TEXAS AT AUSTINDe
ember 2005

A
knowledgments"Gratitude bestows reveren
e, allowing us to en
ounter everyday epiphanies, thosetrans
endent moments of awe that
hange forever how we experien
e life and the world."{John MiltonNumerous people have played an important role in helping me tideover the rigors of graduate s
hool. I would like to �rst thank my advisor,Doug Burger, for his advi
e, guidan
e, and training that helped me get to thispoint in my graduate
areer. Doug has been an ex
ellent mentor, guide, andfriend to me, and the things I have learned from him will stay with me for life.Steve Ke
kler, as the the
o-leader of the CART group, has also playedan important part in my professional development. I am thankful for the manyopportunities I have had to intera
t with him, and for his numerous insightful
omments and suggestions.I would like to a
knowledge the moral and te
hni
al support that I havere
eived from the students in my resear
h group, CART. Karu Sankaralingamand Ramdas Nagarajan wrote the original GPA simulator that I used for myinitial evaluation. I would like to thank them for their patien
e in answeringmy innumerable questions. I would also like thank everybody who helpeddesign and implement the TRIPS prototype simulator, and Bill Yoder forswiftly dealing with any
ompiler related issues that I happened to
ome a
rossiv

during my resear
h. My thanks also go out to Robert M
Donald for designingthe TRIPS prototype simulator framework, and for the �rst-store dependen
epredi
tor proposal. The
onstru
tive
riti
ism provided by the students in theCART group during my di�erent pra
ti
e talks have greatly helped me honemy presentation skills, and I am grateful to them for that. Finally, I wouldlike to thank my roommate for the last 5 years, Rubin Sidhu, and everyone onthe ACES 3rd
oor, who made it su
h a fun and ex
iting pla
e to work.I would also like to a
knowledge the institutions that helped supportmy resear
h in graduate s
hool: the Intel Resear
h Coun
il for my fellowshipand equipment, National S
ien
e Foundation for the initial grants that fundedme, and DARPA for funding the TRIPS-related aspe
t of my resear
h.Last, but not the least, I would like thank my family for helping merea
h this milestone in my life. My sisters and my parents provided me withthe
onstant en
ouragement ne
essary for su

ess in graduate s
hool, and I
ould not have done it without them.

v

Distributed Sele
tive Re-Exe
ution for EDGEAr
hite
turesPubli
ation No.Rajagopalan Desikan, Ph.D.The University of Texas at Austin, 2005Supervisor: Douglas C. Burger
Spe
ulation is a key te
hnique that modern pro
essors use to a
hievehigh performan
e. Traditionally, spe
ulation meant
ontrol spe
ulation, inwhi
h the pro
essor predi
ts the out
ome of
ontrol instru
tions when theyare fet
hed, and validates the predi
tion when the instru
tions are exe
uted.More re
ently, pro
essors have adopted another form of spe
ulation
alled dataspe
ulation to improve performan
e. Data spe
ulation involves the predi
tionof the data values produ
ed by instru
tions, and forwarding the predi
tedvalues to
onsumers in the data-
ow graph. For both
ontrol and data spe
u-lation, mis-spe
ulation re
overy is required when the spe
ulation is in
orre
t.The
onventional me
hanism for mis-spe
ulation re
overy
onsists of
ushing the pro
essor pipeline of all in
orre
t state and restarting exe
utionfrom the
orre
ted state. However, pipeline
ushes have be
ome in
reasinglyvi

expensive in modern mi
ropro
essors with large instru
tion windows and deeppipelines. Sele
tive re-exe
ution is a te
hnique that
an redu
e the penaltyof mis-spe
ulation re
overy by re-exe
uting only instru
tions that re
eived in-
orre
t values due to the mis-spe
ulation. Conventional me
hanisms to imple-ment sele
tive re-exe
ution have had limited su

ess be
ause of the enormous
omplexity involved in the implementation.In this dissertation, we introdu
e a new sele
tive re-exe
ution me
ha-nism that exploits the properties of a data
ow-like Expli
it Data Graph Exe
u-tion (EDGE) ar
hite
ture to support eÆ
ient mis-spe
ulation re
overy, whiles
aling to large window sizes. This Distributed Sele
tive Re-Exe
ution (DSRE)me
hanism permits multiple spe
ulative waves of
omputation to traverse adata
ow graph simultaneously. The me
hanism has no
entralized state, anduses simple state bits to determine instru
tions to re-�re on a mis-spe
ulation,thus redu
ing the
omplexity of sele
tive re-exe
ution.We evaluate DSRE as a re
overy me
hanism for load-store dependen
emis-spe
ulation on a high-level EDGE ar
hite
ture simulator, the Grid Pro
es-sor Ar
hite
ture (GPA) simulator, and on the more detailed TRIPS prototypepro
essor simulator. DSRE provides 17% and 4.2% speedup, respe
tively, overdependen
e predi
tion, on the two simulators. Our results show that DSREneeds to be used in
onjun
tion with pipeline
ushing to a
hieve high per-forman
e. Predi
tors need to be aware of the the
osts asso
iated with ea
hme
hanism, and use the appropriate re
overy me
hanism for ea
h spe
ulation.
vii

Table of ContentsA
knowledgments ivAbstra
t viList of Tables xiList of Figures xiiiChapter 1. Introdu
tion 11.1 EÆ
ient Mis-spe
ulation Re
overy 21.2 Expli
it Data Graph Exe
ution (EDGE): A New Ar
hite
tureModel . 41.2.1 The Tera-op, Reliable, Intelligently adaptive Pro
essingSystem (TRIPS): An EDGE Ar
hite
ture Implementation 51.2.2 Distributed Sele
tive Re-Exe
ution (DSRE) for TRIPS . 61.3 Thesis Statement . 81.4 Dissertation Contributions . 81.5 Ba
kground and Related Work 91.6 Dissertation Organization . 13Chapter 2. EÆ
ient Spe
ulation Re
overy 162.1 Load-store Dependen
e Spe
ulation 182.1.1 Maintaining Sequential Memory Semanti
s 182.1.2 Memory Spe
ulation for Large Windows 242.2 Mis-spe
ulation Re
overy . 272.2.1 Pipeline Flush . 282.2.2 Sele
tive Re-exe
ution 30
viii

Chapter 3. Methodology 343.1 EDGE Ar
hite
tures . 343.2 Grid Pro
essor . 373.3 TRIPS Pro
essor . 403.3.1 TRIPS Mi
roar
hite
ture 413.3.2 Dependen
e Predi
tion in the DT 443.3.3 TRIPS Software Model 473.3.4 TRIPS Cy
le-a

urate Simulator 483.4 Ben
hmarks . 49Chapter 4. Distributed Sele
tive Re-Exe
ution 534.1 DSRE for EDGE Ar
hite
tures 534.1.1 Dete
ting Blo
k Completion with Commit Waves 574.1.2 Version Numbers: Out-of-Order Messaging 624.1.2.1 Impa
t of Spe
ulative Exe
ution|GPA Simulator 674.1.2.2 Impa
t of Spe
ulative Exe
ution|TRIPS Proto-type Simulator 724.2 DSRE Evaluation . 794.2.1 DSRE Performan
e . 794.2.2 DSRE Performan
e with Perfe
t Bran
h Predi
tion . . . 924.2.3 DSRE Performan
e withe Perfe
t L1 Data Ca
he 964.2.4 DSRE Performan
e withe Perfe
t L2 Ca
he 99Chapter 5. DSRE A

eleration 1035.1 A

elerating Commit of Re-exe
uted Blo
ks 1035.1.1 Spe
ulative Commit Sli
ing 1055.1.2 Bottom-up Commit Traversal 1185.2 Optimal Maximum Version Number 1225.3 Performan
e Studies with Commit Sli
ing 1265.3.1 Performan
e with Perfe
t Bran
h Predi
tion 1265.3.2 Performan
e with Perfe
t L1 Data Ca
he 1295.3.3 Performan
e with Perfe
t L2
a
he 1325.3.4 Performan
e with a Larger Instru
tion Window 135ix

Chapter 6. DSRE Appli
ations 1386.1 DSRE and Last-Value Predi
tion 1386.1.1 Potential for Last-Value Predi
tion 1396.1.2 Re
overy with DSRE for Last-Value Predi
tion 1416.2 DSRE and Energy . 1436.3 DSRE for Reliability . 144Chapter 7. DSRE on the TRIPS Prototype Simulator 1467.1 Supporting DSRE on the TRIPS Pro
essor 1477.1.1 DSRE with Multiple Produ
ers 1477.1.2 Changes to the Operand Network 1507.1.3 Changes to the Global Tile 1527.1.4 Changes to the Exe
ution Tile 1537.1.4.1 Handing Multiple Versions 1597.1.4.2 Identifying Null Commit Messages 1607.1.4.3 Handling Predi
ates 1617.1.5 Changes to the Register Tile 1627.1.6 Changes to the Data Tile 1647.2 DSRE Performan
e . 1677.3 Performan
e Enhan
ements to DSRE on TRIPS 1737.3.1 A

elerating Commit Messages 1737.3.2 OPN Bandwidth . 1767.3.3 Dependen
e Predi
tor Poli
y 1797.3.4 Performan
e Summary 1837.4 Logi
, Timing, and Area Overhead with DSRE 184Chapter 8. Con
lusions 1908.1 Dissertation Summary . 1938.2 Looking Ahead . 1968.2.1 Closing the Performan
e Gap 1968.2.2 Spe
ulative Data
ow Ma
hines? 198Bibliography 201x

Index 214Vita 216

xi

List of Tables2.1 Performan
e
hara
terization with memory dependen
e predi
-tion for a 4K store sets predi
tor 242.2 Con
i
t breakdown with in
reasing window size 253.1 GPA simulator ben
hmarks 493.2 EEMBC ben
hmarks fast-forward and simulation
ount for theTRIPS prototype simulator 514.1 DSRE IPC variation with in
reasing maximum spe
ulative �r-ing on the GPA simulator . 684.2 DSRE IPC variation with in
reasing maximum spe
ulative �r-ing on the TRIPS simulator 724.3 IPC of load/store re
overy s
hemes on the GPA simulator . . 804.4 IPC of load/store re
overy s
hemes on the TRIPS prototypesimulator . 834.5 Average blo
k size and IPC with ora
le poli
y for the EEMBCben
hmarks . 874.6 IPC of load/store re
overy s
hemes on the GPA simulator withperfe
t bran
h predi
tion . 924.7 IPC of load/store re
overy s
hemes on the TRIPS prototypesimulator with perfe
t bran
h predi
tion 954.8 IPC of load/store re
overy s
hemes on the GPA simulator withperfe
t L1 D-
a
he . 964.9 IPC of load/store re
overy s
hemes on the TRIPS prototypesimulator with perfe
t L1 D-
a
he 984.10 IPC of load/store re
overy s
hemes on the GPA simulator withperfe
t L2
a
he . 994.11 IPC of load/store re
overy s
hemes on the TRIPS prototypesimulator with perfe
t L2
a
he 1025.1 Perfe
t
ommit
omparison on the GPA simulator 1045.2 IPC with
ommit sli
ing on the GPA simulator 108xii

5.3 IPC with
ommit sli
ing on the TRIPS prototype simulator . 1105.4 Number of
y
les (in millions) for program exe
ution for non-optimized and optimized aii�t01 1165.5 IPC for non-optimized and optimized aii�t01 1165.6 IPC with
ommit bypass on the GPA simulator 1215.7 Commit sli
ing IPC variation with in
reasing maximum spe
u-lative �ring on the GPA simulator 1235.8 Commit sli
ing IPC variation with in
reasing maximum spe
u-lative �ring on the TRIPS simulator 1255.9 IPC with
ommit a

eleration on the GPA simulator with per-fe
t bran
h predi
tion . 1265.10 IPC with
ommit sli
ing on the TRIPS prototype simulatorwith perfe
t bran
h predi
tion 1285.11 IPC with
ommit a

eleration on the GPA simulator with per-fe
t L1 D-
a
he . 1295.12 IPC with
ommit sli
ing on the TRIPS prototype simulatorwith L1 D-
a
he . 1315.13 IPC with
ommit a

eleration on the GPA simulator with per-fe
t L2
a
he . 1325.14 IPC with
ommit sli
ing on the TRIPS prototype simulatorwith perfe
t L2
a
he . 1346.1 Last-value predi
tion performan
e on the GPA simulator . . . 1427.1 Simulated TRIPS pro
essor
on�guration 1687.2 Comparison of initial DSRE implementation on the TRIPS pro-totype simulator . 1707.3 Comparison of DSRE with and without
ommit sli
ing 1727.4 Performan
e (IPC) of DSRE with enhan
ements 1777.5 Load reply poli
ies with a 2-bit predi
tor 1807.6 Load reply poli
ies with a 3-bit predi
tor 1817.7 Comparison of load/store re
overy s
hemes with a 3-bit predi
tor182
xiii

List of Figures1.1 Variation in IPC with mis-spe
ulation
ost and rate 32.1 Performan
e e�e
ts of load/store ordering poli
ies with a 1Kwindow . 242.2 Part of the DFG from bzip2 292.3 Load instru
tion lws mis-spe
ulates 302.4 Traditional
ush . 312.5 Sele
tive re-exe
ution . 323.1 RISC
ode and
orresponding EDGE
ode 363.2 Simulated 4x4 grid pro
essor 373.3 4x4 TRIPS prototype pro
essor 413.4 Life
y
le of a TRIPS blo
k 424.1 Re-exe
ution on EDGE ar
hite
tures 554.2 Instru
tion states with re-exe
ution 594.3 Illustration of
ommit messages 604.4 Version number example . 654.5 Normalized exe
uted loads for various maximum spe
ulative ex-e
ution allowed . 694.6 Normalized exe
uted arithmeti
 instru
tions for various maxi-mum spe
ulative exe
ution allowed 714.7 Code in the main loop of rspeed01 744.8 WriteOut fun
tion
ode from rspeed01 754.9 Pie
e of TRIPS intermediate language (TIL)
ode from a rspeed01hyperblo
k to show loads and stores to the address of RAM�lePtr 764.10 Number of load exe
utions for various maximum spe
ulativeexe
ution . 764.11 Number of load null
ommit messages for various maximumspe
ulative exe
ution . 77xiv

4.12 Per
entage of loads that
on
i
t with earlier stores 814.13 Pie
e of TRIPS intermediate language (TIL)
ode from a2time01to show load-to-store dependen
e 854.14 Pie
e of TRIPS intermediate language
ode (TIL) from a2time01to show load-to-store and store-to-load dependen
e 895.1 Spe
ulative
ommit sli
ing . 1065.2 Pie
e of sour
e
ode from the inner loop of aii�t01 to showstore-load-store dependen
e 1135.3 Pie
e of TIL
ode from the inner loop of aii�t01 to show store-load-store dependen
e . 1145.4 Bottom-up
ommit traversal 1195.5 DSRE performan
e with larger instru
tion window 1355.6 DSRE performan
e with larger instru
tion window and perfe
tpredi
tion . 1366.1 Corre
t value spe
ulations with throttling
ounter and poison bit1407.1 EDGE
ode with multiple sour
es 1487.2 Version number with instru
tion identi�er 1487.3 Predi
ate or-ing example . 1517.4 Operand pro
essing with re-exe
ution in the exe
ution tile (ET) 1587.5 Instru
tion exe
ution with re-exe
ution in the exe
ution tile (ET)1597.6 Write pro
essing with re-exe
ution in the register tile (RT) . . 1637.7 Modi�ed exe
ution tile pipeline 1747.8 Changes to the exe
ution tile required to support the extrabandwidth for re-exe
ution . 187

xv

Chapter 1Introdu
tion
Spe
ulation has be
ome an in
reasingly important te
hnique in pro
es-sors to a
hieve high performan
e. Modern pro
essors like the Alpha 21264and Pentium IV already have more than half a dozen predi
tors in variouspipeline stages. This trend is likely to
ontinue, as growing wire delays in
urrent and future te
hnologies will for
e mi
roar
hite
tural stru
tures withinthe pro
essor to make de
isions with in
omplete information, thus requiringmore spe
ulative te
hniques to a
hieve high performan
e.However, the trend towards large instru
tion windows will result inlarge mis-spe
ulation penalties, both in terms of performan
e and power, us-ing the
onventional mis-spe
ulation re
overy me
hanism of pipeline
ushing.Pipeline
ushing results in the pro
essor re-exe
uting all instru
tions after amis-spe
ulating instru
tion, irrespe
tive of whether the instru
tion exe
uted
orre
tly the �rst time.Thus, the number of predi
tors, the number of mispredi
tions, and the
ost of ea
h mispredi
tion are all likely to in
rease, for
ing future pro
essors tospend larger fra
tions of exe
ution time re
overing frommispredi
tions. Hen
e,to a
hieve high performan
e using aggressive spe
ulation, future pro
essors will1

need a me
hanism for eÆ
ient, low-
ost re
overy from mis-spe
ulations. Thisneed is evident from Figure 1.1.Figure 1.1 shows the performan
e of a high IPC pro
essor, with di�erentmis-spe
ulation
osts, as a fun
tion of the number of mis-spe
ulations perthousand instru
tions. The data represented in the graph is not empiri
al, andassumes an ideal ma
hine in whi
h the only sour
e for performan
e degradationis pipeline
ushes due to mis-spe
ulations. The solid lines represent futurema
hines that have a peak throughput of 8 instru
tions per
y
le, with varyingmis-spe
ulation
osts. The dashed line represents a present day supers
alarpro
essor that has a peak IPC of 4.We see from Figure 1.1 that with in
reasing mis-spe
ulation
osts, evena small number of mis-spe
ulations
an result in a signi�
ant drop in perfor-man
e. Sin
e the graph is not an experimental
urve and represents worst
ases
enario for a parti
ular issue width, the a
tual drop in performan
e due topipeline
ushes will likely be lower, be
ause of other performan
e
onstrainingfa
tors in the pro
essor. However, Figure 1.1 does illustrate the general futuretrend of in
reasing mis-spe
ulation
ost.1.1 EÆ
ient Mis-spe
ulation Re
overyThere are a number of ways of to alleviate the performan
e loss dueto mis-spe
ulations. Pro
essors
an have fewer predi
tors in their pipelinesthus redu
ing the number of predi
tions, and
onsequently, mis-spe
ulations.Pro
essors
an tradeo� area and power for
omplex predi
tors that are more2

0 2 4 6 8 10

Mis-speculations per Thousand Instructions

0

2

4

6

8

10
IP

C

Cost - 10 cycles
Cost - 20 cycles
Cost - 30 cycles
Cost - 15 cycles

|

Current Processors

Figure 1.1: Variation in IPC with mis-spe
ulation
ost and ratea

urate, and hen
e in
ur fewer mis-spe
ulations. Finally, more eÆ
ient mis-spe
ulation re
overy me
hanisms
an redu
e performan
e losses. In this disser-tation, we look at eÆ
ient mis-spe
ulation re
overy to redu
e the performan
eloss due to mis-spe
ulations.One me
hanism for eÆ
ient data mis-spe
ulation re
overy involves se-le
tively re-exe
uting only those instru
tions that produ
ed in
orre
t values,by identifying exe
uted instru
tions in the pro
essor that are part of the data
ow graph (DFG) of the mis-spe
ulating instru
tion. This te
hnique,
alledsele
tive re-exe
ution (SRE), is implemented in a limited fashion in modernpro
essors. For example, both the Alpha 21264 [32℄ and the Pentium 4 [24℄ uses
heduling spe
ulation to s
hedule the
onsumers of loads, and use a limited3

form of SRE to re
over from mis-spe
ulations arising from an in
orre
t s
hed-ule. However, making SRE more general in future
onventional pro
essors willbe
ome progressively more diÆ
ult due to the following three
hallenges:1. Tra
king and maintaining dependen
es between large amounts of in-
ight state.2. The in
reasing physi
al distan
e between the distributed dete
tion ofviolations and the
entralized re
overy
ontrol.3. The
omplexity of having many predi
tions in
ight from multiple, dis-tributed heterogeneous predi
tors.In a re
ent study of various
urrent and proposed re-exe
ution s
hemes,Kim and Lipasti [33℄
on
lude that \universal sele
tive replay, where an in-stru
tion
an
ause a re
overy event at any point during its lifetime, is barelyfeasible for
urrent-generation designs, and does not s
ale to wider ma
hinesor additional types of spe
ulation." These
hallenges need to be over
ome tosupport aggressive spe
ulation in future pro
essors.1.2 Expli
it Data Graph Exe
ution (EDGE): A NewAr
hite
ture ModelExpli
it Data Graph Exe
ution (EDGE) instru
tion set ar
hite
tures(ISA) are a new
lass of instru
tion set ar
hite
tures that are designed to s
aleto high performan
e in future
ommuni
ation-dominated te
hnologies [3, 49℄.4

The two main
hara
teristi
s of EDGE ISA are blo
k atomi
 exe
ution model,wherein blo
ks of instru
tions are fet
hed and
ommitted atomi
ally and dire
tinstru
tion
ommuni
ation, wherein an instru
tion sends its results dire
tly toits
onsumers without using a shared namespa
e. Using dire
t instru
tion
om-muni
ation, EDGE ar
hite
tures over
ome the �rst diÆ
ulty en
ountered inimplementing sele
tive re-exe
ution in
onventional ar
hite
tures. EDGE ar-
hite
tures permit limited data
ow exe
ution within de�ned program regions,and
onventional exe
ution a
ross those regions, with sequential memory, ex-
eption, and register semanti
s, and a
onventional programming model. Theexpli
it representation of the data
ow graph in the EDGE ISA obviates thedynami
 re
onstru
tion of data dependen
es in the pro
essor.1.2.1 The Tera-op, Reliable, Intelligently adaptive Pro
essing Sys-tem (TRIPS): An EDGE Ar
hite
ture ImplementationThe TRIPS pro
essor is one parti
ular initial implementation of theEDGE ar
hite
ture [30, 60℄. We use the EDGE-based TRIPS ar
hite
ture asthe platform for implementing distributed sele
tive re-exe
ution. The EDGEISA spe
i�es a blo
k atomi
 exe
ution model. Hen
e in the TRIPS pro
essor,we
ompile programs into sets of instru
tions
alled hyperblo
ks. During pro-gram exe
ution, the pro
essor fet
hes the hyperblo
ks atomi
ally and pla
esthe instru
tions within a blo
k in the reservation stations of the arithmeti
logi
 units (ALUs) in the pro
essor. Instru
tions exe
ute in data
ow fashion,�ring when they re
eive all their input operands, and forwarding results totheir
onsumers. 5

The pro
essor
ommits a blo
k atomi
ally when all the blo
k has pro-du
ed all its outputs|the register writes, the stores, and a bran
h. Sin
e theinstru
tions in a blo
k remain in the reservation stations until the blo
k is
om-mitted, instru
tion re�ring
an be initiated by simply sending new values ofthe input operands. Thus, re
overy from mis-spe
ulation
an be a

omplishedin a
ompletely distributed fashion. The blo
k atomi
 exe
ution model over-
omes the se
ond diÆ
ulty en
ountered in implementing sele
tive re-exe
utionin
onventional ar
hite
tures, where the re
overy needs to be
entralized. Theproposed sele
tive re-exe
ution me
hanism takes advantage of this
hara
ter-isti
 of TRIPS pro
essors.1.2.2 Distributed Sele
tive Re-Exe
ution (DSRE) for TRIPSThe expli
it representation of the data
ow graph and the blo
k atomi
exe
ution model in the EDGE ISA lend themselves to the eÆ
ient implementa-tion of a distributed, sele
tive re-exe
ution me
hanism (DSRE). The proposedme
hanism provides a simple te
hnique that multiple heterogeneous predi
-tors
an use for mis-spe
ulation re
overy, while s
aling to both in
reasinginstru
tion window sizes and wire delays. The general nature of the re
overyme
hanism over
omes the last diÆ
ulty en
ountered in implementing sele
-tive re-exe
ution in
onventional ar
hite
tures, by de
oupling the underlyingre
overy me
hanism from the type of data spe
ulation that uses it for re
overy.The DSRE me
hanism enables multiple \waves" of spe
ulative exe-
ution to traverse the data
ow graph simultaneously. However, we need a6

me
hanism to dete
t the non-spe
ulative value for ea
h operand. The solutionwe explore in this dissertation involves asso
iating a
ommit bit with ea
hoperand in the ma
hine. This bit is set for an operand when it be
omes non-data spe
ulative. Thus, to ensure that the right answer is eventually produ
edand
ommitted, a \
ommit wave" traverses the DFG behind the waves of spe
-ulative exe
ution, and ensures that the
orre
t results are eventually saved. Inthis dissertation, we propose two te
hniques to a

elerate the
ommit wave,whi
h
an be
ome the bottlene
k in this s
heme. We use DSRE to in
reasethe performan
e with two types of data spe
ulation, load-store dependen
espe
ulation and last-value predi
tion.The DSREme
hanism, whi
h enables lightweight re
overy from load/storeorder violations, is not limited to dependen
e predi
tion re
overy. The sameme
hanism
an be used to re
over from any data value mis-spe
ulation|in
luding other types of value predi
tors, su
h as last-value predi
tion, stridepredi
tion, predi
ate predi
tion, and
oheren
e spe
ulation|as well as re
ov-ery from soft errors. Sin
e the DSRE me
hanism we propose uses only point-to-point messages to implement re
overy, it is ideal for distributed mi
roar
hi-te
tures built in future te
hnologies, and may be an enabling te
hnology thatsupports new types of spe
ulation or exe
ution on highly unreliable
omputa-tional substrates.The DSRE me
hanism des
ribed in this dissertation has signi�
ant lim-itations. First, it in
reases the
ontention within the pro
essor, both for theoperand network and for the ALUs. Se
ond, the serial nature of spe
ulation7

validation
an result in the
ommit wave falling signi�
antly behind the ex-e
ution wave. Third, having spe
ulative multiple versions of an operand
anresult in unexpe
ted ra
e
onditions within the pro
essor. We validated theme
hanism on a low-level prototype simulator to delineate some of these issues.However, our simulation infrastru
ture is limitated due to its slow simulationspeed, and the
ompiled ben
hmarks have sub-optimal
ode with redundantloads and stores. Future work in DSRE
an involve ta
kling those issues.1.3 Thesis StatementThis dissertation proposes Distributed Sele
tive Re-Exe
ution(DSRE)as an alternative, low-
ost me
hanism for re
overing from data mis-spe
ulations.We evaluate the overhead asso
iated with DSRE, and suggest potential usesin future, large instru
tion window pro
essors.1.4 Dissertation ContributionsThis dissertation makes the following
ontributions:1. Identify the importan
e of eÆ
ient mis-spe
ulation re
overy in large in-stru
tion window ma
hines.2. Enumerate the drawba
ks of
urrent s
hemes for mis-spe
ulation re
ov-ery.3. Explain the features of a new instru
tion set ar
hite
ture (EDGE), and8

its one parti
ular implementation (TRIPS) that make it amenable toimplementation of eÆ
ient mis-spe
ulation re
overy.4. Propose a sele
tive re-exe
ution s
heme, Distributed Sele
tive Re-Exe
ution(DSRE) that is simple, distributed, and supports many di�erent formsof data spe
ulation.5. Evaluate DSRE on a resear
h simulator for one type of data spe
ulation,load-store dependen
e spe
ulation. Identify bottlene
ks in DSRE andevaluate methods for over
oming these bottlene
ks.6. Validate DSRE on a simulator that faithfully models the TRIPS proto-type pro
essor. Expose
hallenges involved with implementing sele
tivere-exe
ution on a simulator that models the low-level hardware details,and propose me
hanisms for over
oming these
hallenges.7. Explain implementation
omplexity of DSRE.8. Identify the importan
e of using the appropriate re
overy s
heme forea
h type of spe
ulation in future pro
essors.9. Suggest additional uses for DSRE.1.5 Ba
kground and Related WorkMis-spe
ulation re
overy has been a subje
t of a
tive resear
h ever sin
e
ontrol spe
ulation was �rst introdu
ed in pro
essors. Control spe
ulation,9

also known as bran
h predi
tion, is one
lass of spe
ulation that has been ex-tensively resear
hed in
omputer ar
hite
ture. Bran
h mispredi
tion re
overyin
onventional pro
essors is done by pipeline
ushing. Due to the high
ostof mis-spe
ulation re
overy, resear
hers have examined ways to redu
e mis-spe
ulation by improving bran
h predi
tor a

ura
y. Thus, bran
h predi
torshave evolved from simple 2-bit tables to
omplex, two-level predi
tors thattra
k multiple histories [35, 36, 43, 64, 71, 72℄. More re
ently, resear
hers havelooked at neural bran
h predi
tors to in
rease predi
tor a

ura
y [1, 26, 27, 41℄.Data spe
ulation is another
lass of spe
ulation that is in
reasingly im-portant in modern pro
essors. Data spe
ulation involves predi
ting the valuesof operands before they are
omputed, using the predi
ted values to a

elerateprogram exe
ution. Lipasti et al. [40℄ introdu
ed the notion of value lo
alityand des
ribed methods to
apture it to perform load value predi
tion. Theauthors propose mi
roar
hite
tural enhan
ements (load value predi
tion) toPowerPC 620 and Alpha 21164 to predi
t 32 and 64 bit register values, and get3% and 6% average improvement in performan
e, respe
tively. Sazeides andSmith de�ned two predi
tor models for value predi
tion|
omputational pre-di
tors and
ontext predi
tors [61℄. The authors perform simulations with un-bounded predi
tion tables, and �nd highly predi
table data values in SPEC95ben
hmarks.Wang and Franklin [68℄ investigated a variety of data value predi
tions
hemes in
luding stride-based and pattern-based two-level predi
tors, and ahybrid predi
tor
ombining the two s
hemes. The authors �nd that the hybrid10

predi
tor was able to
orre
tly predi
t 50-80% of register-result produ
ing in-stru
tions, with the per
entage of mispredi
tions ranging from 5-18%. A num-ber of other papers have examined various aspe
ts of data value spe
ulationin uni-pro
essors [4, 5, 19, 37, 39, 42, 55, 69℄. Resear
hers have also proposeda number of data spe
ulation te
hniques for improving the performan
e ofmulti-pro
essors [28, 29, 34, 47, 52℄.With the in
reasing number of predi
tors resulting in in
reasing mis-spe
ulations, many resear
hers have explored and are exploring sele
tive re-exe
ution to defray growing mis-spe
ulation
osts. Some of the earliest work insele
tive re-exe
ution was done by Rotenberg et al. [57℄, who dis
ussed apply-ing sele
tive re-exe
ution to both
ontrol and data mis-spe
ulations re
overyfor Tra
e Pro
essors. Sele
tive re-exe
ution for
ontrol predi
tion exploits
ontrol independen
e [58℄, and
an be used for te
hniques like out-of-orderfet
h [66℄. Resear
hers have also looked at te
hniques like dynami
 instru
tionreuse for dynami
ally reusing the results of instru
tions with the same inputs,and squash reuse to reuse values in the register �le that did not
hange due tothe mis-spe
ulation [59, 65℄. More re
ently, resear
hers have looked at exa
t
onvergen
e to reuse the results
omputed after the
onvergen
e of
ontrolpaths [21℄.Calder et al. [7, 8℄ showed that sele
tive re-exe
ution
oupled with de-penden
e predi
tion
an|in a
entralized mi
roar
hite
ture with small issuewindows|approa
h the performan
e of a perfe
t dependen
e predi
tor. Thosete
hniques are insuÆ
ient to provide the same gain on distributed mi
roar
hi-11

te
tures with mu
h bigger (1000+ entry) instru
tion windows, whi
h is theproblem that we address.Despite its potential bene�t, implementation
omplexities prevent
ur-rent sele
tive re-exe
ution s
hemes from being used as a single uni�ed re
ov-ery me
hanism for multiple types of data value spe
ulation. Re
ent patentsfrom AMD [31℄, Sun Mi
rosystems [50℄, and Intel [44, 45℄ propose sele
tivere-exe
ution for re
overing only from load s
heduling spe
ulation, using sig-nals from the lower-level
a
he [50℄ or
ir
ular queues [44, 45℄ to fa
ilitatethe re-exe
ution s
hemes. Multiple disparate re
overy modes are used dueto the design
omplexity introdu
ed by intera
tion among distin
t types ofspe
ulation,
omplexity whi
h is exa
erbated by slowing global wires. Slowing
ommuni
ation is
ausing multi-
y
le delays between mispredi
tion dete
tionand reporting, whi
h will grow progressively worse if spe
ulation resolutionremains
entralized. Ernst et al. [15℄ also made this observation in their re
entwork. The sele
tive re-exe
ution s
heme that we propose in this dissertationdoes not su�er from these
hallenges, sin
e it provides a single, distributedframework for handling potentially many types of spe
ulation simultaneously.Zhou et al. [74℄ identify the
hallenges asso
iated with implementing ag-gressive sele
tive re-exe
ution on a
onventional supers
alar pro
essor, whi
hin
lude retention of issued instru
tions that may be re-exe
uted, the reissueme
hanism itself, and the data-dependen
e driven identi�
ation of the set of in-stru
tions to be re-exe
uted. Of the solutions they des
ribe, the re-order bu�er(ROB) augmentation that holds instru
tions in the window until
ommitted12

is most similar to the DSRE me
hanism proposed in this work. However, theirapproa
h is not s
alable to larger windows and distributed mi
roar
hite
tures,nor does it eliminate the performan
e losses asso
iated with their proposedsolutions to the other two
hallenges|the
omplexity of the reissue me
ha-nism and the data-dependen
e driven identi�
ation of the set of instru
tionsto re-exe
ute. Ernst et al. [16℄ present a me
hanism for a dynami
 s
hedulerthat uses sele
tive replay without using broad
ast
ommuni
ation. The sele
-tive replay me
hanism presented in their work is spe
i�
 to re
overing froms
heduling spe
ulation.Finally, Kim and Lipasti [33℄ re
ently looked at various replay s
hemesfor
onventional supers
alar pro
essors. The paper �nds that
urrent and pro-posed replay s
hemes do not s
ale well to future, large instru
tion windowma
hines. The authors propose a token-based sele
tive replay s
heme that re-du
es
omplexity of replay by moving the dependen
e tra
king information outof the s
heduler at the expense of marginal degradation in IPC. The authorslook at ways for early termination of an in
orre
t spe
ulation wave, and thete
hniques proposed in the paper primarily addresses s
heduling spe
ulation.The approa
h taken in this dissertation is more general, and
an be used forany type of data spe
ulation.1.6 Dissertation OrganizationThis dissertation fo
uses on eÆ
ient re
overy from mis-spe
ulationsin future pro
essors. Chapter 2 des
ribes spe
ulation in modern pro
essors,13

along with its importan
e for high performan
e. The
hapter also lists thevarious types of spe
ulation and their growing importan
e. We dis
uss oneparti
ular type of data spe
ulation, load-store dependen
e spe
ulation, for thesele
tive re-exe
ution me
hanism des
ribed in later
hapters. The
hapter thendes
ribes mis-spe
ulation re
overy, and explains the two me
hanisms that areavailable for re
overy.Chapter 3 explains the features of a new
lass of instru
tion set ar
hi-te
tures
alled Expli
it Data Graph Exe
ution (EDGE) ar
hite
tures. The
hapter also des
ribes an initial implementation of an EDGE ar
hite
ture, theTRIPS pro
essor that we use to evaluate the performan
e of the proposedsele
tive re-exe
ution s
heme. We use two di�erent simulators in our study.The �rst simulator is a high-level simulator that approximately models the keyar
hite
tural features pro
essor. We use this simulator to perform an initialstudy of the DSRE me
hanism. We then implemented DSRE on a more de-tailed simulator that a

urately models the TRIPS prototype pro
essor. This
hapter des
ribes these simulators, along with the ben
hmarks we used on thetwo simulators.In Chapter 4, we des
ribe the distributed sele
tive re-exe
ution me
ha-nism and its implementation on EDGE ar
hite
tures. We dis
uss the ne
essaryenhan
ements in the ar
hite
ture to support sele
tive re-exe
ution, and dis-
usses the additional state needed to ful�ll this requirement. The
hapteralso analyses the performan
e of the proposed me
hanism for load-store de-penden
e predi
tion. In Chapter 5, we des
ribe two methods to improve the14

performan
e of the base me
hanism. These methods primarily involve ways toa

elerate the
ommit wave. Even with the enhan
ements to the base DSREme
hanism, there is a signi�
ant di�eren
e in performan
e between the DSREme
hanism and an ora
le poli
y that does perfe
t load-store predi
tion, andwe dis
uss the reason for this performan
e gap in this
hapter.DSRE is designed as a re
overy me
hanism for any type of data spe
-ulation. In Chapter 6, we perform a brief evaluation of another data spe
u-lation me
hanism, last-value predi
tion, to show that DSRE
an
on
urrentlysupport multiple spe
ulation engines. The
hapter also dis
usses how DSREa�e
ts energy expended in the pro
essor, and suggests ways for using DSREto support re
overy from soft errors to enhan
e reliability.Chapter 7 dis
usses the implementation
omplexity of DSRE. We iden-tify the
hallenges involved with implementing DSRE on a low-level simulatorthat models the TRIPS prototype pro
essor. We propose and evaluate me
h-anisms for over
oming these
hallenges.Finally, Chapter 8 talks about future dire
tions for DSRE. The
hap-ter dis
usses te
hniques for
losing the performan
e di�eren
e still remainingbetween DSRE and an ora
le poli
y, and as well as other potential spe
ulationme
hanisms that
an bene�t from DSRE.
15

Chapter 2EÆ
ient Spe
ulation Re
overy
Mi
ropro
essors have evolved from simple, non-pipelined, single issuema
hines to out-of-order, supers
alar pro
essors,
apable of exe
uting multi-ple instru
tions
on
urrently. Out-of-order exe
ution of multiple instru
tionsexploits the instru
tion level parallelism (ILP) in the program by allowing thepro
essor to exe
ute independent instru
tions
on
urrently. To exploit theILP in a program and a
hieve high performan
e, pro
essors use a te
hnique
alled spe
ulative exe
ution. Spe
ulative exe
ution involves predi
ting valuesin hardware, and using the predi
ted values, to exe
ute instru
tions furtherdown in the instru
tion stream. There are many di�erent types of spe
ulation.Some of these in
lude :� Control spe
ulation [18, 64℄� S
heduling spe
ulation [24, 32℄� Load-store dependen
e spe
ulation [12, 46, 73℄� Data-value spe
ulation [40℄� Predi
ate predi
tion [13℄ 16

� Coheren
e spe
ulation [9, 25℄Control spe
ulation, also known as bran
h predi
tion, is a well knownspe
ulation te
hnique for predi
ting the out
ome of
ontrol instru
tions duringinstru
tion fet
h [18, 64℄. The pro
essor uses the predi
ted out
ome to fet
hand exe
ute instru
tions spe
ulatively, and validates the spe
ulation when itexe
utes the
orresponding
ontrol instru
tion. Over the years, resear
hershave proposed and implemented a number of di�erent bran
h predi
tors inpro
essors to improve bran
h predi
tion a

ura
y [1, 26, 27, 35, 36, 41, 43, 64,71, 72℄. Re
overy from
ontrol mis-spe
ulation involves dis
arding instru
-tions that were fet
hed down the wrong path, and restarting exe
ution withinstru
tions from the right path.Modern pro
essors with deep pipelines and large issue widths are
a-pable of managing a large number of instru
tions in
ight. To keep the in-stru
tion window full, a number of other spe
ulation me
hanisms have beenimplemented in pro
essors. These me
hanisms in
lude set and way predi
tionfor
a
hes [32℄, s
heduling spe
ulation for loads [24, 32℄, and load-store depen-den
e spe
ulation [32℄. Set and way predi
tion involves predi
ting the nextset and way in a set-asso
iative instru
tion
a
he for fet
hing. In s
hedulingspe
ulation, the
onsumers of load instru
tions are s
heduled assuming a loadhit, while load-store spe
ulation tries to predi
t if loads
on
i
t with earlierin-
ight stores. We dis
uss load-store dependen
e spe
ulation in detail in thenext se
tion, as it is the type of spe
ulation that we use to evaluate distributedsele
tive re-exe
ution. 17

2.1 Load-store Dependen
e Spe
ulationIn this dissertation, we evaluate the use of DSRE to redu
e the mis-spe
ulation penalty for load-store dependen
e spe
ulation. Issuing loads outof order with respe
t to stores is ne
essary for high ILP in
urrent and futurema
hines. Current ma
hines use load-store dependen
e predi
tion to fa
ilitateearly issue of loads. However, e�e
tive load spe
ulation is growing more dif-�
ult for several reasons. First, larger instru
tion windows mean that more
on
i
ting load/store pairs will exist in the window, putting more pressure onthe dependen
e predi
tors. Se
ond, the
ost of
ushing the pipeline upon amispredi
tion is in
reasing as the in-
ight state in
reases and
ontrol be
omesmore distributed. Third, the performan
e losses due to dependen
e mispre-di
tions be
ome more of a bottlene
k as ILP elsewhere is in
reased. Fourth,sin
e wire delays will for
e partitioning in future ar
hite
tures, dependen
epredi
tors are likely to be distributed along with
a
he banks, redu
ing theira

ura
y.2.1.1 Maintaining Sequential Memory Semanti
sIn out-of-order pro
essors, sequential memory semanti
s must still bemaintained. Program-earlier stores must forward their values to later loadsfor
orre
t exe
ution. The
onservative poli
y for addressing this issue is toprevent a load from issuing until all earlier stores with unresolved addresseshave issued. The ideal poli
y is an ora
le, in whi
h loads that do not
on
i
twith earlier stores a

ess the
a
he to retrieve data but wait for the latest18

on
i
ting store in program order before the load if a
on
i
t exists.Resear
hers have investigated
ompiler-assisted approa
hes for eÆ
ientmemory disambiguation. Gallagher et al. [20℄ proposed the memory
on
i
tbu�er for memory disambiguation. In their approa
h, the
ompiler aggres-sively hoists load instru
tions above store instru
tions and inserts
orre
tion
ode to provide re
overy when there is an address
on
i
t. The memory
on-
i
t bu�er dete
ts these
on
i
ts. This s
heme relies on a
entralized issuequeue for initiating re
overy, and is thus unsuitable for distributed ar
hite
-tures. Cheng et al. [11℄ investigate early load address
omputation using
om-piler support. However, their approa
h requires
hanges to the ISA so thatthe mi
roar
hite
tures
an di�erentiate between the various types of loads inthe system.Mi
roar
hite
ts have tried to approa
h ora
le performan
e by providingdependen
e predi
tors, whi
h allow some loads to issue in the presen
e ofearlier unresolved stores, spe
ulating that they will not be dependent, and
ushing the pipeline if in
orre
t. Loads in
orre
tly predi
ted to be dependenton an earlier in-
ight store do not
ause a pipeline
ush|they merely lose anopportunity for higher performan
e by issuing late, after previous stores areresolved even though they
ould safely issue earlier.A few examples of simple dependen
e predi
tors in
lude those proposedby Moshovos et al. [46℄, whi
h used the load's program
ounter to index into atable of saturating
ounters that spe
i�ed whether or not a load should issuespe
ulatively. Store-wait tables, as implemented in the Alpha 21264 [32℄, is19

another PC-based dependen
e predi
tion me
hanism, where a load predi
ted
on
i
ting waits for all previous stores to resolve. Store sets [12℄ are a more
omplex proposal that attempts to mat
h up loads with spe
i�
 stores, sothat potentially dependent loads do not have to wait for all previous stores toresolve, just the ones likely to
on
i
t. Finally, Yoaz et al. [73℄ propose a pre-di
tor that uses distan
e estimations to approximate store set
apabilities withredu
ed
omplexity. The proposed dependen
e predi
tors need to be modi�edto work in a distributed environment. In this dissertation, we simulate threetypes of dependen
e predi
tors that work in a distributed environment, all-stores, one-store, and �rst-store.All-stores: This strategy is similar to the predi
tor organization ofMoshovos et al. [46℄. This predi
tor uses the PC to index a 1-bit table thatis set on a
on
i
t, and only predi
ts no
on
i
t for a load when the
ountervalue is not set. When all-stores predi
ts a
on
i
t, a load waits until all priorstores
omplete before issuing safely. The table is
leared un
onditionallyevery 10,000 blo
ks. PC-indexing outperformed the other indexing fun
tionswe measured, in
luding address and PC-address hybrid indi
es, as well as theless aggressive store-wait tables of the Alpha 21264. This predi
tor mat
hesthe predi
tor in the TRIPS prototype pro
essor implementation [3℄.One-store: The se
ond type of predi
tor we simulate is a modi�edvariant of store sets [12℄. Modi�
ations were ne
essary be
ause the distributedar
hite
ture that we simulate
annot enfor
e issue-order among stores due tothe distributed fet
h me
hanism. Stores in this model �re in data
ow fashion20

when they re
eive their address and data. Thus, we modi�ed the predi
tor,whi
h we
all one-store, to for
e a load to wait for exa
tly one store, ratherthan a set of stores as in the original proposal. The next paragraph explainsthe di�eren
es between the one-store s
heme and store sets.The one-store predi
tor uses a PC-indexed Store Set Identi�er Table(SSIT) to maintain a
ommon tag for ea
h load and store pair. These tags are
alled Store Set Identi�ers (SSID). The predi
tor uses a Last Fet
hed StoreTable (LFST) to store the SSIDs. The implementation is des
ribed in detailin the original paper [12℄. Initially, these tables are empty and all loads arepredi
ted as non-
on
i
ting. When the pro
essor dete
ts a load-store orderingviolation, it allo
ates an SSID index to the violating load-store pair, and also
reates an entry in the SSIT for the load and the store
ontaining this SSID.During blo
k dispat
h, all stores in the dispat
hed blo
k a

ess the SSIT tableto
he
k for a valid LFST entry. If a store �nds a valid entry, it inserts itsinstru
tion identi�er in the
orresponding entry in the LFST table. Loadsin a blo
k also index the SSIT table during dispat
h. When a load �nds avalid SSIT entry, it
he
ks the LFST table for a valid store entry. If a load�nds a valid store in the SSID table, it marks itself as being dependent on thestore. When a load resolves and rea
hes the memory interfa
e, it
he
ks tosee if it has been marked as being dependent on a store. If the load is markeddependent, it sends data ba
k to its
onsumers only after the pertinent storearrives at the memory interfa
e. In our experiments, we used a 4K entry SSITtable and a 128 entry SSID table. The SSIT table was indexed using the last21

12 bits of the PC and was un
onditionally
leared every million
y
les.The main di�eren
e between the one-store predi
tor and the store setss
heme is that in the one-store predi
tor a load is marked as being dependenton only one store. The store sets s
heme is able to tra
k loads that are depen-dent on multiple stores by examining the LFST table during store issue, andrepla
ing the store in the table with a mat
hing store that is later in program-order. Due to the de
entralized nature of store issue in the TRIPS pro
essor,the one-store predi
tor is unable to tra
k multiple stores that
on
i
t with aload. This one-store predi
tor was used in the Trimaran/TRIPS-based high-level GPA simulator.First-store: The �rst-store predi
tor is an alternative dependen
e pre-di
tor for the TRIPS prototype pro
essor. The predi
tor is not implementedin the TRIPS ASIC prototype pro
essor, but might be in
luded in subsequentdesigns. The �rst-store predi
tor uses a table of 2-bit up-down saturating
ounters. The training of the predi
tor is entirely distributed and happens atthe memory interfa
e. The pro
essor indexes the table using the load's PC.The
ounter
orresponding to a load is in
remented on a load violation andde
remented when a load exe
utes without a
on
i
t. The predi
tor is dis-
ussed in more detail in the next
hapter. The predi
tor
an predi
t a loadto be non-
on
i
ting,
on
i
ting-one-store, or
on
i
ting-all-store. If the pre-di
tor predi
ts a load as non-
on
i
ting, the load
an send its reply withoutwaiting for prior stores to resolve. If a load is predi
ted
on
i
ting-all-store, itwaits for all prior stores to resolve before sending a reply. If a load is predi
ted22

on
i
ting-one-store, it sends its reply when the �rst mat
hing store arrivesat the memory interfa
e or when all prior stores resolve, whi
hever happensearlier.We used a Trimaran/TRIPS-based simulation environment for initiallyevaluating DSRE performan
e. This simulation environment modeled an EDGEar
hite
ture at a higher level of detail for initial evaluation of the ar
hite
-ture. We subsequently validated the proto
ol on a simulator that models thelow-level details of a pro
essor implementation. The simulated pro
essor is de-s
ribed in greater detail in the next
hapter. Figure 2.1 shows the performan
eof the simulated GPA pro
essor using
onservative load/store issue, all-stores,one-store, and ora
ular predi
tion. These experiments assumed the TRIPSprototype
on�guration of 64 frames, whi
h
orresponds to a 1K issue windowa
ross the 16 ALUs. The graph
on�rms prior results that the
onservativepoli
y performs poorly with respe
t to the ora
le poli
y, whi
h is 2.37 timesfaster on average. The all-stores dependen
e predi
tor improves performan
esigni�
antly over the
onservative approa
h, but only by 46%, whi
h is approx-imately only one third of the additional performan
e improvement obtainedby the ora
le poli
y. The more aggressive one-store predi
tor performs mu
hbetter (66 %) but still a
hieves only a fra
tion of what is possible with ora
le,due to the performan
e lost by
ushing the pipeline on a mis-spe
ulation.
23

0

2

4

6
In

st
ru

ct
io

ns
 p

er
 C

yc
le

Oracle
One-store predictor
All-stores predictor
Conservative

ammp

art bzip2
compress

equake

m88ksim

mcf
mgrid

mpeg2encode

parser

twolf
hydro2d

tomcatv

turb3d

HmeanFigure 2.1: Performan
e e�e
ts of load/store ordering poli
ies with a 1K win-dow2.1.2 Memory Spe
ulation for Large WindowsAs issue windows grow larger, from hundreds to thousands and eventu-ally tens of thousands of instru
tions, the number of potential
on
i
ts (storesfollowed by loads to the same address) grows. This growth threatens to limitthe parallelism that
an be exploited in future high-ILP ma
hines.Window IPCsize
onservative ora
le all-stores one-store1K 1.06 3.14 1.63 2.032K 1.06 3.66 1.67 2.074K 1.05 3.82 1.68 2.058K 1.07 3.85 1.70 2.08Table 2.1: Performan
e
hara
terization with memory dependen
e predi
tionfor a 4K store sets predi
tor
24

Dependen
e predi
torWindow Potential performan
e (% A

esses)size
on
i
t Predi
tedDepen-dentExe-
utedDepen-dent(PD:ED)
Predi
tedDepen-dentExe-
utedIndepen-dent(PD:EI)

Predi
tedIndepen-dentExe-
utedIndepen-dent(PI:EI)
Predi
tedIndepen-dentExe-
utedDepen-dent(PI:ED)1K 12.17 17.04 12.17 71.57 1.032K 14.58 19.19 13.64 68.26 0.924K 17.10 21.04 15.02 65.35 0.768K 19.37 21.61 15.85 64.21 0.55Table 2.2: Con
i
t breakdown with in
reasing window sizeTable 2.1 lists the load/store
on
i
t behavior for four di�erent win-dow sizes (1K-8K instru
tions). These experiments assume a perfe
t bran
hpredi
tor, so the window is always �lled with useful work unless the pro
es-sor pipeline is being
ushed from a load/store mis-spe
ulation. The three IPC
olumns show the average instru
tion throughput for three of the four orderings
hemes from Figure 2.1. From Table 2.1, we see that performan
e saturateswith a
onservative load issue poli
y when the window size is in
reased. How-ever, with an ora
le poli
y, performan
e
ontinues to in
rease as the windowsize is in
reased until 4K instru
tions. Performan
e with the one-store predi
-tor in
reases only marginally, be
ause of the in
reasing number of load-store
on
i
ts with a larger window size. 25

Table 2.2 shows a breakdown of the dependen
e predi
tor performan
ewith in
reasing window size. The
olumn labeled Potential Con
i
t shows thefra
tion of loads in the instru
tion window that referen
e the same address asa store that is also in the window, when using ora
le load/store dependen
epredi
tion. Note that a
on
i
t will a
tually o

ur only if the load issues outof order from the store. Not surprisingly, the fra
tion of potentially
on
i
tingloads in
reases with window size, and
ombined with a larger number of loadsin the window, results in a mu
h larger total possibly
on
i
ting loads. Theremaining
olumns show the behavior of the one-store predi
tor. The �rst
olumn, labeled Predi
ted Dependent Exe
uted Dependent (PD:ED), showsthe per
entage of loads that are predi
ted dependent and a
tually end upbeing dependent during the exe
ution. The se
ond
olumn, labeled Predi
tedDependent Exe
uted Independent (PD:EI), shows the per
entage of loads thatare predi
ted dependent but a
tually end up being independent. The third
olumn, labeled Predi
ted Independent Exe
uted Independent (PI:EI), showsthe per
entage of loads that are predi
ted independent
orre
tly while the last
olumn, labeled Predi
ted Independent Exe
uted Dependent (PI:ED), showsloads that are predi
ted independent but end up
on
i
ting with a prior storeduring exe
ution.For large instru
tion windows (8K), on average 15% of the predi
teda

esses are predi
ted as dependent (PD) and a
tually end up independent atexe
ution time (EI), thus in
reasing the load laten
y for these a

esses. Fewerthan 0.6% of the a

esses are predi
ted independent (PI) and are a
tually26

dependent (ED), requiring a rollba
k re
overy. The remaining 85% of the loadshave their dependen
e predi
ted
orre
tly and in
ur no penalty. As the windowsize is in
reased, we have a greater fra
tion of loads that
on
i
t with earlierunresolved stores, resulting in the predi
tor be
oming more
onservative in itspredi
tion. From
olumn 4 in Table 2.2, we
an see that the predi
tor be
omesin
reasingly
onservative as window size in
reases, and a greater per
entageof the loads are in
orre
tly predi
ted to
on
i
t, unne
essarily for
ing them towait. This
lass of loads stands to bene�t greatly from DSRE.With the larger in-
ight state redu
ing the a

ura
y of predi
tors, ef-�
ient mis-spe
ulation re
overy will be
ome in
reasingly important in futurepro
essors. The number of potential
on
i
ts
an be somewhat redu
ed withmore aggressive
ompiler optimizations. For example, the
ompiler
an regis-ter allo
ate load-store pairs that are likely to
on
i
t. The
ompiler
an alsoin
rease the distan
e, in terms of instru
tions, between a load and store, to pre-vent them from being in the instru
tion window at the same time. Even withaggressive optimizations, a
ompiler
annot
ompletely eliminate load-store
on
i
ts as these dependen
es are not always known at
ompile time. Hen
e,the number of potential
on
i
ts is likely to in
rease with larger instru
tionwindows.2.2 Mis-spe
ulation Re
overyMis-spe
ulation re
overy involves dis
arding the in
orre
tly
omputedvalues resulting from the mis-spe
ulation and
omputing the
orre
t values.27

The traditional method to deal with mis-spe
ulation re
overy,
alled a pipeline
ush, involves purging the pipeline of all instru
tions after the mis-spe
ulatinginstru
tion and re-exe
uting them with
orre
t values. This approa
h is in-eÆ
ient as it re-exe
utes instru
tions not
ontrol or data dependent on themis-spe
ulating instru
tion. A more eÆ
ient approa
h to mis-spe
ulation re-
overy,
alled sele
tive re-exe
ution, re-exe
utes only those instru
tions thatexe
uted in
orre
tly the �rst time. However, this approa
h involves tra
kingdata dependen
es between in-
ight instru
tions, and is
omplex to implementin
urrent pro
essors. We dis
uss both these approa
hes, along with examples,in the next se
tion.2.2.1 Pipeline FlushThe traditional method to re
overing from mis-spe
ulation involves
ushing the pipeline of all instru
tions after the mis-spe
ulating instru
tion inprogram order, and re-exe
uting them. This approa
h has a high performan
epenalty as instru
tions that are independent of the mis-spe
ulating instru
-tions also get re-exe
uted. To illustrate the pipeline
ush solution, Figure 2.2shows part of the data
ow graph (DFG) from the SPEC CPU2000 ben
h-mark, bzip2. The program order in the DFG is represented by traversing thegraph top to bottom and left to right.In one parti
ular exe
ution of this graph, let us assume that the loadinstru
tion lws|shown in gray in Figure 2.3|mis-spe
ulates, and gets in
or-re
t value from the
a
he instead of an earlier mat
hing store. A pipeline
ush28

 add

 mov

mov3

lws lb lb

 mov

genu genu

 app

 slli

bro_f

 app

 mul

 lb lb

 slli slli slli mov

 or or

 or

 srai

 tge

bro_tFigure 2.2: Part of the DFG from bzip2involves
ushing the lws instru
tion, as well as all instru
tions after the lwsin program order, and re-exe
uting them after
omputing the
orre
t valueof lws. This graph is shown in Figure 2.4, where the gray instru
tions arere-exe
uted. This solution is ineÆ
ient as instru
tions that are not part ofthe DFG of the lws instru
tion are re-exe
uted. The advantage of pipeline
ushing is its simpli
ity|the pro
essor
ushes all instru
tions after the mis-spe
ulating instru
tion and re-exe
utes them, making re
overy simpler to im-29

 add

 mov

mov3

 lb lb

 mov

genu genu

 app

 slli

bro_f

 app

 mul

 lb lb

 slli slli slli mov

 or or

 or

 srai

 tge

bro_t

lws

Figure 2.3: Load instru
tion lws mis-spe
ulatesplement. However,
ushing the pipeline is be
oming in
reasingly expensive,both in terms of performan
e and energy, for pro
essors that have a largenumber of instru
tions in
ight be
ause of the
ost to re�ll the pipeline.2.2.2 Sele
tive Re-exe
utionFigure 2.5 shows another method to re
over from mis-spe
ulations, se-le
tive re-exe
ution. In this method, only instru
tions that re
eived in
orre
t30

 add

 mov

mov3
 mov

genu genu

 app app

 mul

lws lb lb lb lb

 slli slli slli mov

 or or

 slli

 or

 srai

 tge

bro_t bro_fFigure 2.4: Traditional
ushvalues from the mis-spe
ulating instru
tion are re-exe
uted. Thus, sele
tivere-exe
ution prevents unne
essary re-exe
ution of independent instru
tions ona mis-spe
ulation. However, sele
tive re-exe
ution in
urrent supers
alar pro-
essors is implemented in only a limited fashion for two reasons:1. The dynami
 tra
king of data dependen
es between all instru
tions thatare in-
ight in a
onventional ISA involves an enormous amount of31

 add

 mov

mov3

 lb lb

 mov

genu genu

 app

 slli

 app

 mul

 lb lb

 slli slli slli mov

 or or

 or

 srai

lws

 tge

bro_t bro_fFigure 2.5: Sele
tive re-exe
utionstate [33℄2. Re-exe
ution of a subset of instru
tions that have exe
uted already re-sults in s
heduler
omplexity [15℄In this dissertation, we present a sele
tive re-exe
ution proto
ol thatover
omes the drawba
ks of traditional approa
hes, thus enabling aggres-sive data spe
ulation. Using the features of Expli
it Data Graph Exe
ution32

(EDGE) ar
hite
tures and an example implementation, the TRIPS pro
essor,we implement a distributed sele
tive re-exe
ution proto
ol that uses simple lo-
al state, thus s
aling to future
ommuni
ation dominated ar
hite
tures. Theproto
ol permits multiple data-spe
ulative values for an operand to exist
on-
urrently in the pro
essor. We propose me
hanisms to determine when anoperand be
omes non-data spe
ulative, and is safe to
ommit to the ar
hite
-tural state. We evaluate the performan
e of this basi
 sele
tive re-exe
utionproto
ol, and identify the bottlene
ks to performan
e. We then suggest twome
hanisms for improving the performan
e with sele
tive re-exe
ution. Weevaluate the proto
ol on the high-level GPA simulator, and validate it usingthe TRIPS prototype simulator, thus exposing some of the
onstraints en
oun-tered with a real implementation.

33

Chapter 3Methodology
In this
hapter, we des
ribe Expli
it Data Graph Exe
ution (EDGE)instru
tion set ar
hite
tures and an EDGE implementation, the TRIPS pro
es-sor that we use to study the performan
e bene�ts of DSRE. The EDGE ar
hi-te
ture and the TRIPS pro
essor is a result of the
ollaborative e�ort of a num-ber of resear
hers at UT Austin. This
hapter des
ribes only those features ofthe ar
hite
ture that are exploited by DSRE for
orre
tness and performan
e.The ar
hite
ture is des
ribed in more detail elsewhere [3, 30, 48, 49, 53, 60℄. Wealso des
ribe the ben
hmarks that we used in our study. It is important to notethat even though the DSRE me
hanism takes advantage of some features ofthe TRIPS implementation, the basi
 DSRE me
hanism relies on fundamental
hara
teristi
s of an EDGE ISA that
an be applied to any implementation.3.1 EDGE Ar
hite
turesExpli
it Data Graph Ar
hite
ture (EDGE) instru
tion set ar
hite
turesare a new
lass of ar
hite
tures designed for pro
essors in future,
ommuni
a-tion dominated te
hnologies. The two main
hara
teristi
s of an EDGE ISAare: 34

1. Blo
k-atomi
 exe
ution, in whi
h the
ompiler
ompiles a program intoblo
ks of instru
tions. These blo
ks are fet
hed and
ommitted atomi-
ally by the pro
essor during exe
ution. In this model, a blo
k must be
ommitted in its entirety and a fra
tion of a blo
k may not be
ommitted.2. Dire
t instru
tion
ommuni
ation between instru
tions within a blo
k,where the hardware delivers an instru
tion's output dire
tly to its
on-sumers. An EDGE ISA spe
i�es the
onsumers of an instru
tion in theprodu
ing instru
tion. Hen
e, there is no need for a shared namespa
elike the register �le to
ommuni
ate values between instru
tions withina blo
k.Instru
tions in an EDGE ISA exe
ute in data
ow order, with ea
hinstru
tion �ring when it re
eives all its input operands, and forwarding itsoutput to
onsumers. Thus, in an EDGE ISA, a produ
er with multiple
on-sumers would spe
ify these
onsumers expli
itly in the ISA using a softwarefan-out tree. In a
onventional ISA, instru
tions write their outputs to theregister �le that is subsequently read by multiple
onsumers.Figure 3.1 shows an example of how instru
tions are spe
i�ed in oneEDGE ISA implementation, the TRIPS pro
essor. On the left side, we haveshown a
onventional redu
ed instru
tion set
omputer (RISC)
ode snippet,and the on the right side, we have shown the
orresponding TRIPS
ode. Un-like RISC instru
tions that spe
ify both inputs and outputs using a sharednamespa
e (register �le), TRIPS instru
tions do not spe
ify inputs within a35

genu R1, 16 ; R1 = 16

#3 add #[4,0]

#4 muli 2, #[5,0]

#5 slli 3, #[6,0]

genu R2, 3 ; R2 = 3

Add R3, R1, R2; R3 = R1 + R2

muli R4, R3, 2; R4 = R3*2

slli R1, R4, 3; R1 = R4 << 3

#2 genu 3, #[3.1]

#1 genu 16, #[3,0]

RISC Code EDGE Code

Figure 3.1: RISC
ode and
orresponding EDGE
odeblo
k, and spe
ify outputs as target instru
tions that are expli
itly en
odedin the produ
ing instru
tion. The expli
it spe
i�
ation of targets solves theproblem of global broad
ast required to propagate values in
onventional RISCar
hite
tures. For example, if we take the add instru
tion in Figure 3.1, theRISC instru
tion spe
i�es ar
hite
tural register R1 and R2 as inputs to theinstru
tion, and register R3 as the output of the instru
tion. The
orrespond-ing TRIPS instru
tion spe
i�es no inputs, and spe
i�es instru
tion #4 as thetarget of the add instru
tion. The add instru
tion in this example will �rewhen it re
eives its two inputs from instru
tions #1 and #2, and will send itsresult to instru
tion #4.The expli
it representation of the DFG in an EDGE ISA fa
ilitatessele
tive re-exe
ution by obviating the need to dynami
ally tra
k data depen-den
es between in-
ight instru
tions, thus over
oming one of the drawba
ksto implementing sele
tive re-exe
ution in modern RISC pro
essors. Sele
tive36

64−95 95−12732−630−31

(a) TRIPS Core

ICache−0

ICache−1

ICache−2

ICache−3

Predictor
Next block Block Control

Frame 1
Frame 0

Router

Control

Inst Operands

ICache−M

Stitch Table

Frame 64

.

.

.

Register File

L2
Cache

(b) Execution Node

LSQData Cache

Figure 3.2: Simulated 4x4 grid pro
essorre-exe
ution in an EDGE ISA
an be implemented by sending
orre
t operandvalues to the
onsumers of a mis-spe
ulating instru
tion, that
an in turnforward new results to their
onsumers. The next two se
tions des
ribe twoimplementations of EDGE ar
hite
tures that we used for evaluating sele
tivere-exe
ution.3.2 Grid Pro
essorThe grid pro
essor was an early simulator implementation of an EDGEISA to evaluate the feasibility of the ar
hite
ture. The Grid Pro
essor Ar-
hite
ture (GPA) simulator used the Trimaran infrastru
ture to simulate anEDGE ISA. The Trimaran infrastru
ture
onsists of a
ompiler, whi
h gen-erates ma
hine instru
tions for the Trimaran ISA from C
ode. The GPAsimulator maps these instru
tions to an expli
it data graph ISA and exe
utes37

them. This mapping is an approximation of an a
tual implementation thathelped with initial performan
e evaluation of this
lass of ar
hite
tures.In the grid implementation of an EDGE ISA, the
ompiler
ompiler
on-ventional
ode written in C, C++, and FORTRAN into blo
ks of instru
tions
alled hyperblo
ks. During exe
ution, the pro
essor fet
hes, exe
utes, and
om-mits instru
tions belonging to a hyperblo
k atomi
ally. Consequently,
ushesin this model o

ur at a blo
k granularity, with entire blo
ks being
ushed ona trap or mis-spe
ulation.The mi
roar
hite
ture preserves sequential semanti
s at the blo
k level.Thus ea
h blo
k behaves like a \megainstru
tion" that is exe
uted one afterthe other in the order spe
i�ed by the program. Inside the blo
ks, instru
tionsexe
ute using a �ne-grained data
ow model spe
i�ed by an EDGE ISA. Thegrid pro
essor supports
onventional programming semanti
s by preserving thememory order among instru
tions within the blo
k, and a
ross blo
ks usinga load-store queue that forwards earlier program-order store values to laterloads. The simulated grid pro
essor
onsists of a grid of ALUs as shown inFigure 3.2. The ALUs have reservation stations for holding instru
tions andtheir operands. The
ompiler stati
ally maps the instru
tions in a hyperblo
konto the reservation stations in the ALUs. The instru
tions, however, �re dy-nami
ally when they re
eive their input operands. The pro
essor
on
urrentlyfet
hes and maps the instru
tions for ea
h row in a blo
k.38

The point-to-point
ommuni
ation among instru
tions within a blo
keliminates the need for a fully shared stru
ture like a register �le. However, wedo need a register �le for
ommuni
ation a
ross blo
ks. The only shared stru
-ture that is still required is the load-store queue, to preserve
orre
t orderingamong loads and stores. There are di�erent ways to implement the load-storequeue and the data
a
he. We
an have a
entralized design that has a largearea and timing overhead. We
an have a physi
ally partitioned, logi
ally
en-tralized design that results in design simpli
ity. However, this approa
h hasa large area overhead due to repli
ation, and also has similar timing issues tothe
entralized approa
h be
ause of the large stru
tures. We
an have a logi-
ally and physi
ally partitioned design that is both area and timing eÆ
ient.However, this approa
h signi�
antly in
reases the design
omplexity, sin
e weneed to deal with over
ow in the load-store queues. We used a
entralizedload-store queue and data
a
he in the GPA simulator. The TRIPS prototypepro
essor repli
ates the load-store queue, resulting in a logi
ally
entralized,physi
ally distributed design.The grid pro
essor has a lightweight network
onne
ting the set of exe-
ution nodes. There are 4 register �le banks on the top, along with an instru
-tion
a
he bank for holding \read" and \write" instru
tions. The instru
tion
a
he banks are situated on one side and the
entralized data
a
he is lo
atedon the other side. The global
ontrol logi
, responsible for issuing fet
h and
ommit
ommands, is situated at the bottom. Exe
ution in the grid pro
es-sor happens at a blo
k granularity, with the pro
essor fet
hing, mapping, and39

ommitting blo
ks atomi
ally [49℄.Sin
e the GPA simulator was an early high-level simulator implemen-tation of an EDGE ISA, we made the following assumptions to aid its imple-mentation:1. The number of instru
tions in ea
h hyperblo
k is not �xed, and there isno upper limit on the number of instru
tions per blo
k.2. There is no limit on the number of input and output registers per blo
k.3. The data
a
he and load-store queue is
entralized.4. There is no limit on the size of the load-store queue.Having these approximations kept the simulator simple and
exible,and helped us do the s
alability study reported in Chapter 5. Also, not havingstri
t limits on the
omposition of blo
ks helped us a
hieve high performan
eon the GPA simulator without aggressive
ompiler optimizations. The TRIPSsimulator performan
e is more sensitive to
ompiler optimizations be
ause ofthe implementation
onstraints imposed on the ar
hite
ture. Despite thesedi�eren
es, the GPA simulator is a good representation of an example EDGEar
hite
ture for initial performan
e evaluation.3.3 TRIPS Pro
essorThe TRIPS pro
essor is a prototype hardware implementation of anEDGE ar
hite
ture [3℄. The TRIPS pro
essor
onsists of 16 ALUs in a 4x440

In
te

rf
ac

e
Se

co
nd

ar
y

C
ac

he

R

E

E

E

E

R

E

E

E

E

R

E

E

E

E

R

E

E

E

E

I D

I D

I D

I D

GI

Input ports

Output ports

FP/ Integer

Router
64 instruction
buffers

A0
A1
A2

H5
H6
H7

Operand
buffers

Figure 3.3: 4x4 TRIPS prototype pro
essorgrid that are
onne
ted by a routed operand network (OPN) as shown in Fig-ure 3.3. The pro
essor
ore
onsists of �ve major types of units or tiles
alledglobal
ontrol tile (GT), instru
tion tile (IT), exe
ution tile (ET), register tileRT), and the data tile (DT). The pro
essor has a number of spe
ial networks
onne
ting the di�erent tiles.3.3.1 TRIPS Mi
roar
hite
tureFigure 3.4 shows the various steps in the exe
ution of a TRIPS blo
k.The global tile initiates the fet
hing and mapping of instru
tions on the pro-
essor. After a blo
k is fet
hed and mapped, instru
tions within the blo
kexe
ute in data
ow fashion, �ring and forwarding values to their
onsumers.The pla
ement of instru
tions on the pro
essor is stati
ally assigned by the
ompiler/s
heduler, but they are issued dynami
ally by the issue logi
 atea
h node|the pro
essor uses a Stati
 Pla
ement, Dynami
ally Issue (SPDI)41

Predictor

Start

I−cache tags

Ready for
fetchRefill

Allocate

Dispatch/
Execute

Completion

Committing

Deallocate

Flush

Hit

Fetch

DT completion
RT completionBranch update

DT ack
RT ack

Miss

Figure 3.4: Life
y
le of a TRIPS blo
k
42

model [48℄.The exe
ution tile
onsists of the ALUs (integer and
oating point),reservation stations for holding instru
tions and their operands, and logi
 forissuing instru
tions. The ET has a 4-stage pipeline
onsisting of the sele
tstage, the read stage, the exe
ute stage, and the writeba
k stage. The TRIPSpro
essor uses a 2-pa
ket operand network for sending operands between twotiles. The register tiles handle reads and writes to the ar
hite
tural register�le. The RT has two pipelines|the read pipeline and the write pipeline|forsending register values to a blo
k. The read pipeline in the RT is responsible forsending the register inputs from the ar
hite
tural register �le to the
onsuminginstru
tions within a blo
k. The write pipeline in the RT handles forwardingof register values from an older blo
k to a newer blo
k.The data tiles handle the loads and stores within a blo
k. The load-store queue (LSQ) in the data tile tra
ks the loads and stores that are in
ightin the pro
essor. The LSQ in the TRIPS pro
essor has a physi
ally distributed,logi
ally
entralized design. The DT has a main load-store pipeline for sendingload replies and handling store arrivals. In
oming loads
he
k for mat
hingprior stores in the LSQ, and retrieve their data from the LSQ on a mat
h.The loads get their data from the
a
he if they do not �nd a mat
hing priorstore. The DT has a dependen
e predi
tor for dynami
ally tra
king load-storedependen
es. The DT also has a reissue pipeline for reissuing loads that aredeferred by the dependen
e predi
tor.43

On
e the register tiles re
eive all the register outputs for a blo
k, theysend a
ompletion signal to the GT on the Global Status Network (GSN).Similarly, the DTs send a
ompletion signal to the GT when all the stores fora blo
k have arrived at the data tiles. The GT also re
eives exa
tly one bran
hupdate message on the OPN from the ET that points to the next blo
k to fet
h.On
e the GT re
eives all the three
ompletion signals for a blo
k, it sends a
ommit message on the Global Commit Network (GCN) to all the tiles. The
ommit message results in the ETs invalidating all the state
orresponding tothe
ommitted blo
k, the RTs writing the blo
k outputs to the ar
hite
turalstate, and the DTs
ommitting the stores in the blo
k to the memory system.The RTs and DTs send a
ommit a
knowledgment signal to the GT on theGSN after
ommitting the register writes and stores to the ar
hite
tural state.Upon re
eiving this signal, the GT
an now free the resour
es allo
ated to thisblo
k and reassign it to another blo
k.To a
hieve high instru
tion level parallelism, the TRIPS pro
essor
anhave up to 8 blo
ks in exe
ution
on
urrently. The pro
essor uses a variation ofa 2-level predi
tor to predi
t the next blo
k to fet
h [53℄. On a mis-spe
ulation,the global tile sends a
ush signal to all the other tiles. The TRIPS pro
essoruses rolling
ushes; blo
ks are
ushed as soon as a mis-spe
ulation is dete
ted.3.3.2 Dependen
e Predi
tion in the DTThe dependen
e predi
tor in the DT is used to predi
t if in-
ight loadsare independent of previous unresolved stores. Ea
h DT has a 1024-entry 1-bit44

dependen
e predi
tor that is indexed by ex
lusive or-ing (xor-ing) the top 5bits of the blo
k address, and the reversed load-store identi�er (LSID) of theload. The LSID is a 5-bit identi�er that the
ompiler assigns to ea
h load orstore in a blo
k. The predi
tor is a

essed by loads in the �rst stage of theload-store pipeline. If the bit
orresponding to a load is not set, the predi
torpredi
ts no
on
i
t and the load sends its reply immediately. However, if thebit in the predi
tor is set for a load, the DT defers the load. The reissue logi
in the DT subsequently sele
ts the load for exe
ution after all prior stores haveresolved.When stores arrive at the DT, they
he
k the LSQ to ensure that nonewer load that mat
hes the store address has replied in
orre
tly. If the store�nds a mis-spe
ulating load, it marks the blo
k
ontaining the load as violatingand the bit
orresponding to the load is set in the predi
tor. The next timethe load exe
utes, it will �nd this bit set and will send its reply only after allprior stores have resolved. The predi
tor is
leared un
onditionally by the DTafter the exe
ution of 10,000 blo
ks.The predi
tor des
ribed above is the one implemented in the TRIPSprototype. In this dissertation, we also evaluate an extension to the aboves
heme. This s
heme,
alled the �rst-store s
heme, uses an adaptive 2-bit pre-di
tor to tra
k dependen
es between loads and stores. The predi
tor is againindexed by the blo
k address and the load's LSID. The 2-bit value stored inthe predi
tor identi�es the load as non-
on
i
ting,
on
i
ting-one-store, or
on
i
ting-all-store. The non-
on
i
ting and
on
i
ting-all-store states
or-45

respond to the states of the 1-bit predi
tor. When the predi
tor predi
ts
on
i
ting-one-store, the load reply is sent when the �rst mat
hing store ar-rives at the DT.To implement
on
i
ting-one-store, the LSQ was enhan
ed with a readybit for ea
h load. The DT defers loads that are predi
ted
on
i
ting-one-storeby the predi
tor. When a later store arrives and its address mat
hes with aload that has been predi
ted
on
i
ting-one-store, it sets the ready bit for theload. The load reissue logi
 is modi�ed to also issue deferred loads that havetheir ready bit set. If there is no store mat
h, the deferred load is issued afterall prior stores have resolved.Sin
e the predi
tor used for this s
heme has a 2-bit up-down
ounter,
learing the entire predi
tor is not ne
essary. The
ounter is in
rementedwhen a load results in a violation. The
ounter is de
remented when a loadis held ba
k unne
essarily. Identifying loads that were in
orre
tly predi
tedindependent is easy, as it results in a pipeline
ush. Loads that were in
orre
tlypredi
ted dependent are diÆ
ult to identify. To identify this
ase, every loadin the LSQ has a
ounter that stores the number of stores that forwardedvalues to this load. Stores in
rement this value for a load every time theyforward a value. The reissue logi

he
ks this
ounter for every load, afterall prior stores have resolved. If the
ounter is zero and the predi
tion forthis load was
on
i
ting-one-store or
on
i
ting-all-store, the load predi
tionis identi�ed as an in
orre
t predi
tion to the dependen
e predi
tor by the load-store queue. If the
ounter is one and the predi
tion is
on
i
ting-all-store,46

again it is identi�ed as an in
orre
t predi
tion. This information is used bythe DT for training the predi
tor.3.3.3 TRIPS Software ModelThe TRIPS pro
essor exe
utes binaries generated by using the t

om-piler. The
ompiler takes
ode written in
onventional programming lan-guages, C and FORTRAN, and
ompiles it into blo
ks of ma
hine instru
-tions. These blo
ks,
alled hyperblo
ks, are single entry, multiple exit blo
ks.The high-level
ode is �rst
ompiled into an intermediate form
alled TRIPSIntermediate Language (TIL). TIL
ode resembles the assembly
ode for
on-ventional pro
essors and is in a human readable form. The s
heduling phaseof the
ompiler operates on the TIL
ode and
onverts it into TRIPS assem-bly (TASL)
ode. The linker links the TASL
ode into a TRIPS binary. Forthe TRIPS prototype pro
essor, the
ompiler builds 128-instru
tion �xed sizeblo
ks.The
ompiler assigns LSIDs to all the load and store instru
tions toestablish the memory order within a blo
k. The
ompiler also
reates a 32-bitstore mask that the DT uses to identify the stores in the blo
k. The
ompilerneeds to ensure that all the stores spe
i�ed in the store mask rea
h the DT,for the DTs to signal
ompletion.
47

3.3.4 TRIPS Cy
le-a

urate SimulatorThe TRIPS simulator was developed by the TRIPS team at the Univer-sity of Texas at Austin to model the TRIPS prototype pro
essor. The purposeof the simulator was two-fold:� To perform fun
tional validation of the pro
essor to ensure
orre
tnessof the design.� To validate the performan
e of the pro
essor, and explore te
hniques toimprove performan
e.The simulator models all the di�erent tiles found in the prototype ingreat detail. The tiles are
onne
ted by the operand network that also mat
hesthe implementation. All the di�erent pipelines in the various tiles of theprototype are faithfully modeled in the simulator. The simulator also modelsthe various predi
tors found in the prototype, and has been mat
hed with thepro
essor RTL to within 5% a

ura
y on a wide array of mi
roben
hmarks andrandom-tests. Thus, the simulator provides a good setting for the evaluationof DSRE in an a
tual pro
essor implementation.Due to the
loseness of the simulator to the a
tual prototype pro
essor,it is not as
exible as the GPA simulator used for initial evaluation of the DSREme
hanism. Also, be
ause of its detailed modeling, the TRIPS simulator is
onsiderably slower than the GPA simulator. However, the TRIPS simulatorexposes some of the issues with the pra
ti
al implementation of the me
hanism,48

and hen
e gives valuable insights into the diÆ
ulties en
ountered in an a
tualhardware implementation.3.4 Ben
hmarksWe used a set of ben
hmarks from the SPEC CPU95, SPEC CPU2000,and the MediaBen
h suite with the GPA simulator. The modi�ed Trimaraninfrastru
ture we used
ould
ompile only a subset of ben
hmarks from thissuite, and we used these in our initial study. The simulated ben
hmarksare listed in Table 3.1. For ea
h ben
hmark, we fast-forwarded through theinitialization phase and simulated 100 million instru
tions.Ben
hmark Fast-forward
ount
ompress 6000000000hydro2d 1000000000tom
atv 1000000000turb3d 1000000000m88ksim 1000000000ammp 3000000000art 1000000000equake 400000000bzip2 1000000000m
f 1000000000mgrid 1000000000parser 1000000000twolf 1000000000mpeg2en
ode 1000000000Table 3.1: GPA simulator ben
hmarks
49

The higher instru
tion throughput of the GPA simulator allowed us toexe
ute longer ben
hmarks. On a 1.7 GHz Intel ma
hine, the GPA simulator
an simulate 10,000
y
les/se
ond on an average. The TRIPS simulator has alower instru
tion throughput of around 600
y
les/se
ond, be
ause it modelsthe low-level details of the pro
essor. Hen
e, we were for
ed us to use smallerben
hmarks with the TRIPS simulator.The TRIPS prototype simulator was validated using a set of ben
h-marks that
omprised a regression suite. This suite
onsists of a number ofhandwritten assembly programs designed to test all the fun
tionality of thepro
essor. The same suite was used initially to identify many of the bugsasso
iated with the implementation of DSRE on the TRIPS pro
essor.After initial validation of the
orre
tness of the DSRE me
hanism, weused a set of ben
hmarks from the EEMBC suite for performan
e analysis. Theself-
he
king nature of these ben
hmarks also helped us identify
orner
asesthat showed up only after the exe
ution of thousands of instru
tions. Theseprograms were
ompiled with the t

ompiler. The EEMBC ben
hmarks areloop-based ben
hmarks that exe
ute for a user-spe
i�ed number of iterations.To skip the initialization phase, we found the number of blo
ks that needto be exe
uted for ea
h ben
hmark for a single iteration. We fast forwardedthat many number of blo
ks for ea
h ben
hmark to skip the initializationphase. The EEMBC ben
hmark main loops have widely varying instru
tion
ounts. Due to the slow simulation speed of the TRIPS prototype simulator,we �xed the number of iterations to simulate for ea
h ben
hmark between50

50 and 5000, to get reasonable simulation time. The number of blo
ks fast-forwarded, along with the number of
ommitted instru
tions simulated, islisted for ea
h ben
hmark in Table 3.2.Ben
hmark Blo
ks Fast-forwarded Instru
tions
ommitteda2time01 14219 5495586ai�tr01 70038 64456170ai�rf01 14616 5209529aii�t01 59718 59152208aut
or00 24519 1122004basefp01 14138 827732bezier01 19372 42770766bitmnp01 22274 5998634
a
heb01 16991 1777907
anrdr01 14483 2131544
onven00 497864 3180085�t00 270339 26850943id
trn01 17282 2626483iir
t01 14574 1520803ospf 36289 11386322pkt
ow 685311 12467818pntr
h01 15866 5691186puwmod01 14337 3425108routelookup 60449 26801639rspeed01 14149 2393817tblook01 14199 2534138ttsprk01 14399 4466450viterb00 53384 15315283Table 3.2: EEMBC ben
hmarks fast-forward and simulation
ount for theTRIPS prototype simulatorIn the next
hapter, we des
ribe and evaluate the proposed DSREme
h-51

anism on the GPA and TRIPS simulator.

52

Chapter 4Distributed Sele
tive Re-Exe
ution
In this
hapter, we des
ribe the sele
tive re-exe
ution me
hanism andits initial evaluation on the high-level GPA simulator. We also
ompare theseresults to those obtained using the more detailed TRIPS prototype simulator.We �rst start by explaining how to implement sele
tive re-exe
ution on theEDGE based TRIPS ar
hite
ture using a
ode snippet. We then des
ribe theextra state ne
essary for
orre
t exe
ution with sele
tive re-exe
ution. Finally,we do a performan
e analysis of the proposed s
heme using the GPA and theTRIPS prototype simulator.4.1 DSRE for EDGE Ar
hite
turesIn the TRIPS instantiation of an EDGE ISA, instru
tions and theiroperands are bu�ered as they arrive at the reservation stations. When anoperand arrives, its tag indi
ates the reservation station and instru
tion operandto whi
h it
orresponds. When an instru
tion re
eives all its operands, it �res,exe
utes, and sends the result to its
onsumers, whi
h are spe
i�ed using thetarget �elds in the just-issued instru
tion.The multiple hyperblo
ks in
ight e�e
tively form a large data
ow53

graph (DFG). Within hyperblo
ks, the DFG is a stati
ally
onstru
ted graph,with ar
s going from ALU to ALU. Cross-blo
k ar
s are instantiated throughregister names; ea
h blo
k reads from and writes to a subset of the ar
hi-te
tural registers. If a hyperblo
k produ
es an output allo
ated to R3, andthe subsequent hyperblo
k requires an input read from R3, the pro
essor willforward the value of R3 from the older to the younger blo
k as soon as it isprodu
ed. Thus, the large DFG is a
olle
tion of smaller, stati
ally produ
edDFGs stit
hed together by dynami
ally resolved
ross-blo
k ar
s through theregister �le and inter-blo
k and intra-blo
k ar
s through memory.Figure 4.1 shows the C-
ode for a simple loop, along with the
orre-sponding EDGE assembly
ode. We also show the data
ow graph for 3 di�er-ent iterations of the main loop body in the �gure. The
ode snippet has twoloop-
arried dependen
es, one through memory and one through the register�le (register 0). The loads in su

essive iterations of the loop depend upon thestore in the previous iteration. The loop-
arried dependen
e through memoryis shown by dashed lines. As shown in the �gure, this dependen
e is enfor
edby the load-store queue. If a load mis-spe
ulates, the DFG sub-tree of theload gets in
orre
t values. These nodes are shown shaded in the �gure. In a
onventional implementation without sele
tive re-exe
ution, a mis-spe
ulationwill trigger a
ush of all instru
tions after the violating load.To initiate re-exe
ution of an instru
tion that has
omputed with awrong value, the
orre
t value is sent to the in
orre
t instru
tion's node withthe same tag as the original instru
tion. As shown in Figure 4.1, the instru
tion54

Register File

Load−store Queue

N[5]

N[6]N[5]

N[6]

N[0]

N[1]

N[2]

Iteration 1 N[0]

N[1]

N[2]

N[3]

N[4]

Iteration 2

N[0]

N[1]

N[2]

N[3]

N[4]

Iteration 0

N[4]

Mis−speculated instructions

N[3]N[5]

N[6]

N[5] mov N[6,0] W[0] ; write j to register

N[7] teqi 10 N[8] ; Check for loop termination
N[8] mov N[9,P] N[10,P] ; Move predicte bits

N[10] bro_t exit ; Exit if true
N[9] bro_f loop_body ; if false, jump to loop_body

Read G[0] N[0, 0] ; Read j
Read G[1] N[2,0] N[4,0] ; Read a[0] address
N[0] addi 1 N[1,0] ; j = j+1

N[2] lw 0 N[3,1] ; Load a[0]

N[4] sw 0 ; Store a[0]

N[1] mov N[3,0] N[5,0]

loop_body:
TRIPS Assembly

C−Code
for (j=1; j < 10; j++)

 a[0] = a[0]+j;

N[3] add N[4,1] ; a[0] = a[0] + j

N[6] addi 1 N[7] ; Increment loop count

Figure 4.1: Re-exe
ution on EDGE ar
hite
tures55

re-�res, sending a new output value to its dependent
hildren. The
hildrensubsequently re-�re, and so on, eventually re-exe
uting the entire DFG thatis subtree data dependent on the faulting instru
tion. A re-�red instru
tionprodu
ing a value that
rosses hyperblo
k boundaries sends a newer versionof its result to the target hyperblo
k, whi
h will
ause additional instru
tionsto re-�re. Note that this model permits sele
tive re-exe
ution without havingto reissue any instru
tions not dependent on the erroneous instru
tion, nor doany instru
tions need to be re-fet
hed, re-dispat
hed, or moved. If the ALUsand the network
an support the extra traÆ
, re-exe
ution in an EDGE ISAis always bene�
ial, sin
e re-exe
uting an operation and everything dependenton it is no worse than having waited for the a
tual
orre
t value rather thanspe
ulating.When multiple spe
ulative versions of an operand are allowed in thesystem, we need a me
hanism to identify the non-spe
ulative value of theoperand. Sele
tive re-exe
ution
an result in spe
ulative sub-graphs for partsof the data
ow graph that the pro
essor is exe
uting. When a spe
ulativeoperand �nally resolves, it needs to
ommuni
ate this resolution to all its
hildren that are spe
ulative. Thus, the problem be
omes one of identifyingwhen an operand is non-spe
ulative, identifying the nodes in the spe
ulativesub-graph of this operand, and
ommuni
ating the spe
ulation resolution toall the nodes in this sub-graph.There are di�erent ways to approa
h this problem. One solution isto have a
entralized manager in hardware that keeps tra
k of the data
ow56

graph under exe
ution. When a spe
ulative operand resolves, it
an
he
k themanager to identify the nodes that depend on this operand, and mark them asnon-spe
ulative. However, this approa
h does not work in a distributed envi-ronment. Also, multiple independent spe
ulative values might be traversing adata
ow sub-graph simultaneously, and it is diÆ
ult to isolate the value thatbe
omes non-spe
ulative.Another solution to this problem is to have ea
h node maintain itsown data
ow sub-graph. The node
an then identify all its
hildren when itbe
omes non-spe
ulative, and
ommuni
ate the spe
ulation resolution. Theproblem with this approa
h is the large amount of state that will be requiredat ea
h node to maintain the data
ow sub-graph. Also, it is diÆ
ult to
reatethe sub-graph when multiple spe
ulative data values are allowed to overlap inthe data
ow graph.A third solution to this problem is to have a token that is propagated tothe
onsumers of a spe
ulating node, when the node be
omes non-spe
ulative.The
hildren in turn propagate this token to their
onsumers when all theirinput operands be
ome non-spe
ulative. In this approa
h, we
an imaginethe set of tokens as a wave that follows exe
ution and marks operands asnon-spe
ulative. This is the solution we explore in this dissertation.4.1.1 Dete
ting Blo
k Completion with Commit WavesIn the TRIPS pro
essor, when ea
h hyperblo
k
ompletes, it is removedfrom the array and its instru
tions are all
ommitted at on
e; hyperblo
ks log-57

i
ally
ommit atomi
ally. The pro
essor writes the stores in a hyperblo
k ba
kto the memory system in order during hyperblo
k
ommit. Sin
e the TRIPSpro
essor is a distributed mi
roar
hite
ture, dete
ting
ompletion of the oldesthyperblo
k is a

omplished with point-to-point messages. The blo
k headerof ea
h hyperblo
k
ontains a
ount of all hyperblo
k outputs (register writes,stores, and a single bran
h). When an output instru
tion in a hyperblo
krea
hes the register banks or
a
hes, the output
ounter for that hyperblo
k isde
remented. When it rea
hes zero, all of the outputs of the hyperblo
k have�red, meaning that the blo
k is safe to
ommit if it is the oldest hyperblo
k.However, this s
heme for dete
ting blo
k
ompletion
annot work with-out modi�
ation with sele
tive re-exe
ution. Sin
e multiple waves of exe
utionmay be traversing the hyperblo
k's DFG simultaneously, the output instru
-tions may re
eive their sour
e operands multiple times, and thus do not knowwhen it is safe to signal the
ompletion logi
 that they have
ompleted non-spe
ulatively.The solution we explore in this work is to add a
ommit bit to ea
h validbit at the instru
tions' operand bu�ers. When a
ommit bit is set, it signalsthat its operand is no longer spe
ulative, and none of that operand's parentsin the DFG may be spe
ulative. The
ommit bit is only zero if there are stillunresolved data spe
ulations among its parents. Note that the
ontrol spe
ula-tion (bran
h predi
tion) me
hanisms are separate from these data spe
ulationte
hniques. For a blo
k to
ommit, it must be the
ontrol non-spe
ulativeblo
k, and all of its register and store outputs must be non-spe
ulative.58

Mapped

Executed and
Committed

Ready

Executed

Operands received

Commit bit set for operands

New version of
speculative operand
received

Speculative operands

Commit bit set for operandsFigure 4.2: Instru
tion states with re-exe
ution

59

Op1 Op2 OutOp1 Op2 Op2 OutOut Op1

Only null token
is produced; addition
is not performed again

ADD

c = 1
48

ADD

49

ADD

c = 0 c = 0 c = 1

c = 0 c = 1

50

c = 0
2 47 482

Input Values

Output

Time

c = 1, null
generates null

Legend:

c = commit bit (0 => speculative)

v = version number

Instruction producing Op1 Instruction producing Op2

refires

c = 1, null

Figure 4.3: Illustration of
ommit messagesWhen all of an instru
tion's operands have re
eived their
ommit bit,then the result
omputed using those operands is also non-data-spe
ulative.Figure 4.2 shows the di�erent instru
tion states with re-exe
ution. When aninstru
tion re
eives all its input operands, it goes into the ready state. Theexe
ution unit
an now issue the instru
tion to a fun
tional unit for exe
ution.On
e the instru
tion is issued to a fun
tional unit, it exe
utes and goes intothe exe
uted state. If any of the operands of the instru
tion is spe
ulative, theinstru
tion sends a spe
ulative result to its
onsumers. The instru
tion willre-exe
ute every time it re
eives a new version of any of its operands. Theinstru
tion remains in the exe
uted state until it re
eives
ommit bits for all ofits input operands. On
e the instru
tion re
eives
ommit bits for all its inputs,it goes into the
ommitted state and sends a
ommit bit to its
onsumers.We simulate two types of
ommit bit messaging, shown in Figure 4.3.First, if an operand arrives at an ALU with its
ommit bit set, and the in-60

stru
tion's other operands are also non-spe
ulative, then the instru
tion �res(or re-�res) and sends its result to its
onsumers with its
ommit bit set inthe message
ontrol header. The se
ond
ase o

urs when an instru
tion hasalready �red|and has already sent its result with a zero
ommit bit|but islater determined to have been
orre
t and be
omes non-spe
ulative. In this
ase, if the other operands of the instru
tion are non-spe
ulative, a null
om-mit message is sent to the
onsumers of that instru
tion, signaling that theoperand previously sent is now non-spe
ulative. However, if the the otheroperands of the instru
tion are still spe
ulative, the operand is bu�ered and ismarked as a null
ommit message operand. If the other spe
ulative operandsresolve
orre
tly, a null
ommit message is sent after their resolution. If multi-ple parents target the same operand, only one parent is guaranteed to send thenon-spe
ulative value for the operand. On
e a tile re
eives the non-spe
ulativevalue for an operand, it ignores all other values for that operand.An instru
tion may send a null
ommit message for several reasons. Anarithmeti
 operation may
ompare its spe
ulative, bu�ered operand with there
eipt of a
ommitted operand, and if they are the same, the result need notbe re
omputed, and the instru
tion
an send a null
ommit message. More
ommonly, a load may have issued spe
ulatively, in the presen
e of earlierunresolved stores (with a zero
ommit bit). When the load's address hasre
eived its
ommit bit, and all earlier stores have also re
eived their
ommitbits|and if there was no address
on
i
t with a store|then the load be
omesnon-spe
ulative and a null
ommit message may be sent. A node
an send61

a null
ommit bit if the non-spe
ulative output it produ
es mat
hes the lastspe
ulative output that it produ
ed.A blo
k is thus safe to
ommit when it is the oldest blo
k (guaranteeingthat there is no more
ontrol spe
ulation) and when the blo
k has re
eived the
ommit bits of all its outputs. In terms of the DFG, the pro
ess of dete
t-ing
ompletion
an be thought of as a \
ommit wave" traversing the DFGbehind the data
ow exe
ution, and signaling
ompletion when traversal of ahyperblo
k's portion of the DFG is
omplete.4.1.2 Version Numbers: Out-of-Order MessagingThe s
heme des
ribed thus far allows multiple, partially or fully over-lapping waves of spe
ulative exe
ution traversing the DFG, su

eeded by a\
lean-up"
ommit wave. This model is simple so long as multiple spe
ulativeversions of an operand are always inje
ted into the inter-ALU network in or-der and the network supports in-order delivery of messages. If either of thoserequirements are not met, then the possibility of overwriting the
orre
t
om-putation with later-arriving mis-spe
ulative data arises. For example, assumethat an instru
tion �res twi
e and produ
es versions A and B, where B is laterdetermined to be
orre
t, so is followed by a null
ommit message. If A and Bare re-ordered (either by inje
tion into the network or by the network itself),then the instru
tion's
onsumers will re
eive B, �re
orre
tly, then re
eive A,�re in
orre
tly, and then re
eive the null
ommit message saving the in
orre
tresult
omputed with A. 62

This
ase would o

ur if the network re-ordered messages, althoughthe network we simulate does not exhibit this problem, be
ause routing isdeterministi
 and messages are never dropped. However, another window ofvulnerability is opened by the possibility of inje
ting spe
ulations in the wrongorder. For example, assume a load with earlier unresolved stores a

essed the
a
he but missed. Subsequently, a program-earlier store to the same addressissued, so the store value is forwarded to the load and sent to the load's
onsumers (version B). The mis-spe
ulated
a
he a

ess eventually returns avalue that
ould be forwarded to the load's
onsumers (version A) overwritingthe
orre
t
omputation triggered by version B. This
ase
ould be avoidedby adding extra support to the memory system, but serves as an illustrativeexample.We handle out-of-order messaging by augmenting transmitted operandswith version numbers as well as
ommit bits. Ea
h ar
 of the DFG
an betraversed multiple times, with its version number in
reasing with ea
h of itssour
e operands. For example, if an ADD instru
tion �red three times, theversion numbers of the operands sent to its
onsumers would be 0, 1, and 2, inorder, regardless of what the version numbers of the ADD's sour
e operandswere. The highest version number is always the
orre
t operand, and null
om-mit messages are tagged with the version number that they are
ommitting.This s
heme permits operands to be re-ordered and still fun
tion
or-re
tly, sin
e version numbers are bu�ered with the operands and
ommit bitsat the
onsuming instru
tion's reservation station. With version numbers, we63

guarantee that the highest version number for an operand is always the
orre
tvalue. If an ADD instru
tion has �red twi
e be
ause it re
eived two values ofits left operand, whi
h arrived with version numbers 0 and 2, and then later aversion of the left operand arrives with version number 1, the last message isdis
arded be
ause that operand has already re
eived a higher version number,guaranteeing that the lower one is in
orre
t. If a null
ommit message ar-rived with a version number 3 for the left operand, the instru
tion would waitto re
eive the a
tual operand tagged with version number 3 before re-�ringand propagating the result to the
onsumers with the
ommit bit set. Thispoli
y permits operands and
ommit bits (whether arriving with an operandor as null
ommit messages) to arrive in any order but still produ
e
orre
texe
ution and guaranteed
ompletion.The simple version number s
heme outlined above needs to be aug-mented if we allow multiple parents to target the same operand. In this
ase,we need to add an instru
tion identi�er �eld to the version number to identifythe parti
ular parent of the operand. The highest version number,
orrespond-ing to a parti
ular parent that generated the
ommit bit, is then guaranteedto be the right value.We illustrate the role of version numbers with an example in Figure 4.4.The instru
tion shown in the example is a two input add instru
tion. Theexample shows one parti
ular sequen
e of events related to the re
eption ofoperands for the instru
tion. Initially, the add instru
tion re
eives the �rstversion of one of its operands. This operand is data spe
ulative as its
ommit64

MESSAGE

INCOMING

01=2, v=0, c=0

02=42,v=0, c=0

02=45, v=2, c=0

02=49, v=3, c=0

01=null, v=0, c=1

02=null, v=4, c=1

O1/V/C O2/V/C

2/0/0

42/0/02/0/0

2/0/0

2/0/1 49/3/0

−

49/3/0

− −

2/0/1 49/3/1

STATE ACTION

Table Legend:

 STATE: Output value/Version number (V)/Commit bit (C)

No action − only one operand has arrived.

Add inputs and send output message
(out=44; v = 0, c= 0). The output is
speculative because inputs are speculative.

result is sent out with a new version number. The results
are still speculative (out=51, v =1, c=0).

New output is not generated because the operand
values have not changed.

Generate null token; both inputs are non−speculative

received for this operand.

The execution unit re−executes the add instruction and a new

The execution unit marks operand 1 as non−speculative.

The execution unit drops the message because its version
number is lower than the last version number

Figure 4.4: Version number example
65

bit is not set, and is bu�ered in the reservation station entry
orresponding tothe add instru
tion. The instru
tion then re
eives a spe
ulative version of itsse
ond operand. The instru
tion
an now �re and send a spe
ulative result toits
onsumers.Next the instru
tion re
eives a newer, spe
ulative version of its se
ondoperand. The instru
tion �res and sends another spe
ulative result to its
onsumers. The instru
tion then re
eives a null
ommit message for its �rstoperand. Sin
e the operand value has not
hanged, and the other operand isstill spe
ulative, the instru
tion does not re-�re and operand 1 is marked asnon-spe
ulative. Next the instru
tion re
eives a null
ommit bit for the se
ondoperand. Sin
e all the operands of the instru
tion have re
eived their
ommitbit and their values haven't
hanged, the instru
tion
an now �re and send anull
ommit bit to its
onsumers. Finally, we see that the instru
tion re
eivesan in
orre
t message for its se
ond operand. This message is dropped and nota
ted upon by the instru
tion.With
ommit bits,
ompletion of distributed sele
tive re-exe
ution
anbe dete
ted, and with version numbers, the
omputation will still be
orre
t inthe presen
e of reordered messages. While we have used load/store dependen
epredi
tion as the driving example for this me
hanism, any data spe
ulations
heme may use this underlying framework for low-overhead re
overy, so longas it obeys the rules of the me
hanism: The last version sent is always the
orre
t one (with no versioning support), or the highest version number isalways the
orre
t one (with versioning support). Thus, many types of data66

value spe
ulation may make use of this
ommon framework for low-overheadre
overy.Version numbers also provide a
onvenient me
hanism to throttle spe
-ulation. ALUs
an be prevented from �ring spe
ulatively when the versionnumber of their result rea
hes a
ertain maximum value. This throttling
anbe done for several reasons. Having a large number of spe
ulative �rings
anresult in extra traÆ
 in the network, and extra
ontention in the ALUs, po-tentially redu
ing performan
e. Also, spe
ulative �ring of ALUs
onsumesdynami
 power. Hen
e, spe
ulative exe
ution of ALUs
an be throttled usingversion numbers to save energy. In the next subse
tion, we look at the impa
tof spe
ulative �ring of ALUs on performan
e using the GPA simulator and theTRIPS prototype simulator.4.1.2.1 Impa
t of Spe
ulative Exe
ution|GPA SimulatorTo �nd the impa
t on performan
e for various maximum values of ver-sion numbers, we ran experiments using the GPA simulator varying the numberof times an instru
tions is allowed to �re spe
ulatively. Table 4.1 shows theperforman
e for the various ben
hmarks, when we vary the maximum numberof spe
ulative exe
utions for an instru
tion. Loads that arrive at the memoryinterfa
e send spe
ulative values to their
onsumers in the presen
e of earlierunresolved stores. Later arriving stores that mat
h the address of the loads,and are earlier in program order, are allowed to wakeup these loads. Thenumber of load replies is also bound by the maximum version number allowed.67

Maximum spe
ulative �ring 1 2 3 4 5 6ammp 1.52 1.52 1.52 1.51 1.51 1.51art 1.89 1.74 1.74 1.74 1.74 1.88bzip2 2.14 2.13 2.13 2.13 2.13 2.13
ompress 1.55 1.55 1.55 1.55 1.55 1.55equake 1.20 1.24 1.31 1.36 1.36 1.37m88ksim 1.10 1.08 1.08 1.07 1.06 1.06m
f 0.79 0.80 0.79 0.77 0.75 0.73mgrid 1.68 1.60 1.62 1.62 1.58 1.55mpeg2en
ode 3.12 3.13 3.13 3.13 3.14 3.14parser 1.30 1.30 1.30 1.30 1.30 1.29twolf 1.11 1.13 1.13 1.13 1.12 1.11hydro2d 1.34 1.32 1.28 1.23 1.20 1.19tom
atv 3.82 3.82 3.82 3.82 3.82 3.82turb3d 0.72 0.72 0.70 0.69 0.68 0.68Mean 1.40 1.40 1.39 1.38 1.37 1.36Table 4.1: DSRE IPC variation with in
reasing maximum spe
ulative �ringon the GPA simulatorThe loads send their
ommit bits only after all previous stores have resolved.From Table 4.1, we see that ben
hmarks like bzip2,
ompress, parser,mpeg2en
ode, twolf, and tom
atv are relatively una�e
ted when we in
rease thenumber of times ALUs are allowed to �re spe
ulatively. In these ben
hmarks,either there are very few load-store dependen
es, or these dependen
es aresatis�ed by the �rst arriving store. Figure 4.5 plots number of load repliesfor di�erent maximum version number, normalized to the number of loadsexe
uted when we allow only one spe
ulative value per operand. For theseben
hmarks, we see that the number of loads exe
uted is relatively un
hangedwith maximum allowed spe
ulative exe
ution for an operand.68

0 2 4 6

Maximum speculative execution allowed

0

1

2

3
N

or
m

al
iz

ed
 e

xe
cu

te
d

lo
ad

s ammp
art
bzip2
compress
equake
m88ksim
mcf
mgrid
mpeg2encode
parser
twolf
hydro2d
tomcatv
turb3d

Figure 4.5: Normalized exe
uted loads for various maximum spe
ulative exe-
ution allowedThe performan
e of art de
reases with in
reasing maximum versionnumber allowed, and then in
reases when the maximum spe
ulative exe
utionis set to 6. With sele
tive re-exe
ution, later arriving stores are not allowed towakeup a load, if the load has already re
eived its value from a store that islater in program order than the arriving store. art has some loads that mat
hwith multiple earlier stores. These stores result in multiple spe
ulative loadexe
utions when we in
rease the maximum version number, thus de
reasingthe performan
e. However, when the maximum spe
ulative exe
ution is set to6, the number of load exe
utions due to mat
hing stores is a
tually redu
ed,be
ause the store that is later in program order arrives at the memory interfa
ebefore a mat
hing store that is earlier in program order. Both these storesmat
h the address of a later program order load, but only one store is allowedto wakeup the load, resulting in fewer load replies. The same phenomenon is69

seen in equake, whi
h shows in
reasing performan
e with in
reasing number ofallowed maximum exe
utions. From Figure 4.5, we see that the number of loadreplies in
reases as we in
rease the maximum allowed version number for art,and de
reases when the maximum number of allowed spe
ulative exe
utions is6. For equake the number of load replies de
reases as we in
rease the maximumallowed version number for an operand.ammp, m88ksim, m
f, mgrid, hydro2d, and turb3d show a redu
tionin performan
e when we in
rease the maximum allowed version number. Forthese ben
hmarks, as seen from Figure 4.5, the number of load replies in-
reases as we in
rease the maximum allowed version number. In ammp, m
f,and mgrid, in
reasing the maximum allowed version number results in moreversions of the same load rea
hing the memory interfa
e. The spe
ulative loadsresult in a larger number of spe
ulative load replies. In m88ksim, in
reasingthe maximum allowed version number results in a higher number of load repliesbe
ause multiple spe
ulative versions of a store end up waking up the sameload. hydro2d and turn3d exhibit both the above mentioned behavior, andhen
e su�er redu
tion in performan
e.Figure 4.6 plots the number of arithmeti
 instru
tions exe
uted whenwe in
rease the maximum allowed version number, normalized to the totalnumber number of arithmeti
 instru
tions exe
uted when we allow ea
h in-stru
tion to exe
ute at most on
e spe
ulatively. From Figure 4.6, we see thatthe number of arithmeti
 instru
tions exe
uted in
reases as we in
rease themaximum allowed version number for all the ben
hmarks.70

0 2 4 6

Maximum speculative execution allowed

0

1

2

3
N

or
m

al
iz

ed
 e

xe
cu

te
d

in
st

ru
ct

io
ns

ammp
art
bzip2
compress
equake
m88ksim
mcf
mgrid
mpeg2encode
parser
twolf
hydro2d
tomcatv
turb3d

Figure 4.6: Normalized exe
uted arithmeti
 instru
tions for various maximumspe
ulative exe
ution allowedIn summary, in
reasing the maximum version number allowed resultsin an in
rease in the number of instru
tions exe
uted. The higher ALU andnetwork traÆ
, resulting from the large number of instru
tions exe
uted, gen-erally lowers performan
e. A few ben
hmarks show improved performan
ewith in
reasing version number. However, this improvement in performan
eis a result of the earlier resolution of mat
hing stores that results in fewerexe
uted loads. Sin
e most of the ben
hmarks either show no improvementin performan
e or redu
tion in performan
e when we in
rease the number ofallowed maximum version number, we restri
ted the number of spe
ulativeexe
utions to one in the GPA simulator.
71

4.1.2.2 Impa
t of Spe
ulative Exe
ution|TRIPS Prototype Sim-ulatorMaximum spe
ulative�ring 1 2 3 4 5 6a2time01 0.765 0.910 0.927 0.936 0.942 0.942ai�tr01 0.606 0.618 0.630 0.651 0.654 0.652ai�rf01 1.036 1.055 1.072 1.069 1.062 1.062aii�t01 0.585 0.606 0.623 0.641 0.644 0.645aut
or00 1.210 1.210 1.210 1.210 1.210 1.210basefp01 0.885 0.890 0.894 0.886 0.876 0.867bezier01 1.740 1.748 1.698 1.670 1.678 1.680bitmnp01 0.779 0.783 0.779 0.773 0.770 0.768
a
heb01 0.692 0.699 0.710 0.699 0.692 0.691
anrdr01 1.292 1.342 1.351 1.352 1.353 1.353
onven00 0.538 0.538 0.538 0.538 0.538 0.538�t00 1.359 1.382 1.408 1.408 1.408 1.408id
trn01 0.738 0.735 0.737 0.770 0.765 0.760iir
t01 0.525 0.525 0.555 0.636 0.623 0.612ospf 0.641 0.705 0.714 0.715 0.717 0.717pntr
h01 0.822 0.827 0.822 0.969 0.981 0.983pkt
ow 1.001 1.054 1.046 1.047 1.046 1.044puwmod01 0.801 0.814 0.790 0.762 0.729 0.698routelookup 0.573 0.573 0.573 0.573 0.573 0.573rspeed01 0.804 0.837 0.866 0.875 0.883 0.884tblook01 0.776 0.817 0.818 0.818 0.818 0.818ttsprk01 0.667 0.697 0.698 0.700 0.701 0.703viterb00 0.779 0.805 0.828 0.838 0.847 0.847Mean 0.777 0.799 0.807 0.822 0.820 0.816Table 4.2: DSRE IPC variation with in
reasing maximum spe
ulative �ringon the TRIPS simulatorTo validate the results shown in the last subse
tion, we ran experi-ments using the TRIPS prototype simulator, and studied the performan
e for72

di�erent maximum version numbers. Table 4.2 shows the performan
e of theEEMBC ben
hmarks for di�erent values of maximum version number on theTRIPS prototype simulator.From Table 4.2, we see that the variation in mean performan
e onthe TRIPS simulator is di�erent from what is seen on the GPA simulator.On the TRIPS simulator, the mean performan
e in
reases as we in
rease themaximum number of times an instru
tion is allowed to exe
ute spe
ulativelyfrom 1 to 4, and then de
reases. To understand the reason for this behavior,we looked at the ben
hmarks that show the most di�eren
e in performan
eas we in
reased the maximum version number. These ben
hmarks in
ludea2time01,
anrdr01, id
trn01, iir
t01, pntr
h01, rspeed01, and viterb00.All the EEMBC ben
hmarks
onsist of a main loop that is repeatedlyexe
uted for a set number of iterations that
an be spe
i�ed by the user. Alarge number of these ben
hmarks write their output using a pointer to astru
ture. The ben
hmarks write their results after ea
h major
omputationwithin the loop. Hen
e, there are multiple loads and stores to this pointerin the instru
tion window. To illustrate this behavior, Figure 4.7 shows partof the sour
e
ode from the inner loop of the ben
hmark rspeed01. rspeed01repeatedly
omputes the road speed based on di�eren
es between timer
ountervalues. The
al
ulation involves straight-forward arithmeti
, but must alsodeal with the situation when the timer rolls over, or when the measurementresults show abrupt
hanges.The main loop in rspeed01 repeatedly
omputes the value of three vari-73

if(toothCount1 >= tonewheelTeeth / 2) {
 /* Yes, */
 if(toothTimeAccum1 >

 roadSpeed1 = 0 ;
 /* ...check for zero road speed */

 }
 else {
 /* ...or compute road speed */

 MAX_TOOTH_TIME *tonewheelTeeth / 2) {

 /* ...then reset the filter counter */
 toothCount1 = 0 ;

 toothTimeAccum1 = 0 ;
 /* ...and clear the accumulator */

 }

WriteOut(roadSpeed1) ; /* Store result */

}

 roadSpeed1 = (varsize)(SPEEDO_SCALE_FACTOR /

/* Time to update ? */

 (toothTimeAccum1 / tonewheelTeeth * 2));

Figure 4.7: Code in the main loop of rspeed01ables stored in memory, roadSpeed1, roadSpeed2, and roadSpeed3. Figure 4.7shows the
ode for the
omputation of roadSpeed1. After
omputing ea
hvalue, the result is stored using the WriteOut fun
tion. Figure 4.8 shows thesour
e
ode for this fun
tion. This fun
tion uses the address in RAM�lePtrpointer to write the
omputed result. The WriteOut fun
tion writes the valueof the result and in
rements the pointer.The
ompiler breaks up the inner loop into a number of hyperblo
ks.The
omputation and storage of roadSpeed1, roadSpeed2, and roadSpeed3 isdone using three separate hyperblo
ks that
an be in the instru
tion windowat the same time. Figure 4.9 shows part of the TIL
ode for one of these hy-perblo
ks. The predi
ated stores enfor
e bounds
he
king. From Figure 4.9,74

n_void
WriteOut(varsize value) {

if ((RAMfilePtr+RAMfile_increment) > RAMfileEOF)
 RAMfilePtr = RAMfile;

*(varsize *)RAMfilePtr = value;

} /* End of function ’WriteOut’ */
RAMfilePtr += RAMfile_increment;Figure 4.8: WriteOut fun
tion
ode from rspeed01we see that the program repeatedly loads and stores to the address of theRAM�lePtr variable. Any load to this address has to get its value from themost re
ent store. When this
ode is exe
uted on the TRIPS prototype sim-ulator, the loads to RAM�lePtr address resolve before all the previous storesto RAM�lePtr address. Mat
hing stores, whi
h arrive after the load, wake upthese loads, and the loads send the updated value to their
onsumers.Mat
hing stores, whi
h arrive after a load has already spe
ulativelyexe
uted the maximum number of times, are not allowed to wake up theload. These loads send their non-spe
ulative result after all prior stores haveresolved. If the load re
eives the last spe
ulative value from the last mat
hingstore before the load, it
an send a null
ommit message, when all prior storesresolve. Otherwise, the load has to send the new store value, along with the
ommit bit. Thus, there is no bene�t to using DSRE if the last spe
ulativeexe
ution of the load did not get its value from the latest mat
hing store beforethe load. Mat
hing stores that arrive at the DT do not wakeup loads, if theload has already re
eived the value from a store that is later in program orderto the mat
hing store. 75

 ld $t40, ($t39) L[15]

 entera $t39, RAMfilePtr
 sd ($t38), $t38 S[14]

 null_f<$t34> $t38
 sd_t<$t34> ($t37), $t36 S[14]

 entera $t37, RAMfilePtr
 sd ($t28), $t27 S[11]

 entera $t28, RAMfilePtr
 add $t27, $t25, $t26

 mul $t26, $t23, $t0
 ld $t25, ($t24) L[10]

 entera $t24, RAMfilePtr
 lws $t23, ($t22) L[9]

 entera $t22, RAMfile_increment
 sd ($t19), $t21 S[8]

 ld $t21, ($t20) L[7]
 entera $t20, roadSpeed3$$6220

 ld $t19, ($t18) L[6]
 entera $t18, RAMfilePtr

.bbegin t_run_test$25

Figure 4.9: Pie
e of TRIPS intermediate language (TIL)
ode from a rspeed01hyperblo
k to show loads and stores to the address of RAM�lePtr

0 2 4 6

Maximum speculative execution allowed

0

500000

1000000

1500000

L
oa

d
re

pl
ie

s

rspeed01
idcntr01

Figure 4.10: Number of load exe
utions for various maximum spe
ulative ex-e
ution 76

0 2 4 6

Maximum speculative execution allowed

0

100000

200000

300000

400000
L

oa
d

nu
ll

co
m

m
it

 m
es

sa
ge

s

rspeed01
idcntr01

Figure 4.11: Number of load null
ommit messages for various maximum spe
-ulative exe
utionWhen we in
rease the number of times a load is allowed to exe
utespe
ulatively, we in
rease the number of stores that are allowed to wakeupthe load. The in
rease in the number of stores in turn in
reases the
han
esof the load exe
uting spe
ulatively with the right store value. Thus, loadssend a larger number of null
ommit messages when we in
rease the maximumallowed version number. Figure 4.10 shows the number of times loads exe
uteand Figure 4.11 shows the number of load null
ommit messages, when wein
rease the number of times loads are allowed to exe
ute spe
ulatively. Wesee from Figure 4.10 and Figure 4.11 that for rspeed01, the number of null
ommit messages sent by the DT in
reases as we in
rease the maximum versionnumber, while the number of spe
ulative load exe
utions saturates. The largernumber of null
ommit messages result in higher performan
e for rspeed01 aswe in
rease the maximum version number.77

In
reasing the maximum version number does not always result inhigher performan
e. For some ben
hmarks like id
trn01, ai�rf01, basefp01,and matrix01, performan
e in
reases at �rst and then de
reases. To under-stand this behavior, we looked at the number of null
ommit messages andspe
ulative load exe
utions in these ben
hmarks. Figure 4.10 shows the num-ber of times loads exe
ute spe
ulatively, and Figure 4.11 shows the numberof null
ommit messages for id
trn01 when we in
rease the number of timesloads are allowed to exe
ute spe
ulatively. From Figure 4.10 and Figure 4.11,we see that for this ben
hmark, the number of load null
ommit messages sat-urates after the maximum number of spe
ulative exe
utions rea
hes 4, whilethe number of spe
ulative loads exe
uted keeps in
reasing. Hen
e, peak per-forman
e is obtained when we restri
t the number of maximum spe
ulativeexe
ution to 4 for id
trn01.In summary, the number of spe
ulative load exe
utions and load null
ommit messages is ben
hmark dependent, and is a fun
tion of the arrival or-der of loads and stores at the DT. There are fewer load re-exe
utions if the lastprogram-order mat
hing store before the load arrives at the DT before earlierstores. For the ben
hmarks that we study in this dissertation, maximum per-forman
e is obtained when we restri
t the number of maximum spe
ulative�ring to 4. Hen
e, we use this value for the rest of experiments in this dis-sertation. Future work
an involve examining poli
ies that dynami
ally varythis threshold, depending on the number of spe
ulative exe
utions and null
ommit messages being sent for a parti
ular phase of a ben
hmark.78

4.2 DSRE EvaluationIn this se
tion, we look at the performan
e of DSRE and
ompare itto the other load/store re
overy s
hemes. We �rst present results obtainedusing the GPA simulator, and then present results obtained using the detailedTRIPS prototype simulator. We also present an analysis of the results obtainedusing the TRIPS prototype simulator.4.2.1 DSRE Performan
eTable 4.3 shows the performan
e of the simulated GRID pro
essor withall of the load/store spe
ulation poli
ies we evaluate in this paper. Perfor-man
e is displayed in instru
tions per
y
le (
ounting useful, non-overhead,
ommitted instru
tions only). We assumed that
ushes are rolling, initiatedwhen a mispredi
tion is �rst dete
ted, whi
h is a higher-performan
e assump-tion than initiating
ushes when the blo
k
ontaining the faulting instru
tionis ready to
ommit.Column two (the leftmost data
olumn) shows performan
e using
on-servative ordering (
ons), in whi
h every load waits for all prior stores to
omplete. As we showed in Chapter 2, this
onservative model is by far theworst-performing model. The third
olumn shows performan
e with a purere-exe
ution me
hanism (DSRE), in whi
h all loads issue as soon as they areready, and re-exe
ute if an earlier store resolves to the same address. As dis-
ussed in the last se
tion, we restri
t the number of times instru
tions areallowed to �re spe
ulatively to one on the GPA simulator. Pure DSRE pro-79

No
ush Flush on load mis-spe
ulationBen
hmark
ons(IPC) DSRE(IPC) all-stores(IPC) one-store(IPC) ora
le(IPC)ammp 0.94 1.52 2.41 3.11 3.96art 1.37 1.89 3.72 3.50 3.73bzip2 1.90 2.14 3.16 3.23 3.24
ompress 1.40 1.55 1.56 1.56 1.66equake 0.79 1.20 1.71 1.71 1.75m88ksim 0.88 1.10 0.93 1.28 2.31m
f 0.42 0.79 0.87 0.83 0.88mgrid 1.27 1.68 1.31 1.56 4.23mpeg2en
ode 2.63 3.12 3.43 3.32 3.51parser 1.27 1.30 1.31 1.31 1.32twolf 0.88 1.11 1.27 1.36 2.09hydro2d 0.78 1.34 1.03 1.73 3.35tom
atv 2.88 3.82 4.96 4.95 4.96turb3d 0.53 0.72 0.62 0.74 3.85Mean 0.97 1.40 1.42 1.61 2.30Table 4.3: IPC of load/store re
overy s
hemes on the GPA simulatorvides a 40% performan
e boost over
onservative load-store ordering, makingit a potential alternative to dependen
e predi
tion. As shown in Chapter 5, thedi�eren
e in performan
e between the DSRE and the ora
le poli
y is primarilydue to the
ommit wave falling behind the exe
ution wave.Columns 4 and 5 show the performan
e of traditional dependen
e pre-di
tion, using all-stores and one-store to sele
tively stall loads that are pre-di
ted to be dependent, and
ush the pipeline if a load is spe
ulatively issuedbefore a
on
i
ting store. all-stores shows almost exa
tly the same averageperforman
e as DSRE. The more
omplex, but more aggressive, one-store pol-80

0

10

20

30
P

er
ce

nt
ag

e
co

nf
lic

ts

ammp

art bzip2
compress

equake

m88ksim

mcf
mgrid

mpeg2encode

parser

twolf
hydro2d

tomcatv

turb3dFigure 4.12: Per
entage of loads that
on
i
t with earlier storesi
y improves performan
e over the base
ase by an additional 13%, sin
e somestalled loads
an pro
eed earlier when their
on
i
ting store arrives, instead ofwaiting for all stores. Despite these relatively large performan
e gains, a largegap still exists with the upper-bound performan
e of an ora
le, whi
h shows amean IPC of 2.30, 43% higher than the one-store poli
y. In the next
hapter,we will look at enhan
ements to the base DSRE te
hnique that bridges thisgap in performan
e.The one-store dependen
e poli
y results in performan
e
omparable tothe ora
le poli
y for all but six ben
hmarks. These are ammp, m88kim, mgrid,twolf, hydro2d, and turb3d. To understand the low performan
e in these ben
h-marks, we looked at the dynami
 load-store dependen
es in these ben
hmarks.Figure 4.12 shows the number of loads that depend on earlier stores duringexe
ution, as a fra
tion of the total number of memory instru
tions. As seenfrom Figure 4.12, these ben
hmarks have a signi�
ant number of loads
on-
i
ting with earlier stores. The one-store predi
tor is unable to predi
t these81

dependen
es
orre
tly. m88kim, mgrid, and twolf su�er too many
ushes dueto loads being in
orre
tly predi
ted
on
i
ting. In ammp and hydro2d, thepredi
tor is too
onservative and predi
ts a large number of independent loadsas being dependent. turb3d has a mix of loads in
orre
tly predi
ted
on
i
tingand non-
on
i
ting.Table 4.4
ompares the performan
e of DSRE against the various load/storere
overy s
hemes a
ross the set of EEMBC ben
hmarks on the TRIPS proto-type simulator. From Table 4.4, we see DSRE provides 16% improvement overthe
onservative s
heme. The performan
e improvement is lower than what isseen with the GPA simulator due to the following reasons:1. As explained in Chapter 7, the network and ALU
ontention are more a
-
urately modeled in the TRIPS prototype simulator, and hen
e in
uen
eperforman
e to a larger degree with DSRE.2. Sin
e the LSQ is physi
ally distributed, the arrival of stores at the datatile is
ommuni
ated through the data status network (DSN). Hen
e,stores take longer to resolve in the DT. For example, arrival of a storeat DT0 is
ommuni
ated to DT3 after 3
y
les. Sin
e loads
an sendtheir
ommit bits only after all the stores before them have resolved,propagation of load
ommit bits is delayed by the distributed nature ofthe LSQ.3. The reissue pipeline in the DT adds an extra
y
le delay to the propa-gation of the
ommit bit. 82

No
ush Flush on load mis-spe
ulationBen
hmark
ons(IPC) DSRE(IPC) all-stores(IPC) one-store(IPC) ora
le(IPC)a2time01 0.702 0.936 0.793 0.842 2.418ai�tr01 0.560 0.651 0.714 0.710 2.477ai�rf01 0.884 1.069 1.692 1.677 2.635aii�t01 0.547 0.641 0.676 0.698 2.592aut
or00 1.208 1.210 1.208 1.208 1.210basefp01 0.845 0.886 1.068 1.074 1.212bezier01 1.195 1.670 2.789 2.793 2.789bitmnp01 0.678 0.773 0.920 0.945 1.714
a
heb01 0.579 0.699 0.861 0.993 1.535
anrdr01 1.197 1.352 1.400 1.431 1.483
onven00 0.535 0.538 0.538 0.538 0.538�t00 1.052 1.408 2.725 2.726 2.727id
trn01 0.652 0.770 1.566 1.530 2.719iir
t01 0.489 0.636 0.849 0.869 1.944ospf 0.633 0.715 0.906 0.908 0.917pntr
h01 0.820 0.969 0.930 0.900 1.039pkt
ow 0.896 1.047 1.187 1.187 1.272puwmod01 0.703 0.762 0.922 0.913 2.191routelookup 0.573 0.573 0.573 0.573 0.573rspeed01 0.697 0.875 0.887 0.889 2.129tblook01 0.751 0.818 0.821 0.825 0.854ttsprk01 0.636 0.700 0.743 0.749 0.782viterb00 0.647 0.838 1.490 1.780 3.053Mean 0.709 0.822 0.955 0.972 1.361Table 4.4: IPC of load/store re
overy s
hemes on the TRIPS prototype simu-lator
83

4. Only one load is allowed to send a
ommit bit every
y
le. Hen
e, ifthere are a number of loads after a store that be
ome non-spe
ulativewhen the store arrives, we
an pro
ess null
ommit messages for onlyone load per
y
le.5. A large fra
tion of the variables in the EEMBC suite are either globalor stati
 variables. The
urrent
ompiler did not register allo
ate thesevariables, and is for
ed to allo
ate them in memory, resulting in a largenumber of load-store dependen
es in these programs.6. The load-store pipeline in the DT stalls during load-store forwarding.Thus, programs with a a large number of load-store dependen
es in
urmore stalls in the DT. Also, when a store wakes up a load, the pipelinestalls when the load is being pro
essed to get the forwarded value fromthe store.7. For a number of EEMBC ben
hmarks, within a hyperblo
k we have loadsthat
ompute the data for stores. These loads are interleaved with otherloads and stores in the blo
k. This load-to-store dependen
e serializesthe propagation of
ommit bits between stores. This serialization isillustrated using a pie
e of TIL
ode from a2time in Figure 4.13. Forbrevity we have shown only the loads and stores in the blo
k that exhibitload-to-store dependen
e, and omitted the rest of the instru
tions. Thevariables being stored in Figure 4.13 are global variables, and hen
e werenot register allo
ated by the
ompiler.84

ld $t7, ($t6) L[2]
entera $t8, angleCounter
sd ($t8), $t7 S[3]
entera $t33, angleCounter
ld $t34, ($t33) L[10]
entera $t35, angleCounterLast1$$6805
sd ($t35), $t34 S[11]
entera $t38, pulseDeltaTime1$$6799
ld $t39, ($t38) L[13]
add $t40, $t37, $t39
entera $t41, rotationTime1$$6826
sd ($t41), $t40 S[14]

.bbegin t_run_test$14 ;

Figure 4.13: Pie
e of TRIPS intermediate language (TIL)
ode from a2time01to show load-to-store dependen
eFrom Figure 4.13, we see that the store with LSID 3 depends on the loadwith LSID 2 for its value. This store
an resolve only after the load sendsits
ommit bit. The load
an send its
ommit bit only after all previousstores before the load have resolved, and re
eived their
ommit bit. Theload with LSID 10
an send its
ommit bit only after all previous stores,in
luding the store with LSID 3, have re
eived their
ommit bit. Thestore with LSID 11 depends on the load with LSID 10 for its value.Similarly, the store with LSID 14 depends on the load with LSID 13for its value. From the TIL
ode shown in Figure 4.13, we see that the
ommit bit forwarding for the three stores listed above are serialized,thus delaying the propagation of the
ommit wave.The worst performing ben
hmarks with DSRE in
lude a2time01, ai�tr01,85

ai�rf01, aii�t01, bitmnp01,
a
heb01, id
trn01, iir
t01, matrix01, pntr
h01,puwmod01, and rspeed01. All these ben
hmarks write their output using theRAM�lePtr variable whi
h results in multiple stores to the same address in theinstru
tion window. When a load gets woken up multiple times by mat
hingstores, it results in the DT stalling for a
y
le every time a value is forwarded.The large number of DT stalls, along with the extra network and ALU traÆ
generated by the multiple spe
ulative exe
utions, result in the poor perfor-man
e for these ben
hmarks.For some ben
hmarks like auto
or00,
anrdr01,
onven00, and tblook01,DSRE performan
e is similar to that of the ora
le poli
y. These ben
hmarksdo not have a large number of global or stati
 variables. Hen
e, more vari-ables in these ben
hmarks are register allo
ated, resulting in fewer load-storedependen
es. Also, these ben
hmarks have small average blo
k size, resultingin fewer useful instru
tions in the instru
tion window. Small average blo
ksize redu
es the number of in-
ight load-store dependen
es, but also results inoverall poor performan
e be
ause of the large overhead asso
iated with fet
h-ing and
ommitting the small blo
ks. Table 4.5 shows the average blo
k sizeof the EEMBC ben
hmarks along with the IPC with perfe
t load-store pre-di
tion. We see from Table 4.5 that the ben
hmarks with small average blo
ksizes have the poorest performan
e.
86

Ben
hmark Average Blo
k Size(Instru
tions) Ora
leIPCa2time01 58.060 2.418ai�tr01 59.252 2.477ai�rf01 49.973 2.635aii�t01 63.035 2.592aut
or00 18.066 1.210basefp01 24.231 1.212bezier01 35.660 2.789bitmnp01 35.732 1.714
a
heb01 51.703 1.535
anrdr01 22.314 1.483
onven00 7.130 0.538�t00 31.106 2.727id
trn01 50.826 2.719iir
t01 50.658 1.944ospf 18.739 0.917pntr
h01 34.092 1.039pkt
ow 23.889 1.272puwmod01 57.989 2.191routelookup 18.871 0.573rspeed01 60.233 2.129tblook01 23.821 0.854ttsprk01 22.602 0.782viterb00 42.696 3.053Mean 37.421 1.361Table 4.5: Average blo
k size and IPC with ora
le poli
y for the EEMBCben
hmarksDependen
e predi
tion with the all-stores and �rst-store predi
tor for�t00 has performan
e
lose to ora
le. �t00 has a signi�
ant number of loads,but a large majority of these loads are independent loads. Hen
e, dependen
e87

predi
tion works very well for this ben
hmark. With DSRE, these independentloads generate a large number of null
ommit messages. The extra ALU andnetwork traÆ
, generated by the null
ommit messages, result in the poorperforman
e of DSRE when
ompared to dependen
e predi
tion.DSRE outperforms dependen
e predi
tion for a2time01 and pntr
h01.As explained earlier, these ben
hmarks have the serialized loads to the RAM-�lePtr fun
tion that don't bene�t from dependen
e predi
tion. Dependen
epredi
tion also
auses load violation
ushes in these ben
hmarks, before thepredi
tor is trained to predi
t these loads as
on
i
ting. DSRE is able a
hievehigher performan
e than dependen
e predi
tion be
ause of the la
k of pipeline
ushes, and the null
ommit messages that are sent when the
orre
t mat
hingstore happens to wakeup these loads.On the TRIPS prototype simulator, the 1-bit all-stores predi
tor andthe 3-bit �rst-store predi
tor improve the mean performan
e by 35% and 37%over the
onservative poli
y. There is still 42% and 40% di�eren
e in perfor-man
e between the predi
tors and the ora
le poli
y. The large di�eren
e inperforman
e between the all-stores predi
tor and ora
le
an again be explainedusing the load-to-store dependen
e shown in Figure 4.13.The all-stores predi
tor uses a PC-indexed 1-bit table to identify loadsthat
ause a dependen
e violation. The load PC is
omputed by xor-ing thetop 5 bits of the blo
ks address with the reversed LSID of the load. If the bitis set for a load, the load is deferred and sends its reply only after all priorstores have resolved. If the deferred load happens to be part of a load-to-store88

entera $t2, RAMfilePtr
ld $t3, ($t2) L[0]
entera $t4, firingTime3$$6819
ld $t5, ($t4) L[1]
sd ($t3), $t5 S[2]
entera $t8, RAMfilePtr
ld $t9, ($t8) L[4]
mul $t10, $t7, $t0
add $t11, $t9, $t10
entera $t12, RAMfilePtr
sd ($t12), $t11 S[5]
entera $t23, RAMfilePtr

.bbegin t_run_test$40 ;

ld $t24, ($t23) L[9]Figure 4.14: Pie
e of TRIPS intermediate language
ode (TIL) from a2time01to show load-to-store and store-to-load dependen
edependen
e
hain, the propagation of the load result is delayed, thus resultingin poor performan
e.Figure 4.14 shows TIL
ode, again from the a2time01 ben
hmark thatillustrates this
ase. We have shown only the instru
tions that highlight theload-to-store dependen
e and the store-to-load dependen
e in Figure 4.14.From Figure 4.14, we see that that store with LSID 2 depends on the loadswithe LSID 0 and LSID 1 for its address and data. The store with LSID 5depends on the load with LSID 4. Finally, the load with LSID 9 uses the valuestored by the store with LSID 5.During program exe
ution, the load with LSID 9
auses a load-storedependen
e violation, and the bit
orresponding to this load is set in the 1-bit dependen
e predi
tion table. When this load is en
ountered again during89

program exe
ution, it is deferred and waits for all prior stores to resolve beforesending its reply. Sin
e the stores before the load are serialized due to a load-to-store dependen
e, it takes longer for the stores to resolve, thus delaying theload reply. Code similar to that shown in Figure 4.14 is found in a number ofEEMBC ben
hmarks that write their result using the RAM�lePtr. Like theDSRE poli
y, the all-stores predi
tor performs similar to the ora
le poli
y onben
hmarks with few load-store dependen
es and small average blo
k size.The more aggressive 3-bit �rst-store predi
tor performs better than theall-stores predi
tor for most ben
hmarks. There is still a large gap in perfor-man
e between the �rst-store predi
tor and the ora
le poli
y. This di�eren
e
an be attributed to the presen
e of multiple mat
hing stores to the same ad-dress in the instru
tion window. As des
ribed in Se
tion 4.1.2.2, the EEMBCben
hmarks use a global pointer to store the output after ea
h
omputation.Loads and stores repeatedly a

ess this pointer during program exe
ution, re-sulting in a load mat
hing with multiple, earlier in-
ight stores. These multiplestores result in the �rst-store predi
tor be
oming more
onservative, and be-having like the all-stores predi
tor for these loads, thus redu
ing performan
e.The �rst-store predi
tor does bene�t from an aggressive load wakeuppoli
y for some ben
hmarks. viterb00 shows an 19.4% improvement in perfor-man
e with the �rst-store predi
tor when
ompared to the all-stores predi
tor.The all-stores predi
tor performs better than the �rst-store predi
torfor ai�rf01 and matrix01. The �rst-store predi
tor results in a larger numberof
ushes in these ben
hmarks for loads that mat
h with multiple stores. For90

these loads, the �rst-store predi
tor
an in
ur up to �ve extra
ushes in ea
hdata tile before it is trained to predi
t to defer the loads until all prior storesresolve. These extra
ushes result in lower performan
e with the �rst-storepredi
tor for these ben
hmarks.In summary, there is a signi�
ant di�eren
e in performan
e betweenDSRE and the the ora
le poli
y a
ross the set of EEMBC ben
hmarks. Thedi�eren
e in performan
e is primarily due to multiple mat
hing stores for aload that results in a large number of stores forwarding their value to loadsin the DT. Load-store forwarding results in the DT stalling for a
y
le, thusredu
ing performan
e. The multiple store forwarding also generates extraALU and network traÆ
 that redu
es performan
e. The EEMBC ben
hmarksalso have a number of load-to-store dependen
e that serializes propagation of
ommit bit among stores. This delay in
ommit propagation also
ontributesto the poor performan
e of DSRE.Dependen
e predi
tion using all-stores and �rst-store predi
tor also per-forms poorly when
ompared to the ora
le poli
y a
ross the set of EEMBCben
hmarks. In this
ase also, the di�eren
e in performan
e is primarily due tomultiple mat
hing stores to the same address in the main loop of these ben
h-marks. The multiple mat
hing stores in
orre
tly wakeup loads, resulting in alarger number of
ushes. In the steady state, the predi
tor be
omes
onserva-tive for these loads, and defers the load reply until all prior stores resolve. The�rst-store predi
tor will yield better performan
e if it
an a

urately identifythe mat
hing store for ea
h load, and allow only that store to wakeup up the91

load. Future work
an involve looking at predi
tors that provide this fun
-tionality in the distributed TRIPS environment. In the next few se
tions, we
ompare the performan
e of DSRE against the various dependen
e predi
tionwith perfe
t bran
h predi
tion that results in a larger instru
tion window andperfe
t level one and level two
a
hes that results in lower memory laten
y.4.2.2 DSRE Performan
e with Perfe
t Bran
h Predi
tionNo
ush Flush on load mis-spe
ulationBen
hmark
ons(IPC) DSRE(IPC) all-stores(IPC) one-store(IPC) ora
le(IPC)ammp 0.95 1.55 2.41 3.22 4.23art 1.38 1.91 3.89 3.15 3.89bzip2 2.35 2.79 2.51 4.73 5.31
ompress 1.98 2.21 2.36 2.39 2.42equake 0.80 1.26 1.95 1.94 1.99m88ksim 0.89 1.13 0.95 1.53 2.44m
f 0.43 0.89 1.07 1.03 1.09mgrid 1.39 1.65 1.46 1.55 4.31mpeg2en
ode 2.85 3.48 3.93 3.93 4.05parser 1.38 1.41 1.43 1.43 1.44twolf 0.97 1.21 1.33 1.49 2.79hydro2d 0.82 1.47 1.08 2.12 3.42tom
atv 2.93 3.90 5.12 5.10 5.12turb3d 0.53 0.73 0.66 0.81 4.20Mean 1.02 1.47 1.55 1.85 2.70Table 4.6: IPC of load/store re
overy s
hemes on the GPA simulator withperfe
t bran
h predi
tion
92

In this se
tion, we evaluate the e�e
t of perfe
t bran
h predi
tion onthe various data mis-spe
ulation re
overy s
hemes. Perfe
t bran
h predi
tionresults in the instru
tion window of the pro
essor being �lled with a largernumber of useful instru
tions. Hen
e, it has the potential for higher perfor-man
e by in
reasing the amount of instru
tion level parallelism that we
anexploit. However, having a larger instru
tion window also in
reases the num-ber of
on
i
ting loads and stores that
an be present in the window.Table 4.6 shows the performan
e of the various load/store s
hemes withperfe
t bran
h predi
tion. Perfe
t bran
h predi
tion improves the mean perfor-man
e of the
onservative and sele
tive re-exe
ution s
heme by 5%, all-storespoli
y by 9%, one-store poli
y by 15%, and the ora
le poli
y by 17%. Thistrend is in line with what we observed in Chapter 2. Perfe
t bran
h predi
-tion in
reases the number of load and store instru
tions in the instru
tionwindow. The
onservative and sele
tive re-exe
ution s
hemes predi
t all loadsas
on
i
ting, thus delaying
ommit bit propagation to the
onsumers of theloads until all prior stores resolve. The all-stores and the one-store predi
-tor are able to get a performan
e boost from load-store dependen
es that arepredi
ted
orre
tly.The one-store poli
y performs similarly to the ora
le poli
y for ben
h-marks that do not have a large number of load-store dependen
es. The
onser-vative all-stores poli
y performs better than the aggressive one-store poli
y forart be
ause of the higher number of
ushes. m88ksim and mgrid su�er froma larger number of
ushes, ammp and hydro2d have loads that are in
orre
tly93

predi
ted dependent, and twolf and turb3d have a mix of both.Table 4.7 shows the performan
e with perfe
t bran
h predi
tion withthe TRIPS simulator. Perfe
t bran
h predi
tion improves the performan
e ofthe
onservative poli
y by 3%, all-stores poli
y by 4.8%, �rst-store poli
y by4.7%, and the ora
le poli
y by 7%. This trend is similar to what is seen on theGPA simulator. The improvements for ea
h poli
y is lower be
ause of the smallsize of the EEMBC ben
hmarks, along with their loop based nature, whi
hmakes them in
ur fewer bran
h mispredi
tions than the SPEC ben
hmarks.DSRE a
tually shows a redu
tion in mean performan
e with perfe
tbran
h predi
tion on the TRIPS prototype simulator. We analyzed the ben
h-marks showing the largest redu
tion in performan
e. These ben
hmarks havemultiple mat
hing stores to the same address. We found that with DSRE, thelarger instru
tion window from perfe
t predi
tion resulted in more
ontentionand traÆ
 in these ben
hmarks, due to multiple stores waking up the samemat
hing load. This extra
ontention redu
ed the mean performan
e of DSREwith perfe
t bran
h predi
tion.

94

No
ush Flush on load mis-spe
ulationBen
hmark
ons(IPC) DSRE(IPC) all-stores(IPC) one-store(IPC) ora
le(IPC)a2time01 0.705 0.768 0.798 0.846 2.447ai�tr01 0.561 0.607 0.700 0.715 2.499ai�rf01 0.930 1.102 1.717 1.698 2.588aii�t01 0.547 0.586 0.673 0.707 2.602aut
or00 1.444 1.444 1.465 1.465 1.464basefp01 0.872 0.912 1.110 1.118 1.262bezier01 1.194 1.741 2.783 2.776 2.789bitmnp01 0.740 0.861 1.008 1.043 1.975
a
heb01 0.614 0.707 0.951 0.952 2.048
anrdr01 1.270 1.390 1.652 1.732 1.852
onven00 0.483 0.483 0.510 0.481 0.483�t00 1.035 1.329 2.713 2.658 2.660id
trn01 0.662 0.748 1.583 1.619 2.862iir
t01 0.490 0.525 0.841 0.883 1.969ospf 0.653 0.662 1.053 1.054 1.070pntr
h01 0.823 0.826 0.927 0.969 1.048pkt
ow 0.938 1.039 1.269 1.270 1.368puwmod01 0.711 0.809 0.928 0.919 2.268routelookup 0.719 0.719 0.719 0.719 0.719rspeed01 0.699 0.805 0.888 0.890 2.172tblook01 0.769 0.727 0.864 0.899 0.886ttsprk01 0.681 0.656 0.804 0.810 0.862viterb00 0.647 0.780 1.491 1.800 3.046Mean 0.730 0.793 1.001 1.018 1.457Table 4.7: IPC of load/store re
overy s
hemes on the TRIPS prototype simu-lator with perfe
t bran
h predi
tion
95

4.2.3 DSRE Performan
e withe Perfe
t L1 Data Ca
heNo
ush Flush on load mis-spe
ulationBen
hmark
ons(IPC) DSRE(IPC) all-stores(IPC) one-store(IPC) ora
le(IPC)ammp 0.97 1.53 2.59 3.22 4.26art 1.50 1.92 4.09 3.69 4.10bzip2 2.09 2.35 3.72 3.88 3.90
ompress 1.61 1.71 1.81 1.78 1.84equake 1.04 1.36 2.50 2.51 2.58m88ksim 0.88 1.11 0.93 1.24 2.32m
f 0.94 1.11 1.15 1.11 1.17mgrid 1.50 1.68 1.53 2.07 5.58mpeg2en
ode 2.63 3.13 3.43 3.42 3.52parser 1.34 1.36 1.39 1.39 1.40twolf 0.93 1.12 1.30 1.37 2.22hydro2d 0.95 1.35 1.46 2.62 4.11tom
atv 3.08 4.61 7.80 7.70 7.80turb3d 0.56 0.73 0.67 0.79 3.96Mean 1.17 1.46 1.64 1.87 2.69Table 4.8: IPC of load/store re
overy s
hemes on the GPA simulator withperfe
t L1 D-
a
heIn this se
tion, we
ompare the performan
e of DSRE against the var-ious load issue s
hemes with a perfe
t level one data
a
he. Having a perfe
tL1 data
a
he in
reases performan
e by redu
ing the average memory laten
yfor loads and stores.Table 4.8 shows the performan
e of the various load/store s
hemes withperfe
t level one data
a
he. Perfe
t L1 D-
a
he improves the mean perfor-man
e of the
onservative s
heme by 20%, sele
tive re-exe
ution s
heme by96

4.3%, all-stores poli
y by 15.5%, one-store poli
y by 16%, and the ora
le pol-i
y by 17%. Perfe
t L1 D-
a
he results in larger performan
e improvementthan perfe
t bran
h predi
tion for the
onservative, all-stores, and one-storepoli
ies.In the
onservative poli
y, all loads are predi
ted
on
i
ting and sendtheir reply after all prior stores have resolved. With perfe
t L1 D-
a
he, theindependent loads are able to send data to their
onsumers with a smallerlaten
y, as the request always hits in the data
a
he. Loads predi
ted
on-
i
ting by the all-stores poli
y have a similar advantage, and loads that werepredi
ted dependent in
orre
tly by the one-store predi
tor also bene�t fromthe lower laten
y to the memory system. Hen
e, these s
hemes bene�t withperfe
t L1 D-
a
he. With sele
tive re-exe
ution, loads a

ess the
a
he whenthey �rst arrive at the memory interfa
e. Laten
y of
a
he misses are hiddenby the time it takes for previous stores to resolve, and send the
ommit bit forthe load. Hen
e, sele
tive re-exe
ution does not bene�t greatly from perfe
tL1 D-
a
he. However, this result does prove that sele
tive re-exe
ution
an beused as a me
hanism for tolerating memory laten
ies.

97

No
ush Flush on load mis-spe
ulationBen
hmark
ons(IPC) DSRE(IPC) all-stores(IPC) one-store(IPC) ora
le(IPC)a2time01 0.703 0.937 0.791 0.842 2.422ai�tr01 0.567 0.651 0.719 0.715 2.495ai�rf01 0.885 1.067 1.693 1.681 2.614aii�t01 0.554 0.642 0.681 0.703 2.620aut
or00 1.169 1.175 1.171 1.171 1.172basefp01 0.854 0.887 1.071 1.076 1.225bezier01 1.296 1.687 2.792 2.485 2.788bitmnp01 0.679 0.773 0.922 0.945 1.716
a
heb01 0.589 0.698 0.881 1.014 1.597
anrdr01 1.205 1.356 1.401 1.434 1.486
onven00 0.535 0.538 0.538 0.538 0.538�t00 1.052 1.408 2.734 2.735 2.736id
trn01 0.653 0.772 1.549 1.522 2.729iir
t01 0.490 0.637 0.836 0.867 1.951ospf 0.669 0.742 0.941 0.942 0.945pntr
h01 0.821 0.970 0.931 0.903 1.041pkt
ow 0.955 1.053 1.262 1.262 1.336puwmod01 0.704 0.763 0.925 0.915 2.194routelookup 0.573 0.573 0.573 0.573 0.573rspeed01 0.698 0.875 0.888 0.891 2.142tblook01 0.754 0.819 0.822 0.827 0.856ttsprk01 0.638 0.700 0.744 0.749 0.783viterb00 0.647 0.838 1.490 1.781 3.054Mean 0.716 0.823 0.959 0.975 1.369Table 4.9: IPC of load/store re
overy s
hemes on the TRIPS prototype simu-lator with perfe
t L1 D-
a
heTable 4.9 shows the performan
e a
ross the set of EEMBC ben
hmarksfor perfe
t L1 D-
a
he with the TRIPS simulator. Perfe
t L1 D-
a
he improves98

the mean performan
e of the
onservative s
heme by 1%, sele
tive re-exe
utions
heme by 0.1%, all-stores poli
y by 0.4%, �rst-store poli
y by 0.3%, and theora
le poli
y by 0.6%. Again, we see that the perfe
t L1 D-
a
he results inlarger performan
e improvements for the
onservative, all-stores, �rst-store,and the ora
le poli
y. The di�eren
e is not as large as what is seen on the GPAsimulator be
ause of the smaller memory footprint of the EEMBC ben
hmarksthat results in fewer
a
he misses.4.2.4 DSRE Performan
e withe Perfe
t L2 Ca
heNo
ush Flush on load mis-spe
ulationBen
hmark
ons(IPC) DSRE(IPC) all-stores(IPC) one-store(IPC) ora
le(IPC)ammp 0.95 1.53 2.52 2.67 4.14art 1.46 1.94 4.09 3.68 4.09bzip2 2.02 2.28 3.45 3.60 3.62
ompress 1.42 1.55 1.58 1.56 1.60equake 1.03 1.36 2.41 2.46 2.56m88ksim 0.88 1.11 0.92 1.27 2.32m
f 0.86 0.98 1.14 1.08 1.16mgrid 1.50 1.69 1.53 1.90 5.57mpeg2en
ode 2.63 3.13 3.43 3.42 3.52parser 1.27 1.30 1.32 1.31 1.32twolf 0.88 1.11 1.24 1.32 2.09hydro2d 0.94 1.35 1.43 2.71 4.11tom
atv 3.08 4.53 7.81 7.70 7.81turb3d 0.55 0.72 0.66 0.77 3.95Mean 1.13 1.42 1.59 1.79 2.59Table 4.10: IPC of load/store re
overy s
hemes on the GPA simulator withperfe
t L2
a
he 99

In this se
tion, we examine the e�e
t of a perfe
t L2
a
he on DSREand the various load issue s
hemes. Sin
e the L2
a
he is uni�ed, simulating aperfe
t L2
a
he redu
es both the average instru
tion and data fet
h laten
iesin the pro
essor.Table 4.10 shows the performan
e of the various load/store s
hemeswith perfe
t level two
a
he. Perfe
t L2
a
he improves the mean performan
eof the
onservative s
heme by 16.4%, sele
tive re-exe
ution s
heme by 1.4%,all-stores poli
y by 12%, one-store poli
y by 11%, and the ora
le poli
y by12.6%. The performan
e gains with perfe
t L2
a
he are lower than the gainswith perfe
t L1 D-
a
he. However, the relative performan
e improvementfor the various load-store s
hemes is similar to perfe
t L1 D-
a
he, with the
onservative, all-stores, one-store, and ora
le poli
ies bene�ting more from thelower memory laten
y.Table 4.11 shows the performan
e a
ross the set of EEMBC ben
h-marks for perfe
t L2
a
he with the TRIPS simulator. Surprisingly, meanperforman
e with perfe
t L2
a
he is better than performan
e with perfe
t L1D-
a
he, for all the poli
ies on the TRIPS prototype simulator. The higherperforman
e with perfe
t L2
a
he
an be explained by the lower instru
tionfet
h laten
y for these ben
hmarks with perfe
t L2
a
he. The EEMBC ben
h-marks have a larger I-
a
he miss rate than the D-
a
he miss rate. With perfe
tL1 D-
a
he, the I-
a
he misses still have to go to the L2
a
he or main mem-ory to be servi
ed. Sin
e the TRIPS pro
essor has a uni�ed L2
a
he, withperfe
t L2
a
he, all the I-
a
he misses are servi
ed by the L2
a
he. Hen
e,100

the performan
e is higher with perfe
t L2
a
he on the TRIPS simulator.In summary, this
hapter explained implementation of sele
tive re-exe
ution on EDGE ar
hite
tures. We used load-store dependen
e predi
tionas the driving spe
ulation me
hanism and evaluated its performan
e usingDSRE and pipeline
ushing for mis-spe
ulation re
overy on the high-levelGPA simulator and low-level TRIPS prototype simulator. We found thatDSRE performs similar to the all-stores dependen
e predi
tion s
heme on theGPA simulator. The performan
e of DSRE is lower on the TRIPS simulatorwhen
ompared to the dependen
e predi
tion s
hemes. We found that thatthere is still a 40% gap between the best dependen
e predi
tion poli
y and theora
le poli
y. In the next
hapter, we des
ribe enhan
ements to DSRE thatattempt to
lose this gap.

101

No
ush Flush on load mis-spe
ulationBen
hmark
ons(IPC) DSRE(IPC) all-stores(IPC) one-store(IPC) ora
le(IPC)a2time01 0.704 0.938 0.795 0.844 2.434ai�tr01 0.560 0.651 0.715 0.710 2.479ai�rf01 0.886 1.070 1.703 1.692 2.639aii�t01 0.547 0.641 0.676 0.698 2.602aut
or00 1.238 1.239 1.238 1.238 1.239basefp01 0.861 0.899 1.087 1.093 1.243bezier01 1.196 1.677 2.792 2.423 2.794bitmnp01 0.680 0.775 0.923 0.947 1.723
a
heb01 0.582 0.702 0.866 1.000 1.555
anrdr01 1.212 1.367 1.414 1.448 1.500
onven00 0.536 0.539 0.540 0.539 0.539�t00 1.053 1.409 2.732 2.731 2.733id
trn01 0.655 0.774 1.535 1.544 2.764iir
t01 0.492 0.640 0.853 0.912 1.987ospf 0.635 0.715 0.909 0.911 0.919pntr
h01 0.822 0.972 0.932 0.906 1.043pkt
ow 0.904 1.050 1.197 1.198 1.284puwmod01 0.706 0.765 0.925 0.917 2.212routelookup 0.573 0.573 0.573 0.573 0.573rspeed01 0.700 0.879 0.892 0.894 2.164tblook01 0.755 0.822 0.826 0.830 0.859ttsprk01 0.638 0.701 0.746 0.751 0.785viterb00 0.648 0.838 1.490 1.784 3.061Mean 0.712 0.825 0.959 0.977 1.371Table 4.11: IPC of load/store re
overy s
hemes on the TRIPS prototype sim-ulator with perfe
t L2
a
he
102

Chapter 5DSRE A

eleration
This
hapter examines two poli
ies, spe
ulative
ommit sli
ing andbottom-up
ommit traversal, to a

elerate propagation of
ommit bits to im-prove performan
e with DSRE. We �rst
ompare performan
e on the GPAsimulator, and validate it using the TRIPS prototype simulator. We do ananalysis of our results obtained using the TRIPS simulator to explain the per-forman
e di�eren
e still remaining between DSRE with
ommit sli
ing andora
le poli
y. We also study the performan
e of the enhan
ed DSRE s
hemewith perfe
t bran
h predi
tion, perfe
t L1 D-
a
he, perfe
t L2
a
he, and forlarger instru
tion window sizes to examine the e�e
ts of a larger useful in-stru
tion window and lower memory laten
y.5.1 A

elerating Commit of Re-exe
uted Blo
ksOur results have shown that the
ommit traversal of the DFG is thesingle largest impediment to a
hieving performan
e
lose to that of an idealora
le. Column 2 of Table 5.1 shows the performan
e of DSRE with ideal
ommit performan
e (p-
om) on the GPA simulator. In the p-
om poli
y, everyload issues as soon as it rea
hes the memory interfa
e, resulting in multiple103

Ben
hmark p-
om (IPC) ora
le (IPC)ammp 3.96 3.96art 3.73 3.73bzip2 3.24 3.24
ompress 1.66 1.66equake 1.75 1.75m88ksim 2.26 2.31m
f 0.88 0.88mgrid 4.15 4.23mpeg2en
ode 3.51 3.51parser 1.32 1.32twolf 2.04 2.09hydro2d 3.35 3.35tom
atv 4.96 4.96turb3d 3.28 3.85Mean 2.27 2.30Table 5.1: Perfe
t
ommit
omparison on the GPA simulatorspe
ulative waves when a store arrives. However, the
ommit bits in the poli
yare in�nitely fast, so that the
ommit traversal never inhibits performan
e.The mean IPC for p-
om is 2.27, whi
h is within 4% of the upper bound,demonstrating that the
ommit traversal is the remaining bottlene
k. If the
ommit traversal is suÆ
iently fast, the performan
e losses due to load/store
on
i
ts will be negligible. In this
hapter, we des
ribe two te
hniques fora

elerating the
ommit traversal: spe
ulative
ommit sli
ing and bottom-up
ommit traversal.
104

5.1.1 Spe
ulative Commit Sli
ingOur analyses have shown that a signi�
ant portion of the
ommittraversal's lag behind the exe
ution traversal of the DFG is attributable tolate-
ommitting stores. As we saw in Se
tion 4.2 of Chapter 4, the load-to-store dependen
es in the EEMBC ben
hmarks, along with the nature of theTRIPS ar
hite
ture, results in delay in the resolution of stores in the instru
-tion window. Only after all prior stores have re
eived their
ommit bit
anloads forward their
ommit bits to their
onsumers (provided, of
ourse thatthe loads' addresses have also re
eived their
ommit bits). A single slow store
an thus blo
k all subsequent loads from forwarding any
ommit bits untilquite late. Sin
e loads typi
ally reside at the head of dependen
e
hains, a sin-gle slow store may thus blo
k any signi�
ant advan
e exe
ution of the
ommitwave. To a

elerate the
ommit traversal, we allow some loads to forwardtheir
ommit bits spe
ulatively|although no modi�
ations are made to ar-
hite
tural state until safe
ommit is guaranteed. A load that is unlikely to
on
i
t
an forward its
ommit bit, and if no violation eventually o

urs, the
ommit bit spe
ulation improves performan
e. If a
on
i
t does o

ur, thepipeline needs to be
ushed, sin
e there is no way to re
all the
ommit bit.This strategy is safe be
ause no ar
hite
tural state is written until all
om-mit bits are re
eived, at whi
h point the pro
essor
an dete
t any violations.Commit sli
ing thus begins to resemble the two-phase
ommit approa
h indatabases. In two-phase
ommit, individual transa
tions write to a log �le105

? Speculative instruction

ST A ST B ST C ... LD C

All stores are non−speculative

BASELINE:

the commit bit for LD X speculatively
independence for LD X, then forward

Older stores still speculative

ST A ST ? ST ? ... LD X

Older stores still speculative

ST A ST ? ST ? ... LD X

dependence

Older stores still speculative

dependence

ST A ST ? ST C ... LD C

If the commit bit for LD C was forwarded
speculatively and it is later determined that

independence, the pipeline is flushed.

LD X until prior stores are non−speculative

the dependence predictor incorrecty predicted

LD X as dependent, then hold back

Legend:

(1)

(2)

(3)

(4)

ACTION Program Order (older −> younger)

ST/LD Non speculative LD or ST

(commit bit recvd)

LD C sends the commit bit
only when all older stores are non−speculative

stores, if the dependence predictor predicts

if address X is non−speculative.

In the presence of older speculative

In the presence of older speculative
stores, if dependence predictor predicts

Figure 5.1: Spe
ulative
ommit sli
ingbefore updating the database on the disk. Writing to the log �le improvesperforman
e by ensuring that a

esses to the database are not serialized. Thedatabase appli
ation uses the log �le to rollba
k in
ase of data
orruption. In
ommit sli
ing, individual loads send
ommit bits spe
ulatively to break theserial
ommit dependen
e. The pro
essor uses pipeline
ushing to rollba
k ona
ommit mis-spe
ulation.This poli
y thus uses a hybrid of sele
tive re-exe
ution for the aggressive106

exe
ution of loads and spe
ulation with
ushing for a

eleration of
ommitbits. To issue the spe
ulative
ommit bits a

urately, we re-employed thedependen
e predi
tors evaluated earlier (all-stores, one-store, and �rst-store).We show an example in Figure 5.1. If the load is predi
ted independent,the load sends its
ommit bit as soon as it re
eives a
ommit bit from itsaddress, despite the presen
e of earlier unresolved or un
ommitted stores. Ifa
on
i
t is later dete
ted, the pipeline must be
ushed to guarantee
orre
texe
ution. If the load is predi
ted to be dependent, then the load will send its
ommit bit only after all prior stores re
eive their
ommit bit.We measured the performan
e of spe
ulative
ommit sli
ing using bothdependen
e predi
tion strategies, shown in Columns 4 and 5 of Table 5.2.Using the simpler all-stores predi
tor to perform
ommit sli
ing provides a30% speedup over using it to perform spe
ulative load issue. It also providesa 14% speedup over pure dependen
e predi
tion using the more
omplex one-store predi
tor. Using the one-store predi
tor to do
ommit sli
ing, however,provides a smaller 17% speedup over using it for load spe
ulation. Commitsli
ing with DSRE is faster than using dependen
e predi
tion for loads onevery ben
hmark we measured. Commit sli
ing provides a larger speedup forthe all-stores predi
tor, a
hieving
lose to the performan
e of the more
omplexone-store predi
tor with
ommit sli
ing. This larger speedup is be
ause the all-stores predi
tor is more
onservative, and hen
e predi
ts a larger fra
tion of theloads as
on
i
ting. This
lass of loads bene�t greatly with DSRE, be
auseonly
ommit bits need to be sent for these loads when they resolve. Thus,107

Flush on load mis-spe
ulation Flush on
ommitmis-spe
ulationBen
hmark all-stores(IPC) one-store(IPC) all-stores(IPC) one-store(IPC) ora
le(IPC)ammp 2.41 3.11 3.27 3.84 3.96art 3.72 3.50 3.72 3.72 3.73bzip2 3.16 3.23 3.19 3.19 3.24
ompress 1.56 1.56 1.65 1.64 1.66equake 1.71 1.71 1.74 1.74 1.75m88ksim 0.93 1.28 1.15 1.40 2.31m
f 0.87 0.83 0.88 0.85 0.88mgrid 1.31 1.56 3.52 3.36 4.23mpeg2en
ode 3.43 3.32 3.49 3.46 3.51parser 1.31 1.31 1.31 1.31 1.32twolf 1.27 1.36 1.72 1.63 2.09hydro2d 1.03 1.73 2.87 2.94 3.35tom
atv 4.96 4.95 4.96 4.95 4.96turb3d 0.62 0.74 0.91 1.00 3.85Mean 1.42 1.61 1.84 1.88 2.30Table 5.2: IPC with
ommit sli
ing on the GPA simulatorDSRE
oupled with a simple predi
tor
an be used to a
hieve performan
e
omparable to that with a more
omplex predi
tor.Performan
e for most ben
hmarks with
ommit sli
ing using the one-store predi
tor approa
hes that using ora
le. Four ben
hmarks, m88ksim,mgrid, twolf, and turb3d still have
onsiderable room for improvement. Theseben
hmarks in
ur a large number of
ushes due to load-store mispredi
tions.Commit sli
ing using the
onservative all-stores predi
tor a
hieves better per-forman
e for mgrid and twolf due to fewer
ushes.108

Table 5.3 shows the performan
e with
ommit sli
ing on the TRIPSsimulator for the set of EEMBC ben
hmarks. Sele
tive re-exe
ution, with
ommit sli
ing using the all-stores predi
tor, outperforms dependen
e predi
-tion using the all-stores predi
tor by 5.6%. Sele
tive re-exe
ution, with
ommitsli
ing using the �rst-store predi
tor, outperforms dependen
e predi
tion us-ing the �rst-store predi
tor by 4.2%. As explained in Chapter 4, the EEMBCben
hmarks, have a large number stores to the same address in the instru
-tion window. The large number of stores to the same address results in the�rst-store predi
tor be
oming
onservative and predi
ting a larger number ofloads as
on
i
ting-all-stores. These loads bene�t greatly from sele
tive re-exe
ution, if they happen to get their spe
ulative value from the most re
entmat
hing store, before the load.
onven00, ospf, and tblook01 show poor performan
e a
ross all the poli-
ies. These ben
hmarks have small average hyperblo
ks resulting in a largeblo
k fet
h and
ommit overhead. auto
or00,
anrdr01, �t00 and pkt
ow showsimilar performan
e a
ross the di�erent load-store poli
ies. These ben
hmarkshave few load-store dependen
es and the dependen
e predi
tor is able to pre-di
t the load-store dependen
es
orre
tly.

109

Flush on load mis-spe
ulation Flush on
ommitmis-spe
ulationBen
hmark all-stores(IPC) one-store(IPC) all-stores(IPC) one-store(IPC) ora
le(IPC)a2time01 0.793 0.842 1.043 1.797 2.418ai�tr01 0.714 0.715 0.790 0.752 2.477ai�rf01 1.692 1.675 1.681 1.734 2.635aii�t01 0.676 0.699 0.761 0.714 2.592aut
or00 1.208 1.208 1.208 1.208 1.210basefp01 1.068 1.072 1.033 1.204 1.212bezier01 2.789 2.793 2.795 2.784 2.789bitmnp01 0.920 0.965 0.978 0.896 1.714
a
heb01 0.861 0.992 0.880 1.002 1.535
anrdr01 1.400 1.430 1.433 1.423 1.483
onven00 0.538 0.538 0.538 0.538 0.538�t00 2.725 2.726 2.726 2.726 2.727id
trn01 1.566 1.532 1.322 1.466 2.719iir
t01 0.849 0.877 1.147 1.025 1.944ospf 0.906 0.908 0.908 0.911 0.917pntr
h01 0.930 0.916 1.064 0.901 1.039pkt
ow 1.187 1.188 1.209 1.272 1.272puwmod01 0.922 0.913 0.879 0.992 2.191routelookup 0.573 0.573 0.573 0.573 0.573rspeed01 0.887 0.889 0.997 0.906 2.129tblook01 0.821 0.825 0.845 0.825 0.854ttsprk01 0.743 0.748 0.753 0.746 0.782viterb00 1.490 2.217 1.916 1.786 3.053Mean 0.955 0.979 1.009 1.020 1.361Table 5.3: IPC with
ommit sli
ing on the TRIPS prototype simulatorpntr
h01 and bezier have marginally lower performan
e with the ora
lepoli
y when
ompared to
ommit sli
ing with the all-stores poli
y. The ora
le110

poli
y in the TRIPS simulator uses a fun
tional emulator to identify load-storedependen
es in hyperblo
ks. The emulator does not identify these dependen
esfor blo
ks that are exe
uted down the wrong
ontrol path. Hen
e, withoutperfe
t bran
h predi
tion, the ora
le poli
y
an in
ur load violation
ushesin blo
ks that are mispredi
ted by the bran
h predi
tor. pntr
h01 and bezierhave a number of load-violations in these mispredi
ted paths, resulting in lowerperforman
e than
ommit sli
ing.a2time01 shows a large improvement in performan
e with
ommit sli
-ing using the �rst-store predi
tor. a2time01 in
urs fewer load violation
usheswith
ommit sli
ing using the �rst-store predi
tor. The �rst-store predi
tor weused in these experiments uses a table of 3-bit saturating
ounters to make pre-di
tions. The details of the predi
tor are explained in Table 7.6 in Chapter 7.The 3-bit predi
tor has more states that we
an use for making a predi
tionwith
ommit sli
ing. However, it has a longer training time for loads that
on
i
t with multiple prior stores, and go to a di�erent data tile during ea
hdynami
 exe
ution of the load. These loads in
ur a greater number of
usheswith dependen
e predi
tion using the �rst-store predi
tor when
ompared to
ommit sli
ing using the �rst-store predi
tor.Dependen
e predi
tion outperforms
ommit sli
ing for viterb00, eventhough it in
urs a larger number of
ushes. Flushes have a smaller e�e
t on theperforman
e than
ommit bit propagation delay in viterb00. The blo
ks thatget
ushed due to load violations are normally younger, spe
ulative blo
ks.Be
ause the TRIPS pro
essor uses a rolling
ush model, load violations that111

happen early in younger blo
ks do not
ause an appre
iable drop in perfor-man
e. The load that
aused the violation is handled
orre
tly when the blo
kis re-mapped after the
ush.viterb00 operates on 16-bit words. The ben
hmark stores bran
h met-ri
s using a pointer to an array of 16-bit words. These words are then loadedand pro
essed. The
on
i
ting loads in this ben
hmark are found at the begin-ning of the blo
k. Also, these loads do not always
on
i
t with earlier storesfor every dynami
 exe
ution. Dependen
e predi
tion, using the �rst-store pre-di
tor results in a large number of these loads being predi
ted independent.When the loads
on
i
t with an earlier store, we have a pipeline
ush that getsresolved qui
kly be
ause the loads are at the beginning of the blo
k. Whenthe loads are predi
ted independent
orre
tly, we get a speedup by not havingto wait for all prior stores to resolve.Commit sli
ing results in a large fra
tion of loads being predi
ted
on-
i
ting. These loads send their replies without the
ommit bit, and send their
ommit bits only after all prior stores resolve. Even though
ommit sli
ingprevents pipeline
ushes when the loads
on
i
t, it also results in unne
essarydelay for loads that are independent. This delay outweighs the performan
ebene�ts of not
ushing the pipeline and results in the poor performan
e.There is still a 33% di�eren
e in performan
e between DSRE with
om-mit sli
ing and the ora
le poli
y. This di�eren
e is most pronoun
ed in ai�tr01,aii�t01, bitmnp01,
a
heb01, id
trn01, iir
t01, matrix01, and puwmod01. Tounderstand the reason for this performan
e di�eren
e, we looked at one of112

realLow_1 = &realData_1[l_1] ;

for(i_1 = j_1 ; i_1 < NUM_POINTS ;
 i_1 += n1_1, passCount_1++) {

}

tRealData_1 = *realLow_1 * wReal_1 −

*realLow_1 >>= STAGE_SCALE_FACTOR ;
/* Scale each stage to prevent overflow */

*imagLow_1 * wImag_1 ;Figure 5.2: Pie
e of sour
e
ode from the inner loop of aii�t01 to show store-load-store dependen
ethese ben
hmarks, aii�t01.aii�t01 is part of the automotive/industrial suite in EEMBC and
om-putes the Inverse Fast Fourier Transform on
omplex input values stored inreal and imaginary arrays. The program is
onstru
ted in su
h a way thatin the steady state, there are a number of stores that depend on earlier loadsfor their data. We saw an example of su
h behavior in Figure 4.14 in Chap-ter 4. aii�t01 also uses the RAM�lePtr for storing the output and hen
ehas the same store-load-store dependen
e seen in Figure 4.14. aii�t01 alsohas other variables that result in a store-load-store dependen
e. Figure 5.2shows another example
ode from the main loop of aii�t01 that results in astore-load-store dependen
e. The program stores the address of an elementof the array, realData 1, in the variable realLow 1. The array element data isthen a

essed by using the realLow 1 variable. The program uses this value to
ompute the new value of another variable, tRealData 1, whi
h is then storedin memory.Figure 5.3 shows part of the TIL
ode that
orresponds to the C
ode113

entera $t5, realData_1
slli $t6, $t3, 3
add $t7, $t6, $t5
entera $t8, realLow_1$$7464
sd ($t8), $t7 S[2]
entera $t33, realLow_1$$7464
ld $t34, ($t33) L[17]
ld $t35, ($t34) L[18]
entera $t36, imagLow_1$$7465
ld $t37, ($t36) L[19]
ld $t38, ($t37) L[20]
entera $t39, wReal_1$$7452

.bbegin t_run_test$122

ld $t40, ($t39) L[21]

entera $t42, wImag_1$$7453
mul $t41, $t35, $t40

ld $t43, ($t42) L[22]

entera $t46, tRealData_1$$7454
sub $t45, $t41, $t44
mul $t44, $t38, $t43

sd ($t46), $t45 S[23]Figure 5.3: Pie
e of TIL
ode from the inner loop of aii�t01 to show store-load-store dependen
ein Figure 5.2. From Figure 5.3, we see that the load with LSID 17 needs thevalue stored by store with LSID 2. This load, in turn, provides the valuerequired for the
omputation of tRealData 1. The value of tRealData 1 iswritten to memory by the store with LSID 23. Thus, there is a store-load-store dependen
e among these three instru
tions. If the load with LSID 17 ismade to wait on all prior stores to resolve before sending the
ommit bit, it willresult in extra delay in the propagation of the
ommit wave. The address ofthe store with LSID 2 does not
hange a
ross di�erent iterations of the loop.Hen
e, the load with LSID 17 will mat
h with multiple prior stores in the114

instru
tion window. The �rst-store predi
tor is not able to predi
t the exa
tmat
hing store and serializes the load. Similar store-load-store dependen
e isfound in the other ben
hmarks that show a large di�eren
e in performan
ebetween
ommit sli
ing and ora
le.Thus, the reason for the poor performan
e of
ommit sli
ing on someEEMBC ben
hmarks is twofold. First, these ben
hmarks have loads that
on-
i
t with multiple prior stores to the same address in the instru
tion window.The �rst-store predi
tor is unable to predi
t the exa
t store the load
on
i
tswith, and serializes the
on
i
ting load. These loads send their
ommit bits af-ter all prior stores resolve. Se
ond, these ben
hmarks have stores that dependon these
on
i
ting loads for their value. Sin
e the
on
i
ting loads
an sendtheir
ommit bits only after all prior stores resolve,
ommit bit propagation tothe stores that depend on the loads is delayed. The delay in the propagationof
ommit bits to the depending store in turn delays
ommit bit propagationfor serialized loads after the store. Hen
e, the twin e�e
ts of store-to-load andload-to-store dependen
es results in poor performan
e in these ben
hmarks.There are multiple ways to approa
h this problem. One approa
h is toredu
e the number of load-to-store dependen
es in the program. For example,the load-to-store dependen
e is also exhibited by some stati
 variables, like theiteration
ounter, in aii�t01. This dependen
e
an be eliminated by aggressive
ompiler optimizations that register allo
ate stati
 variables. Load-to-storedependen
es that are a result of the program stru
ture, and hen
e
annot beeliminated, will result in
ommit bit propagation delay.115

Flush on loadmis-spe
ulation Flush on
ommitmis-spe
ulationCon�guration all-stores(
y
les) �rst-store(
y
les) all-stores(
y
les) �rst-store(
y
les) ora
le(
y
les)Non-optimized 87.5m 84.5m 77.7m 85.3m 22.8mOptimized 18.7m 18.3m 15.5m 13.2m 10.2mTable 5.4: Number of
y
les (in millions) for program exe
ution for non-optimized and optimized aii�t01Flush on load mis-spe
ulation Flush on
ommitmis-spe
ulationCon�guration all-stores(IPC) �rst-store(IPC) all-stores(IPC) �rst-store(IPC) ora
le(IPC)Non-optimized 0.68 0.70 0.76 0.71 2.60Optimized 1.45 1.48 1.75 2.06 2.64Table 5.5: IPC for non-optimized and optimized aii�t01We hand-optimized aii�t01 and removed some of the redundant loadsand stores in the program. Table 5.4 and Table 5.5
ompares the performan
eof the various load-store re
overy s
hemes for both the
ompiler-generated andthe hand-optimized binary. Table 5.4 shows the number of
y
les taken by theprogram for the di�erent load-store dependen
e predi
tion s
hemes while Ta-ble 5.5 shows the IPC for the various
on�gurations. We see from Table 5.4that eliminating redundant loads and stores results in fewer
y
les for pro-gram exe
ution for all the load-store re
overy s
hemes. Comparing the IPC116

of the di�erent load-store dependen
e predi
tion s
hemes for the optimizedversion of the ben
hmark, we see that there is still 44% di�eren
e in perfor-man
e between dependen
e predi
tion and ora
le, due to some stores in theinstru
tion window that are to the same address. DSRE with
ommit sli
ingimproves performan
e over dependen
e predi
tion by 39%. In the optimizedversion of the program, DSRE is able to tolerate the extra traÆ
 generatedby multiple stores waking up the same load, and yields higher performan
e.Hen
e, DSRE has the potential to improve performan
e signi�
antly with anoptimizing
ompiler.Bottom-up Commit Traversal, dis
ussed in the next se
tion, is anotherway to redu
e the
ommit propagation delay. Finally, we
an redu
e serial-ization of loads by using more sophisti
ated
ommit bit predi
tion, sin
e onlythe loads that are serialized by the
ommit bit predi
tor en
ounter this delay.A
ommit bit predi
tor, whi
h tries to identify the exa
t mat
hing store for aload, will result in higher performan
e. Su
h a predi
tor will also result in per-forman
e improvement with regular dependen
e predi
tion. Store sets [12℄ anddistan
e-based predi
tors [73℄ dis
ussed in Chapter 2 are two su
h predi
torsthat have been proposed for
onventional, supers
alar pro
essors. Modifyingthese predi
tors to work in the distributed TRIPS environment
an be part offuture work.In summary, we saw lower performan
e gains with DSRE and
ommitsli
ing on the TRIPS prototype simulator when
ompared to the GPA simula-tor. The lower performan
e was due to both software (sub-optimal
ode and117

loop-based ben
hmarks) and hardware (poor dependen
e predi
tion and extraALU and network
ontention). We showed one example optimized
ode thatshowed a large improvement in performan
e both for the baseline and withDSRE. For programs with similar behavior, we expe
t performan
e gains onthe TRIPS simulator to in
rease and mat
h the GPA simulator with better
ompiler te
hnology that yields optimized
ode.5.1.2 Bottom-up Commit TraversalIf all operations|in
luding loads|
ould exe
ute in a single
y
le, sele
-tive re-exe
ution would provide no bene�t over
onservative load/store orderedexe
ution, be
ause the
ommit DFG traversal would take the same time as theexe
ution traversal. DSRE improves performan
e be
ause not all operationsrequire a single
y
le, espe
ially
a
he misses, so the
ommit traversal
an
at
h up to the exe
ution traversal while long-laten
y operations on the
riti-
al path exe
ute. However, sin
e no exe
ution a
tually o

urs on the
ommitwave, it may be possible for the
ommit wave to skip nodes in the graph, thus
ompleting more qui
kly.Spe
ulative
ommit sli
ing essentially removes some ar
s from the
om-mit traversal graph spe
ulatively, allowing more of the graph to be traversedin parallel and speeding up the traversal. An alternate approa
h is to allow
ommit bits to skip over nodes, going dire
tly from the input to the outputof a multi-instru
tion dependen
e
hain without traversing the intermediatenodes. If the root of a dependen
e tree has only one spe
ulative input, then118

Output Z

t = 3

t = 1
Send Z

t = 2
Send Z

Commit bit arrives

A

B
C

D

E

F

Legend:

t = 4
Bypass commit
to Z

 DFG arc

 Message packet

arc
Committed DFG

Figure 5.4: Bottom-up
ommit traversalthe intermediate nodes in the tree
an be bypassed when the last
ommittedoperand arrives, by sending the
ommit bit dire
tly to the leaves, provided noexe
ution is still in
ight.Bottom-Up Commit Traversal sele
tively allows a partial bottom-uptraversal to support forwarding of
ommit bits over multi-hop
hains. If aleaf node|in this
ase an output-produ
ing instru
tion|of the DFG has onlyone spe
ulative parent (all other parents, if any, have sent their
ommit bits),then the output node forwards its target(s) to the one spe
ulative parent. The119

output node knows the parent's reservation station address sin
e it has alreadyre
eived an operand from that parent, assuming the address was bu�ered.When the parent generates a
ommit bit, it bypasses the intermediate nodeand sends the
ommit bit dire
tly to the output, as shown in Figure 5.4. Priorto
ommitting, however, if the parent has only one spe
ulative parent, it too
an forward the output address to its parent (the grandparent), whi
h
an theneither do the same thing (forward up the
hain if it has one spe
ulative parent)or send the
ommit bit to the output, bypassing two nodes. If an instru
tionholding a bypass target re-�res instead of generating a null
ommit message,then the bypass
hain is dis
arded and the new operand is forwarded to the
hildren as in the base ar
hite
ture. When the exe
ution rea
hes the outputs,they
an begin the pro
ess of rebuilding the bypassing links anew.Table 5.6 shows the performan
e of this bottom-up traversal s
hemewhen
ombined with spe
ulative sli
ing. The bottom-up traversal s
hemeperforms marginally better than
ommit sli
ing on most ben
hmarks. Thebottom-up s
heme will not provide any bene�t for instru
tions that have mul-tiple spe
ulative inputs, sin
e these instru
tions
annot propagate the bypassinformation. Also, if the
ommit bit is sent by the parent before it has re
eivedthe bypass information from its
hildren, the bypass message does not resultin signi�
ant speedup. The bottom-up s
heme provides the most bene�t whenthe bypass message rea
hes the root node of a spe
ulative
hain, before theroot node sends it
ommit bit.The bottom-up
ommit s
heme has signi�
ant implementation
om-120

Ben
hmark Commitsli
ing(IPC) Bottom-up(IPC) Ora
le(IPC)ammp 3.84 3.86 3.96bzip2 3.19 3.19 3.24
ompress 1.64 1.64 1.66equake 1.74 1.73 1.75m88ksim 1.40 1.45 2.31m
f 0.85 0.85 0.88mgrid 3.36 3.40 4.23mpeg2en
ode 3.46 3.47 3.51parser 1.31 1.31 1.32twolf 1.63 1.62 2.09hydro2d 2.94 2.95 3.35tom
atv 4.95 4.94 4.96turb3d 1.00 1.01 3.85Mean 1.81 1.83 2.23Table 5.6: IPC with
ommit bypass on the GPA simulatorplexity. Bypass messages need to
arry the version number of the result thatthe bypass requesting node is expe
ting. Also, we assumed that a node
ansend bypass messages to all the nodes that request a bypass message. In areal implementation, a node will be able to send bypass messages to only oneor two
hildren, thus limiting the performan
e gains due to the bottom-ups
heme.m88ksim shows the most improvement in performan
e with the bottom-up poli
y. This ben
hmark in
urs fewer
ushes with the bottom-up s
heme.Thus, the improvement in performan
e
an be attributed to the indire
t in-121

uen
e of intera
tion between the bottom-up s
heme and the dependen
e pre-di
tor training. In summary, the mean performan
e of bottom-up traversals
heme is marginally better than spe
ulative sli
ing with the one-store poli
y.However, the bottom-up traversal s
heme in
urs signi�
ant hardware
omplex-ity over the base DSRE s
heme, and is not worth the marginal performan
eimprovement.5.2 Optimal Maximum Version NumberTo �nd the impa
t on performan
e for various maximum values of ver-sion number with
ommit sli
ing, we ran experiments on the GPA simulatorvarying the number of times ALUS are allowed to �re spe
ulatively. Table 5.7shows the performan
e for the various ben
hmarks when we vary the maximumnumber of spe
ulative �rings. We used the one-store dependen
e predi
tor for
ommit sli
ing. Loads that are predi
ted dependent by the predi
tor sendspe
ulative replies when they arrive at the memory interfa
e. Later arrivingstores that mat
h the address of the loads, and are earlier in program order,are allowed to wakeup these loads. The loads send their
ommit bits only afterall previous stores have resolved.From Table 5.7 we see that for most ben
hmarks, there is no signi�
antdi�eren
e in performan
e when we in
rease the maximum version number.This list of ben
hmarks in
ludes ammp, art, bzip2,
ompress, equake, m
f,mpeg2en
ode, parser, and tom
atv. This result is similar to what we observedin Chapter 4. For these ben
hmarks, the number of spe
ulative �rings does122

Maximum spe
ula-tive exe
ution 1 2 3 4 5 6ammp 3.84 3.82 3.82 3.82 3.82 3.82art 3.85 3.85 3.85 3.85 3.85 3.85bzip2 3.19 3.19 3.19 3.19 3.19 3.19
ompress 1.64 1.64 1.64 1.64 1.64 1.64equake 1.74 1.73 1.73 1.73 1.73 1.73m88ksim 1.40 1.37 1.37 1.38 1.36 1.32m
f 0.85 0.85 0.85 0.85 0.85 0.85mgrid 3.36 2.97 3.17 3.17 3.19 3.17mpeg2en
ode 3.46 3.47 3.48 3.47 3.47 3.47parser 1.31 1.31 1.31 1.31 1.31 1.31twolf 1.63 1.62 1.62 1.61 1.61 1.60hydro2d 2.94 2.80 2.70 2.61 2.38 2.26tom
atv 4.95 4.95 4.95 4.95 4.95 4.95turb3d 1.00 1.03 1.03 1.04 1.04 1.03Mean 1.88 1.88 1.87 1.88 1.86 1.85Table 5.7: Commit sli
ing IPC variation with in
reasing maximum spe
ulative�ring on the GPA simulatornot
hange signi�
antly when we in
rease the maximum version number al-lowed. In these ben
hmarks, the dependen
e predi
tor is able to predi
t a largeper
entage of loads
orre
tly. Also, as seen in Chapter 4, these ben
hmarksdo not have a large number of load-store dependen
es. ammp and
ompresshave a higher per
entage of loads that depend on earlier stores. However, thisdependen
e is satis�ed by the �rst mat
hing store in these ben
hmarks, thusresulting in fewer re�rings.m88ksim, mgrid, twolf, hydro2d, and twolf show a larger variation inperforman
e with maximum allowed version number. Performan
e ofm88ksim,123

mgrid, twolf, and hydro2d de
reases as we in
rease the maximum allowed ver-sion number. The number of times instru
tions that �re spe
ulatively in
reasesin these ben
hmarks as we in
rease the maximum version number allowed.These ben
hmarks have a higher per
entage of loads that depend on earlierstores. Also, a large number of loads in these ben
hmarks are in
orre
tlypredi
ted as
on
i
ting, and multiple versions of these loads exe
ute in theseben
hmarks. These loads send multiple spe
ulative values that result in extraALU and network
ontention.The only ben
hmark that shows in
rease in performan
e with largerversion numbers is turb3d. In this ben
hmark, in
reasing the maximum al-lowed version number de
reases the number of load mispredi
tions, as thepredi
tor be
omes more
onservative and predi
ts a larger number of loads as
on
i
ting. These loads do result in more re�rings. However, the performan
ebene�t of fewer
ushes outweighs the redu
tion in performan
e due to theextra
ontention. In summary, having ALUs �re spe
ulatively no more thanon
e yields the best performan
e bene�ts with
ommit sli
ing on the GPAsimulator.Table 5.8 shows the performan
e with
ommit sli
ing, using a the 3-bit �rst-store predi
tor, a
ross the set of EEMBC ben
hmarks on the TRIPSsimulator. From Table 5.8, we see there is less variation in performan
e onthe TRIPS simulator when we vary the maximum version number. Loads thatare predi
ted non-
on
i
ting or
on
i
ting-all-stores do not send spe
ulativereplies. Hen
e, these loads are not a�e
ted by the variation in maximum ver-124

sion number. On the TRIPS simulator, performan
e drops when we in
reasethe number of maximum spe
ulative exe
ution allowed beyond three.Maximum spe
ula-tive �ring 1 2 3 4 5 6a2time01 1.786 1.796 1.797 1.797 1.797 1.797ai�tr01 0.756 0.751 0.740 0.752 0.750 0.753ai�rf01 1.740 1.735 1.732 1.734 1.734 1.734aii�t01 0.698 0.722 0.707 0.716 0.717 0.716aut
or00 1.208 1.208 1.208 1.208 1.208 1.208basefp01 1.202 1.204 1.204 1.204 1.204 1.204bezier01 2.784 2.784 2.784 2.784 2.789 2.784bitmnp01 0.886 0.889 0.889 0.896 0.892 0.890
a
heb01 1.006 1.002 1.002 1.002 1.002 1.002
anrdr01 1.423 1.423 1.423 1.423 1.423 1.423
onven00 0.538 0.538 0.538 0.538 0.538 0.538�t00 2.726 2.726 2.726 2.726 2.726 2.726id
trn01 1.455 1.462 1.467 1.466 1.464 1.460iir
t01 0.995 1.019 1.002 1.025 1.019 1.017ospf 0.911 0.911 0.911 0.911 0.911 0.911pntr
h01 0.898 0.901 0.904 0.901 0.901 0.901pkt
ow 1.273 1.272 1.272 1.272 1.272 1.272puwmod01 1.013 0.992 0.992 0.992 0.992 0.992routelookup 0.573 0.573 0.573 0.573 0.573 0.573rspeed01 0.905 0.906 0.906 0.906 0.906 0.906tblook01 0.825 0.825 0.825 0.825 0.825 0.825ttsprk01 0.749 0.746 0.746 0.746 0.746 0.746viterb00 1.764 1.782 1.786 1.786 1.786 1.786Mean 1.018 1.020 1.017 1.020 1.020 1.020Table 5.8: Commit sli
ing IPC variation with in
reasing maximum spe
ulative�ring on the TRIPS simulator
125

5.3 Performan
e Studies with Commit Sli
ingIn this se
tion, we look at the performan
e of sele
tive re-exe
ution,with
ommit sli
ing, for perfe
t bran
h predi
tion, perfe
t L1 data
a
he, andperfe
t L2
a
he. We also examine the s
alability of DSRE by in
reasing theinstru
tion window size from 1K to 4K instru
tions.5.3.1 Performan
e with Perfe
t Bran
h Predi
tionFlush on load mis-spe
ulation Flush on
ommitmis-spe
ulationBen
hmark all-stores(IPC) one-store(IPC) all-stores(IPC) one-store(IPC) ora
le(IPC)ammp 2.41 3.22 3.01 4.11 4.23art 3.89 3.15 3.89 3.87 3.89bzip2 2.51 4.73 2.97 4.78 5.31
ompress 2.36 2.39 2.46 2.45 2.42equake 1.95 1.94 1.98 1.98 1.99m88ksim 0.95 1.53 1.20 1.71 2.44m
f 1.07 1.03 1.08 1.07 1.09mgrid 1.46 1.55 3.46 3.50 4.31mpeg2en
ode 3.93 3.93 4.02 4.02 4.05parser 1.43 1.43 1.43 1.44 1.44twolf 1.33 1.49 2.14 2.15 2.79hydro2d 1.08 2.12 2.98 3.09 3.42tom
atv 5.12 5.10 5.12 5.11 5.12turb3d 0.66 0.81 0.96 1.12 4.20Mean 1.55 1.85 2.04 2.24 2.70Table 5.9: IPC with
ommit a

eleration on the GPA simulator with perfe
tbran
h predi
tion
126

Table 5.9
ompares performan
e of
ommit sli
ing against dependen
epredi
tion with perfe
t bran
h predi
tion on the GPA simulator. Perfe
tbran
h predi
tion improves performan
e by 9% and 15% with dependen
epredi
tion using the all-stores and one-store predi
tor. With
ommit sli
ing,the performan
e improvements are 11% and 19% respe
tively, for all-storesand one-store. The ora
le poli
y shows a performan
e improvement of 17.4%.Perfe
t predi
tion in
reases the number of loads and stores in the instru
tionwindow, thus redu
ing the a

ura
y of the dependen
e predi
tor. Sele
tive re-exe
ution with
ommit sli
ing provides a larger improvement in performan
ethan dependen
e predi
tion by improving performan
e of loads that are in
or-re
tly predi
ted
on
i
ting.Table 5.10
ompares the performan
e of
ommit sli
ing against de-penden
e predi
tion with perfe
t bran
h predi
tion on the TRIPS simulator.Perfe
t bran
h predi
tion improves performan
e by 4.8% and 4.6% with de-penden
e predi
tion using the all-stores and �rst-store predi
tor. DSRE with
ommit sli
ing shows a redu
tion in performan
e with perfe
t bran
h predi
-tion similar to what we saw in Chapter 4. Again, this redu
tion in performan
eis due to multiple mat
hing stores to the same address, whi
h results in extranetwork and ALU
ontention. The ora
le poli
y shows a performan
e improve-ment of 7%. We see from Table 5.10 that perfe
t bran
h predi
tion does notresult in any appre
iable in
rease in performan
e due to the small size of theEEMBC ben
hmarks.
127

Flush on load mis-spe
ulation Flush on
ommitmis-spe
ulationBen
hmark all-stores(IPC) one-store(IPC) all-stores(IPC) one-store(IPC) ora
le(IPC)a2time01 0.798 0.846 1.043 1.814 2.447ai�tr01 0.700 0.713 0.790 0.604 2.499ai�rf01 1.717 1.697 1.681 1.732 2.588aii�t01 0.673 0.735 0.761 0.722 2.602aut
or00 1.465 1.464 1.208 1.464 1.464basefp01 1.110 1.116 1.033 1.234 1.262bezier01 2.783 2.776 2.795 2.778 2.789bitmnp01 1.008 1.061 0.978 0.975 1.975
a
heb01 0.951 0.952 0.880 1.192 2.048
anrdr01 1.652 1.725 1.433 1.680 1.852
onven00 0.510 0.481 0.538 0.481 0.483�t00 2.713 2.659 2.726 2.659 2.660id
trn01 1.583 1.573 1.322 1.365 2.862iir
t01 0.841 0.863 1.147 1.053 1.969ospf 1.053 1.054 0.908 0.529 1.070pntr
h01 0.927 0.967 1.064 0.904 1.048pkt
ow 1.269 1.271 1.209 1.367 1.368puwmod01 0.928 0.919 0.879 1.073 2.268routelookup 0.719 0.719 0.573 0.719 0.719rspeed01 0.888 0.890 0.997 0.908 2.172tblook01 0.864 0.899 0.845 0.868 0.886ttsprk01 0.804 0.810 0.753 0.813 0.862viterb00 1.491 2.226 1.916 1.791 3.046Mean 1.001 1.024 1.009 1.013 1.457Table 5.10: IPC with
ommit sli
ing on the TRIPS prototype simulator withperfe
t bran
h predi
tion
128

5.3.2 Performan
e with Perfe
t L1 Data Ca
heFlush on load mis-spe
ulation Flush on
ommitmis-spe
ulationBen
hmark all-stores(IPC) one-store(IPC) all-stores(IPC) one-store(IPC) ora
le(IPC)a2time01 0.798 0.846 1.043 1.814 2.447ammp 2.59 3.22 3.45 4.03 4.26art 4.09 3.69 4.09 4.08 4.10bzip2 3.72 3.88 3.81 3.88 3.90
ompress 1.81 1.78 1.91 1.83 1.84equake 2.50 2.51 2.56 2.56 2.58m88ksim 0.93 1.24 1.15 1.40 2.32m
f 1.15 1.11 1.17 1.15 1.17mgrid 1.53 2.07 3.54 3.52 5.58mpeg2en
ode 3.43 3.42 3.50 3.48 3.52parser 1.39 1.39 1.39 1.39 1.40twolf 1.30 1.37 1.75 1.69 2.22hydro2d 1.46 2.62 3.08 3.27 4.11tom
atv 7.80 7.70 7.80 7.79 7.80turb3d 0.67 0.79 0.92 1.02 3.96Mean 1.64 1.87 2.05 2.13 2.69Table 5.11: IPC with
ommit a

eleration on the GPA simulator with perfe
tL1 D-
a
heTable 5.11
ompares performan
e of
ommit sli
ing against dependen
epredi
tion with perfe
t L1 data
a
he on the GPA simulator. Perfe
t L1 data
a
he improves performan
e by 15.5% and 16% with dependen
e predi
tionusing the all-stores and one-store predi
tor. With
ommit sli
ing, the perfor-man
e improvements are 11% and 13% respe
tively for all-stores and one-store.The ora
le poli
y shows a performan
e improvement of 17%. The lower im-129

provement in performan
e with sele
tive re-exe
ution and
ommit sli
ing is inline with the results seen in Chapter 4.Table 5.11
ompares performan
e of
ommit sli
ing against dependen
epredi
tion with perfe
t L1 data
a
he on the TRIPS simulator. The perfor-man
e improvements are not as large with perfe
t L1 D-
a
he on the TRIPSsimulator be
ause of the small memory footprint of the EEMBC ben
hmarks.

130

Flush on load mis-spe
ulation Flush on
ommitmis-spe
ulationBen
hmark all-stores(IPC) one-store(IPC) all-stores(IPC) one-store(IPC) ora
le(IPC)a2time01 0.798 0.846 1.043 1.814 2.447a2time01 0.791 0.842 1.043 1.798 2.422ai�tr01 0.719 0.720 0.791 0.756 2.495ai�rf01 1.693 1.676 1.683 1.736 2.614aii�t01 0.681 0.717 0.763 0.721 2.620aut
or00 1.171 1.171 1.171 1.171 1.172basefp01 1.071 1.075 1.032 1.213 1.225bezier01 2.792 2.439 2.797 2.795 2.788bitmnp01 0.922 0.965 0.978 0.890 1.716
a
heb01 0.881 1.016 0.885 1.005 1.597
anrdr01 1.401 1.434 1.434 1.425 1.486
onven00 0.538 0.538 0.539 0.538 0.538�t00 2.734 2.734 2.734 2.734 2.736id
trn01 1.549 1.525 1.314 1.469 2.729iir
t01 0.836 0.849 1.147 1.022 1.951ospf 0.941 0.942 0.935 0.940 0.945pntr
h01 0.931 0.913 1.064 0.903 1.041pkt
ow 1.262 1.263 1.282 1.336 1.336puwmod01 0.925 0.915 0.879 0.996 2.194routelookup 0.573 0.573 0.573 0.573 0.573rspeed01 0.888 0.891 0.999 0.908 2.142tblook01 0.822 0.827 0.846 0.835 0.856ttsprk01 0.744 0.749 0.754 0.748 0.783viterb00 1.490 2.213 2.204 1.798 3.054Mean 0.959 0.981 1.016 1.025 1.369Table 5.12: IPC with
ommit sli
ing on the TRIPS prototype simulator withL1 D-
a
he
131

Flush on load mis-spe
ulation Flush on
ommitmis-spe
ulationBen
hmark all-stores(IPC) one-store(IPC) all-stores(IPC) one-store(IPC) ora
le(IPC)a2time01 0.798 0.846 1.043 1.814 2.447ammp 2.52 2.67 3.31 3.60 4.14art 4.09 3.68 4.09 4.08 4.09bzip2 3.45 3.60 3.55 3.61 3.62
ompress 1.58 1.56 1.65 1.61 1.60equake 2.41 2.46 2.53 2.53 2.56m88ksim 0.92 1.27 1.15 1.43 2.32m
f 1.14 1.08 1.15 1.13 1.16mgrid 1.53 1.90 3.54 3.49 5.57mpeg2en
ode 3.43 3.42 3.50 3.48 3.52parser 1.32 1.31 1.32 1.32 1.32twolf 1.24 1.32 1.66 1.61 2.09hydro2d 1.43 2.71 3.08 3.20 4.11tom
atv 7.81 7.70 7.81 7.78 7.81turb3d 0.66 0.77 0.92 1.03 3.95Mean 1.59 1.79 1.99 2.07 2.59Table 5.13: IPC with
ommit a

eleration on the GPA simulator with perfe
tL2
a
he5.3.3 Performan
e with Perfe
t L2
a
heTable 5.13
ompares performan
e of
ommit sli
ing against dependen
epredi
tion with perfe
t L2
a
he on the GPA simulator. Perfe
t L2
a
he im-proves performan
e by 12% and 11% with dependen
e predi
tion using theall-stores and one-store predi
tor. With
ommit sli
ing, the performan
e im-provements are 8.1% and 10.2% respe
tively for all-stores and one-store. Theora
le poli
y shows a performan
e improvement of 12.6%. The lower improve-132

ment in performan
e with sele
tive re-exe
ution and
ommit sli
ing is againin line with the results seen in Chapter 4.Table 5.14
ompares performan
e of
ommit sli
ing against dependen
epredi
tion with perfe
t L2
a
he on the TRIPS simulator. The performan
etrend is similar to what we saw with DSRE in Chapter 4. Performan
e im-provements with perfe
t L2
a
he are higher than perfe
t L1 D-
a
he, due tothe lower instru
tion
a
he miss laten
y.

133

Flush on load mis-spe
ulation Flush on
ommitmis-spe
ulationBen
hmark all-stores(IPC) one-store(IPC) all-stores(IPC) one-store(IPC) ora
le(IPC)a2time01 0.798 0.846 1.043 1.814 2.447a2time01 0.795 0.844 1.045 1.805 2.434ai�tr01 0.715 0.715 0.790 0.745 2.479ai�rf01 1.703 1.687 1.693 1.744 2.639aii�t01 0.676 0.712 0.761 0.716 2.602aut
or00 1.238 1.238 1.238 1.238 1.239basefp01 1.087 1.091 1.049 1.231 1.243bezier01 2.792 2.353 2.798 2.794 2.794bitmnp01 0.923 0.969 0.980 0.896 1.723
a
heb01 0.866 1.000 0.886 1.010 1.555
anrdr01 1.414 1.447 1.447 1.438 1.500
onven00 0.540 0.540 0.540 0.539 0.539�t00 2.732 2.732 2.732 2.732 2.733id
trn01 1.535 1.544 1.338 1.478 2.764iir
t01 0.853 0.869 1.154 1.058 1.987ospf 0.909 0.910 0.911 0.913 0.919pntr
h01 0.932 0.919 1.066 0.907 1.043pkt
ow 1.197 1.197 1.220 1.285 1.284puwmod01 0.925 0.917 0.881 1.019 2.212routelookup 0.573 0.573 0.573 0.573 0.573rspeed01 0.892 0.894 1.002 0.911 2.164tblook01 0.826 0.830 0.849 0.831 0.859ttsprk01 0.746 0.751 0.755 0.750 0.785viterb00 1.490 2.222 1.948 1.762 3.061Mean 0.959 0.981 1.015 1.027 1.371Table 5.14: IPC with
ommit sli
ing on the TRIPS prototype simulator withperfe
t L2
a
he
134

0

1

2

3
In

st
ru

ct
io

ns
 p

er
 C

yc
le

Oracle
Commit slicing
One-store predictor
Conservative

1K
2K 4K 8KFigure 5.5: DSRE performan
e with larger instru
tion window5.3.4 Performan
e with a Larger Instru
tion WindowThe sele
tive re-exe
ution me
hanism presented in this dissertation useslo
al state present in the ALUs for re
overy. Sin
e the me
hanism does notuse any
entralized stru
tures for re
overy, it
an be easily extended to futurema
hines with a larger instru
tion window.Figure 5.5 shows the IPC for various load issue poli
ies when we in
reasethe size of the instru
tion window in the pro
essor from 1K to 4K instru
tions.When the window size is doubled, the performan
e improves by a mere 2%with a
onservative load-issue poli
y, demonstrating the well-known result thatload spe
ulation is ne
essary to exploit large-window ILP. The ora
le poli
yimproves by 26%, showing the potential performan
e advantages of s
aling thewindow size. Conventional dependen
e predi
tion (with
ushing) improvesby just over half of the ideal, in
reasing by 14% using the one-store poli
y.The SRE implementations s
ale better with in
reasing window size; one-storepoli
y with DSRE results in a 25.5% improvement in performan
e, and all-stores improves by 27%. DSRE with
ommit sli
ing thus s
ales similarly inperforman
e to the ora
le as the window size is doubled. Beyond an instru
tion135

0

1

2

3
In

st
ru

ct
io

ns
 p

er
 C

yc
le

Oracle
Commit slicing
One-store predictor
Conservative

1K
2K 4K 8KFigure 5.6: DSRE performan
e with larger instru
tion window and perfe
tpredi
tionwindow of 2K instru
tions, performan
e saturates for all the load issue poli
ies.Figure 5.6 shows the mean performan
e of various load issue s
hemesfor various instru
tion window sizes with perfe
t bran
h predi
tion. Surpris-ingly, ora
le is the only poli
y that shows an in
rease in performan
e as thewindow size is in
reased beyond 2K. For the ora
le poli
y, the performan
ein
rease is the highest when we go from 1K to 2K window and redu
es afterthat. The
onservative poli
y shows no di�eren
e in performan
e when wein
rease the window size. Commit sli
ing and dependen
e predi
tion showan in
rease in performan
e when we go from a 1K instru
tion window to a2K instru
tion window, and show a de
rease in performan
e beyond 2K. Weanalyzed the ben
hmarks to �nd the reason for this behavior and found thatthe dependen
e predi
tor be
omes in
reasingly
onservative for larger instru
-tion windows with more
on
i
ting loads and stores. Hen
e, loads are heldba
k unne
essarily, redu
ing performan
e with dependen
e predi
tion. Sele
-tive re-exe
ution, with
ommit sli
ing, results in these these loads generatinga large number of spe
ulative exe
utions, thus redu
ing performan
e. With136

instru
tion windows larger than 2K instru
tions, we will need to use betterdependen
e predi
tors with sele
tive re-exe
ution to improve performan
e.In this
hapter, we looked at two te
hniques|spe
ulative
ommit sli
-ing and bottom-up
ommit traversal|to a

elerate
ommit bit propagationwith load-store dependen
e predi
tion. Although we fo
used on load-store de-penden
e predi
tion in this
hapter, re
overy using DSRE is not limited toload-store dependen
e predi
tion. DSRE is designed as a re
overy me
hanismthat
an be used by any data spe
ulation engine for low-
ost re
overy. In thenext
hapter, we present a brief evaluation of another data spe
ulation me
h-anism, last-value predi
tion, and show how multiple spe
ulation engines
anwork
on
urrently with DSRE. We also dis
uss other potential uses for DSREin the next
hapter.

137

Chapter 6DSRE Appli
ations
In this
hapter, we present a brief evaluation of another data spe
ula-tion me
hanism, last-value predi
tion, to show how DSRE
an work
on
ur-rently with multiple data spe
ulation engines. We also dis
uss how DSRE
anbe extended to to save energy and provide better reliability in future pro
es-sors.6.1 DSRE and Last-Value Predi
tionThe last few se
tions have fo
used on using DSRE to improve theperforman
e for load-store dependen
e predi
tion. The sele
tive re-exe
utionme
hanism presented in this dissertation is intended to be independent of theunderlying data spe
ulation me
hanism, and
an be theoreti
ally used by mul-tiple disparate spe
ulation engines for re
overy. In this se
tion, we evaluatethe another data spe
ulation me
hanism, last value spe
ulation, and show howDSRE
an be used for re
overy with multiple spe
ulation engines.

138

6.1.1 Potential for Last-Value Predi
tionData value lo
ality and reuse is a phenomenon whi
h has re
ently gen-erated
onsiderable interest in the
omputer ar
hite
ture
ommunity [4, 5, 19,37, 39, 42, 55, 69℄. Data value reuse results when an instru
tion produ
es thesame result during di�erent dynami
 invo
ations. A high data value reuse willresult in greater performan
e improvement with data value spe
ulation.Value lo
ality was �rst de�ned by Lipasti et al. and exploited to per-form load value predi
tion [40℄. Using simple predi
tors, the authors a
hieve3% and 6% average improvement in performan
e on pro
essors modeling thePowerPC 620 and Alpha 21164. Value lo
ality and reuse was subsequently ex-tended in a number of dire
tions. Yang and Gupta investigated value lo
alityof load instru
tions to eliminate redundan
y [70℄. The value lo
ality of storeinstru
tions has been studied in an e�ort to redu
e multipro
essor data andaddress bus traÆ
 [37℄. Also, resear
hers have proposed a number of predi
torsin literature for predi
ting values of instru
tions [61, 68℄. Resear
hers have alsoexamined
ompiler optimizations for in
reasing value reuse [6℄. Other work invalue predi
tion has shown that
onsiderable instru
tion fet
h bandwidth isneeded to spe
ulate on values e�e
tively [19℄, whi
h is not an issue in this
on-text be
ause of the high instru
tion fet
h bandwidth provided by the TRIPSar
hite
ture.To investigate the potential for data value reuse in SPEC CPU2000programs, we modi�ed the sim-alpha simulator to
ount reuse for ea
h dynami
instru
tion exe
uted [14℄. We used SimPoint simulations and simulated 100139

0

20

40

60

80

100
C

um
ul

at
iv

e
%

 h
it

s

Throttling Counter
Counter with Poison Bit

gzip
vpr

art lucas
gap

swim
gcc

mcf
parser

bzip2
mgrid

mesa
equake

eon
applu

galgel

ammp

perlbmk

M
eanFigure 6.1: Corre
t value spe
ulations with throttling
ounter and poison bitmillion instru
tions for ea
h ben
hmark [62℄. We asso
iated 1, 2, and 3-bitsaturating
ounters with ea
h stati
 instru
tion. Other resear
hers have usedsimilar
on�den
e estimators in earlier work to in
rease the a

ura
y of theirpredi
tors [4, 40, 55, 68℄.We in
remented the
ounter when an instru
tion's result mat
hed itsprevious result and de
remented the
ounter when it did not. Figure 6.1shows the per
entage of retired instru
tions that produ
ed the same resultduring su

essive dynami
 invo
ations, for the highest value of the
ounterasso
iated with the instru
tion. For brevity, we show the results for only the2-bit
ounter in this se
tion.From Figure 6.1 we see that on an average more than 36% of the instru
-tions
ommitted produ
ed the same result in at least four su

essive dynami
invo
ations. Thus, there is tremendous reuse in the SPEC CPU2000 suite,whi
h suggests that aggressive data value spe
ulation te
hniques, along withlow
ost re
overy, have potential for performan
e improvement.140

To redu
e data value mis-spe
ulation, we asso
iated a poison bit withea
h stati
 instru
tion, whi
h is set for an instru
tion if we mis-spe
ulate, forthe duration of the simulation. Other related work in value spe
ulation hasexamined throttling value spe
ulation of instru
tions that have low
on�den
e,whi
h has a goal similar to the saturating
ounter and poison bits that weemploy [8℄. We throttle data value spe
ulation for instru
tions whose poisonbit is set. We found that even with a poison bit, 26% of the instru
tions onan average reuse their results.6.1.2 Re
overy with DSRE for Last-Value Predi
tionTo investigate the e�e
tiveness of the de
entralized last-value predi
-tion, we implemented a simple last-value predi
tor in the GPA simulator. Thelast-value predi
tor is indexed using the instru
tion address and stores the lastvalue produ
ed by the instru
tion. We asso
iated a 2-bit
ounter with ea
hentry. We in
rement the
ounter every time an instru
tion produ
ed the sameresult and de
rement it otherwise. We repla
e the value asso
iated with aninstru
tion when the high bit of the
ounter is zero and the
ounter is reset ona repla
ement. An ALU spe
ulates on an instru
tion's result when the high bitof the
ounter asso
iated with the instru
tion is 1. We also asso
iated a poisonbit with ea
h instru
tion that is set whenever an instru
tion mis-spe
ulates.Spe
ulation is throttled for instru
tions whose poison bit is set. We simulateda set of ben
hmarks from the SPEC CPU95 suite, the SPEC CPU2000 suite,and the MediaBen
h suite. De
entralized last-value predi
tion was applied to141

Ben
hmark Base IPC Speedup - 2-bitCounter Speedup - 2-bitCounter and Poi-son Bitadp
m 1.3 7.7% 7.7%art 4.3 -7.0% 4.6%bzip2 3.6 5.6% 2.8%d
t 7.6 -1.3% 0.0%m88ksim 1.7 -11.8% 0.0%m
f 0.9 25.0% 0.0%mpeg2en
ode 3.9 -10.3% 0.0%parser 1.7 -6.2% 0.0%twolf 1.7 5.9% 5.9%Table 6.1: Last-value predi
tion performan
e on the GPA simulatoronly integer instru
tions in the ben
hmarks.Table 6.1 lists the performan
e of the last-value predi
tor a
ross theset of ben
hmarks. The �rst
olumn shows the IPC of the ben
hmark on thebase
ase without value predi
tion. The se
ond
olumn shows the speedupobtained when using only the 2-bit
ounter. We see from Table 6.1 that usingthe only the 2-bit
ounter a
tually hurts the performan
e on some ben
hmarks.However, some ben
hmarks like adp
m and m
f, show appre
iable speedupwith the last-value predi
tor. We found that the low a

ura
y of the 2-bit
ounter generates a large number of mis-spe
ulated values in the GPA resultingin ALUs �ring multiple times to generate the right value.The third
olumn in Table 6.1 lists the speedup obtained with the 2-bit
ounter and poison bit. We see from the table that using a poison bit never142

hurts performan
e. Also, some ben
hmarks like adp
m and twolf show signi�-
ant improvement in performan
e. We found that using the poison bit redu
esboth the
orre
t and the in
orre
t value predi
tions. However, the redu
tionin the number of mispredi
tions is far greater than the redu
tion in the num-ber of
orre
t predi
tions, thus resulting in either in
reased performan
e or no
hange in performan
e.In this se
tion, we evaluated a simple last-value predi
tor in this se
tion.DSRE was used to re
over when the last-value predi
tor mis-spe
ulated. Wealso enabled
ommit sli
ing using the one-store predi
tor in these experiments.Be
ause DSRE has been designed to be independent of the data spe
ulationengine, both load-store dependen
e spe
ulation and last-value predi
tion usedthe same DSRE me
hanism for re
overy. Even though we did not see a sig-ni�
ant in
rease in performan
e using last-value predi
tion, this se
tion doesdemonstrate how various data spe
ulation engines
an
on
urrently use DSREfor re
overy from mis-spe
ulations.6.2 DSRE and EnergySele
tive re-exe
ution has the potential to save energy
onsumption inmi
ropro
essors by re-exe
uting only instru
tions that are part of the data
owgraph of a mis-spe
ulating instru
tion. However, sele
tive re-exe
ution doesresult in extra null
ommit messages in the pro
essor. Also, the extra logi
required to support sele
tive re-exe
ution will
onsume stati
 power in smallerte
hnologies, where leakage is an issue. In our studies, we used version numbers143

to throttle spe
ulation to improve performan
e. Using me
hanisms to monitorenergy usage, we
an use version numbers to throttle spe
ulation to
onserveenergy. Any implementation of sele
tive re-exe
ution, in future te
hnologieswith smaller feature sizes, should also
onsider energy to establish feasibility.6.3 DSRE for ReliabilityReliability is emerging as an important issue in mi
ropro
essor design atsmaller feature sizes. A number of re
ent papers have examined the growingimportant of dealing with soft errors that tend to in
rease with de
reasingfeature size [22, 23, 38, 63℄. Soft errors are
aused in pro
essors by ele
tri
alnoise or external radiation. Transistors in smaller feature sizes are in
reasinglysus
eptible to errors from
osmi
 rays.Ar
hite
ts have responded to the soft error
hallenge by designing mi-
roar
hite
tures that are fault tolerant. Solutions primarily involve providingtemporal or spatial redundan
y with low overhead. For example, DIVA is ami
roar
hite
ture that uses spatial redundan
y to provide reliability [2, 10℄.DIVA uses a slow, reliable substrate to validate the
omputation of a fasterunreliable substrate. Ar
hite
ts have also looked at multithreading te
hniquesto provide redundan
y in pro
essors [54, 56℄.In an e�ort to a
hieve maximum performan
e at the minimum powerbudget, resear
hers have also looked at me
hanisms for operating with ex-tremely low safety margins. For example, the Razor mi
roar
hite
ture
on-tinuously varies the voltage to a
hieve low power
onsumption during exe-144

ution [17℄. Razor uses a fault dete
tion and re
overy system to adjust theoptimal operating point. With power be
oming a �rst-order design
onstraint,we
an expe
t su
h me
hanisms in future pro
essors.Sele
tive re-exe
ution
an be extended to provide a low-
ost re
overyme
hanism for errors in mi
ropro
essors. Logi
 that
omputes the probabilityof an error
an determine if a
ommit bit
an be sent with the result. If theprobability of a fault is higher than a pre-determined threshold, the result
anbe sent without the
ommit. The value
an then be re-
omputed to ensurethat the operation exe
uted without a fault. This, and other su
h me
hanisms,are promising topi
s for future resear
h.

145

Chapter 7DSRE on the TRIPS Prototype Simulator
DSRE was initially implemented in a high-level resear
h simulator thatmodeled one parti
ular instantiation of an EDGE ar
hite
ture. The GPAsimulator used in the initial evaluation did not model some of the low-leveldetails found in an implementation. To validate the performan
e of DSRE ona hardware implementation, we added support in the the TRIPS prototypesimulator for sele
tive re-exe
ution. In Chapter 4 and Chapter 5, we presentedresults from both simulators. This
hapter explains the
hanges that we madeto the various tiles in the TRIPS prototype simulator to support DSRE.We �rst start by explaining the extra state required in the various tilesto ensure fun
tional
orre
tness with DSRE. The various pipelines presentin the di�erent tiles require extra state bits to ensure
orre
t exe
ution inthe presen
e of multiple versions of an operand. Our initial implementationof DSRE demonstrated poor performan
e due to the ALU and network
on-tention of the extra messages, as well as the lag in
ommit bit propagation.We then looked at hardware te
hniques to alleviate the bandwidth bottlene
kand speedup the
ommit wave. We found that some of the physi
al
onstraintsen
ountered in an a
tual implementation have a signi�
ant e�e
t on DSRE,146

but using suitable te
hniques, we
an over
ome these limitations.7.1 Supporting DSRE on the TRIPS Pro
essorThis se
tion des
ribes the
hanges required to the basi
 DSRE me
ha-nism for implementation on the TRIPS prototype pro
essor. We also des
ribethe
hanges in the TRIPS pro
essor required to support DSRE.7.1.1 DSRE with Multiple Produ
ersIn the TRIPS prototype implementation of an EDGE ISA, multipleinstru
tions
an target an instru
tion's input operand. During runtime, pred-i
ation guarantees that only one produ
er will �re and send its value to the
onsuming instru
tion. When we introdu
e sele
tive re-exe
ution in this
on-text, it is possible to have a
onsumer re
eive inputs for an operand frommultiple produ
ers. Figure 7.1 shows a
ode snippet that illustrates this be-havior along with the data
ow graph for the set of instru
tions in the
ode.In this example, the tge instru
tion
ompares the values of R1 and R2 andgenerates a true or false predi
ate that it sends to the predi
ated-move in-stru
tions. Only one of the mov instru
tion will �re at runtime and send itsvalue to instru
tion #8.In the basi
 sele
tive re-exe
ution me
hanism, there was one produ
erfor ea
h
onsumer. Hen
e, the produ
er had
omplete
ontrol over the valueof the version numbers rea
hing the
onsumer. However, with multiple pro-du
ers for a single destination, this one-to-one
orresponden
e between the147

1 2

3 54

6 7

8

#1 R[0] read G[1] N[1]

#2 R[1] read G[2] N[1]

#4 N[2] genu 0x1 N[4]

#5 N[3] genu 0x2 N[5]

#6 N[4] mov_t W[0]

#7 N[5] mov_f W[0]

#8 W[0] write G[4]

#3 N[1] tge N[4,p] N[5,p]

Figure 7.1: EDGE
ode with multiple sour
es
3 2 0 10 915 1416

VnumDT id RT inum ET inumFigure 7.2: Version number with instru
tion identi�erprodu
er and the
onsumer is no longer valid. For example in Figure 7.1, withsele
tive re-exe
ution, the tge instru
tion may �re spe
ulatively and generatea false predi
ate. This predi
ate
an in turn
ause instru
tion #6 to �re andgenerate an in
orre
t spe
ulative value that is sent to instru
tion #8. Whenthe spe
ulation resolves, the tge instru
tion might generate a true predi
ateand
ause instru
tion #5 to �re and send its result to #8. Thus instru
tion#8
an get its input from both sour
es.To identify the sour
e of an operand, we extend the version number to
arry instru
tion identi�ers as shown in Figure 7.2. The instru
tion identi�eris a 14-bit quantity that is used to di�erentiate replies from the ETs, RTs,148

and the DTs. We identify the ETs by using the instru
tion number of theprodu
er (0-127). We identify replies from the RTs by appending the registerread instru
tion numbers to the ALU instru
tion numbers. Sin
e there are 32read instru
tions in a blo
k, RT identi�
ation requires 5 bits. Finally, the top2-bits are used to identify one of the 4 DTs. DT identi�ers are also useful toidentify spe
ulative loads that go to di�erent data tiles be
ause of the addressinterleaving.Having multiple produ
ers target a single
onsumer also means thatthere is no total order among di�erent versions of an operand. To identify null
ommit messages, we
ompare the version number re
eived with the
ommitbit against the last version number re
eived, and if they are identi
al, thein
oming message is treated as a null
ommit message. Having no total orderamong di�erent versions of an operand also means that instru
tions
an �rewhenever they get a new version number, even if it turns out to be an invalid,older message.Another aspe
t of having multiple produ
ers for one operand is thatthe instru
tion result needs to be saved and sent with ea
h message, even fornull
ommit messages. The instru
tion result is required be
ause a
onsumermight have re
eived another (in
orre
t) value from a di�erent produ
er inbetween, and hen
e if it needs to �re again, it will not have the right operand.The
onsumer needs to ensure that the last result generated was using thespe
ulative value that was sent by the produ
er of the
ommit bit. Thus,null
ommit messages in the TRIPS simulator
arry the last
omputed result,149

along with the version number of the last
omputed result.7.1.2 Changes to the Operand NetworkAs mentioned in Chapter 3, messages sent on the operand network(OPN) in the TRIPS pro
essor
onsist of a
ontrol pa
ket and a data pa
ket.We send the
ommit bit and the version number, along with the instru
tionidenti�er, in the
ontrol pa
ket. Thus, null
ommit messages are identi�edby
omparing the last version number and instru
tion identi�er re
eived foran operand with the version number and instru
tion identi�er in the
ontrolpa
ket. Sending the
ommit bit and version number with the
ontrol pa
kethelps us retire null
ommit messages, without having to wait for the datapa
ket.To support DSRE, the
ontrol pa
ket in the OPN was extended to
arrythe
ommit bit and the version number of the operand. The
ommit bit is asingle bit and the version number is 17 bits. The data pa
ket also
arries the
ommit bit and version number for ea
h operand.Handling predi
ate or-ing Handling predi
ates
orre
tly also requires
hanges to the basi
 DSRE me
hanism. The TRIPS ar
hite
ture handles pred-i
ates just like other operands. There are essentially two types of predi
ates|enabling and non-enabling. A predi
ated instru
tion exe
utes only if it re
eivesan enabling predi
ate. With predi
ate or-ing, an instru
tion
an re
eive mul-tiple non-spe
ulative, non-enabling predi
ates. However, it is guaranteed to150

#2 R[3] read G[3] N[0,1] N[4,0]

#1 R[2] read G[2] N[28]

#3 R[4] read G[4] N[0,0]

#4 R[5] read G[5] N[4,1]

#5 N[0] tle N[4,P] N[16,P]

#6 N[4] tle_t N[12,P] N[16,P]

; Is G[4] <= G[3] <= G[5] ?

#7 N[12] movi_t 1 W[3]

#8 N[16] movi_f −1 W[3]

#9 N[28] ret

#10 W[3] write G[3]Figure 7.3: Predi
ate or-ing examplere
eive only one non-spe
ulative, enabling predi
ate.With DSRE, predi
ate or-ing
an result in a predi
ate re
eiving multi-ple
ommit bits. Hen
e predi
ates require two
ommit bit �elds|one for thetrue predi
ate and one for the false predi
ate. An instru
tion
an re
eive theenabling predi
ate
ommit bit only on
e, while it
an re
eive the non-enablingpredi
ate
ommit bit many times. Figure 7.3 shows an example
ode that
anresult in a predi
ate re
eiving multiple
ommit bits.The
ode shown in Figure 7.3 does a 3-way
omparison of the valuesstored in registers G[3℄, G[4℄, and G[5℄. Instru
tion N[0℄
ompares values inregisters G[3℄ and G[4℄, and generates a true predi
ate only if G[4℄ <= G[3℄.Instru
tion N[0℄ generates a false predi
ate if G[4℄ > G[3℄. The predi
ategenerated by N[0℄ are sent to instru
tions N[4℄ and N[16℄. Instru
tion N[4℄ ispredi
ated on the result of instru
tion N[0℄, and exe
utes only if N[0℄ produ
ed151

a true predi
ate. Instru
tion N[4℄ produ
es a true predi
ate if G[3℄ <= G[5℄.If N[4℄ exe
utes, it will send its result to instru
tions N[12℄ and N[16℄. Fromthis example, we see that instru
tion N[16℄
an re
eive predi
ate values fromboth instru
tions N[0℄ and N[4℄. N[0℄ and N[4℄
an both send true predi
atesto N[16℄, whi
h is a non-enabling predi
ate sin
e N[16℄ is predi
ated on false.Thus, with predi
ate or-ring, an instru
tion
an re
eive multiple
ommit bitsfor the non-enabling predi
ate.Sin
e an instru
tion
an re
eive only one non-spe
ulative enabling pred-i
ate, we need a single version number �eld for predi
ates that stores the ver-sion number of the enabling predi
ate. This version number helps us identifynull messages for predi
ates by looking only at the
ontrol pa
ket. Hen
e, whenan instru
tion re
eives an enabling predi
ate, it stores the enabling predi
ateversion number in the predi
ate version number �eld.7.1.3 Changes to the Global TileThe Global Tile (GT) re
eives bran
h updates on the OPN. Bran
hupdates spe
ify the address of the next blo
k to fet
h. The GT
ompares thisaddress with the predi
ted address to validate bran
h predi
tion.With sele
tive re-exe
ution, the GT
an re
eive multiple bran
h up-dates for a blo
k. The GT uses only the update that has the
ommit bit setto validate the bran
h predi
tion. Using spe
ulative bran
h updates to vali-date bran
h predi
tion
an result in higher performan
e due to earlier bran
hupdates. It
an also result in poor performan
e if the update is in
orre
t and152

results in an unne
essary pipeline
ush. In this dissertation, we only use thebran
h update that has the
ommit bit set.The GT also responds to the mfp
 (move from PC) instru
tion bysending the value of the PC to the destination spe
i�ed in the instru
tion.With sele
tive re-exe
ution, the GT
an get multiple mfp
 requests. The GTuses the
ommit bit of the mfp
 request to determine the
ommit bit for thereply. The GT sets the
ommit bit for the reply when it re
eives amfp
 requestwith the
ommit bit set.7.1.4 Changes to the Exe
ution TileThis se
tion des
ribes the
hanges we made to the exe
ution tile tosupport DSRE. As shown in Se
tion 4.1.1, with DSRE an instru
tion has anextra
ommitted state asso
iated with it. We added a number of state bitsfor ea
h instru
tion mapped on an ET to tra
k its state through the variouspipeline stages. The rest of this se
tion des
ribes these
hanges in more detail.The ETs required the most
hange to support re-exe
ution. First, weadded
ommit bit and version number �elds to all the reservation stationentries in the ET for ea
h operand. This expansion requires a 1-bit
ommitbit and a 17-bit version number for operand A, a 1-bit
ommit bit and a 17-bitversion number for operand B, and 2 bits for the true and false
ommit bitsand a 17-bit version number for the predi
ate. As mentioned in Se
tion 7.1.1,the 17-bit version number also
ontains a 14-bit instru
tion identi�er. Hen
e,the number of bits required for the version number is 15. A larger version153

number allows an instru
tion to �re more times spe
ulatively. Se
ond, weused a separate register �le to store the result for ea
h instru
tion. Third, weadded a number of status bits to tra
k the extra state for ea
h instru
tion.These in
lude:� Null
ommit bit: Ea
h reservation station entry has a 1-bit null
om-mit message bit for operand A and a 1-bit null
ommit message bit foroperand B. When this bit is set, it means that the instru
tion has already�red on
e with the value of the operand in the reservation station. Aninstru
tion sends a null
ommit message if all its operands have their null
ommit message bit set. The null
ommit message bit for an operand
an be set in two ways:1. When a message arrives that has the
ommit bit set and has thesame version number as the last version of this operand. If theinstru
tion has exe
uted with the previous value of this operand,the null
ommit message bit is set for the operand.2. When an instru
tion exe
utes using the value of an operand thathas re
eived its
ommit bit. Sin
e the output null
ommit bit isgenerated by a performing a logi
al AND of the
ommit bits of allinput operands, setting the null
ommit message bit for an operandwhen the instru
tion exe
utes ensures that the ET
an send a null
ommit message for this instru
tion, if the other operands for thisinstru
tion re
eive null
ommit message messages.154

Null
ommit messages are identi�ed by doing a logi
al AND of the null
ommit message bits of all the operands of an instru
tion. When allthe operands of an instru
tion have their null
ommit message bit set,the instru
tion
an send a null
ommit message to its
onsumers. Whenthe ET re
eives a null
ommit message bit for an instru
tion, it
he
ksto see if the other operand(s) have re
eived their
ommit bit. It marksthe instru
tion as not issued only if all the operands of the instru
tionhave re
eived their
ommit bit to prevent redundant exe
ution of theinstru
tion.� Exe
uted bit: Ea
h ET reservation station has an exe
uted bit. Theexe
uted bit is set when the instru
tion exe
utes for the �rst time. Aninstru
tion
an send a null
ommit bit only if this bit is set for theinstru
tion.� Exe
uting bit: This bit is set by the read stage of the pipeline when theinstru
tion is issued to an ALU. The bit is reset after the instru
tionhas �nished exe
uting. If the exe
uting bit is set, the same instru
tion
annot be issued again until the bit is reset. The ET also uses this bitto determine if it
an sele
t an instru
tion to send a null
ommit bit. Itmight happen that a long laten
y instru
tion, like a multiply instru
tion,gets a null
ommit message while it is still exe
uting. We want themultiply instru
tion to send a null
ommit message to its
onsumersonly after it has �nished exe
uting. Resetting this bit prevents null155

ommit messages from ra
ing ahead of the instru
tion's result to theinstru
tion's
onsumers. One drawba
k of this approa
h is that it alsoprevents
on
urrent exe
ution of di�erent versions of an instru
tion.� Issued-exe
uted bit: Ea
h ET reservation station entry has an issued-exe
uted bit. The ET resets this bit when an instru
tion is issued bythe sele
t or by the read stage of the pipeline, and sets the bit when theinstru
tion �nishes exe
ution. This bit is required for
orre
t identi�-
ation of null
ommit messages. In the ET pipeline, an instru
tion
anstay sele
ted for multiple
y
les before it exe
utes, if the ET pipeline isstalled. When an instru
tion is sele
ted by the sele
t stage, the ET setsthe issued bit for the instru
tion. A de�nitely sele
ted instru
tion thatis not issued by the read stage stays in the pipeline until it is issued.If su
h an instru
tion re
eives a null
ommit message, the instru
tion
an in
orre
tly send a null
ommit message before it has exe
uted. Theissued-exe
uted bit is used to identify this
ase. The null message bit foran operand is set only if the issued-exe
uted bit is set or the exe
utingbit is set.� Num-�red
ounter: This
ounter is used for tra
king the number of timesa parti
ular instru
tion exe
uted spe
ulatively. This
ounter is usefulfor throttling spe
ulative exe
ution of instru
tions. As we showed inChapter 4, best performan
e is a
hieved when an instru
tion is allowed toexe
ute no more than 4 times spe
ulatively for the EEMBC ben
hmarks.156

The basi
 operation of the ET with re-exe
ution is shown in Figure 7.4and Figure 7.5. Figure 7.4 shows the various operand pro
essing steps in theET. When an operand is re
eived at the ET, it
he
ks to see if a previousversion of the operand has been re
eived. If there are no previous versions ofthe operand, the ET marks the operand as ready. If a previous version of theoperand has been re
eived by the ET, the ET
ompares the version numbersof the operand. If the
urrent version number of the operand is identi
al tothe previous version number, the operand is guaranteed to have its
ommitbit set. The ET sets the null
ommit message bit for this operand, and resetsthe issued bit for the instru
tion only if the other operands of the instru
tionhave their
ommit bit set. Resetting the issued bit only if the other operandsof the instru
tion have their
ommit bit set ensures that the instru
tion doesnot exe
ute unne
essarily and send the same result as the last exe
ution.If the version number of the re
eived operand is di�erent from the lastversion number, the ET
he
ks the num-�red
ounter to determine the numberof times this instru
tion has �red spe
ulatively. If the instru
tion has �redfewer than the maximum number of times it is allowed to �re spe
ulatively,the issued bit for the instru
tion is reset to re-exe
ute the instru
tion. If theinstru
tion has already exe
uted the maximum number of times it is allowedto exe
ute spe
ulatively, the issued bit for the instru
tion is reset only if theinstru
tion has re
eived the
ommit bit for all its operands. Otherwise, themessage is ignored.Figure 7.5 shows the various steps in the exe
ution of an instru
tion157

Operand
already
received?

number?

Different
version

Ready
Mark operand

Instruction
fired max
times?

Mark instruction
as not issued

Commit bit
received for

other operands?

Set null commit
bit for operand
Mark instruction

as not issued

Set null commit
bit for operandIgnore messageMark instruction

as not issued

Operand received at ET

Yes No

Null commit
message

Yes No

Commit bit
received for
all operands?

Yes No

YesNo

NoYes

Figure 7.4: Operand pro
essing with re-exe
ution in the exe
ution tile (ET)with sele
tive re-exe
ution. Instru
tions that have all their operands ready aresele
ted for issue by the sele
t stage. When the sele
t stage sele
ts a readyinstru
tion, it sets the issued bit for the instru
tion. The sele
t stage also resetsthe issued-exe
uted bit. The instru
tion then pro
eeds to the read stage of thepipeline. The read stage
he
ks for fun
tional unit availability, and issues theinstru
tion to the appropriate fun
tional unit. The read stage also sets theissued-exe
uted and the exe
uting bit for the instru
tion. The instru
tion thenpro
eeds to the exe
ute stage of the pipeline where it
omputes its result. On
ethe instru
tion has �nished exe
uting, the exe
ute stage resets the exe
uting bit158

Select Stage

Read Stage

Execute Stage

Retire Stage

Set
Reset

issued bit

Set executing bit

Set

bitissued−executed

issued−executing bit

Reset executing bit

Set executed bit

Figure 7.5: Instru
tion exe
ution with re-exe
ution in the exe
ution tile (ET)and sets the exe
uted bit for the instru
tion. The exe
ute stage also in
rementsthe num-�red
ounter for the instru
tion.7.1.4.1 Handing Multiple VersionsWith sele
tive re-exe
ution, the ET
an re
eive multiple versions of anoperand. When the ET re
eives a new version of the operand, it resets theissued bit for this instru
tion, so that it
an be sele
ted again for exe
ution.The sele
t stage sele
ts an instru
tion and it is issued by the read stage onlyif the instru
tion's exe
uting bit is not set. Using the exe
uting bit prevents159

null
ommit messages from ra
ing ahead of the a
tual result to the
onsumersof the instru
tion.7.1.4.2 Identifying Null Commit MessagesThe ET identi�es null
ommit messages for operands by
omparingthe version numbers re
eived for the operand. When the ET re
eives a newversion of an operand, it
ompares the in
oming version number with the lastversion number for the operand. If the version numbers are the same and the
ommit bit is set for the new version, then it is identi�ed as a potential null
ommit message. The ET has to ensure that the instru
tion exe
uted usingthe last value of the operand, before it
an set the null
ommit message bitfor the operand. To determine if the instru
tion exe
uted with the last valueof the operand, the ET
he
ks the issued-exe
uted and exe
uting bit of theinstru
tion. If either one of the bits is set, the ET sets the operand's null
ommit message bit.The ET identi�es output null
ommit message for an instru
tion byexamining the null message bits for the operands of the instru
tion. If allthe operands of an instru
tion have their null
ommit message bit set, thena null
ommit message is sent for the instru
tion. The null
ommit messageessentially involves sending the last output of the instru
tion with the lastversion number and the
ommit set. When a null
ommit message for anoperand is re
eived, the ET needs to identify if it
an send a null
ommitmessage for the instru
tion, before resetting the instru
tion's issued bit. To160

determine if a null
ommit message
an be sent, the ET
he
ks the null
ommitmessage bits of the other operands of the instru
tion, when it re
eives the null
ommit message for an operand. If this operand is the last arriving operand,then the issued bit is reset so that the sele
t or the read stage
an pro
ess thisinstru
tion and send a null
ommit message. Otherwise, the ET sets the null
ommit message bit for the operand, but does not mark the instru
tion as notissued. Not resetting the issued bit ensures that an instru
tion does not sendredundant spe
ulative results to
onsumers.7.1.4.3 Handling Predi
atesPredi
ates require spe
ial handling in the ET. As shown in Figure 7.3,with predi
ate or-ing an instru
tion
an get both true and false predi
ates foran instru
tion. On
e an instru
tion has exe
uted, we do not need to resetits
ommit bit when it re
eives a new version of the predi
ate. Also, the ET
an send a null
ommit message for the instru
tion without looking at thepredi
ate version number, when it re
eives the
ommit bit for the enablingpredi
ate and the other operands for the instru
tion have their null
ommitmessage bit set. However, this fun
tionality requires looking at the data pa
ketof the predi
ate.To identify null
ommit message bit for enabling predi
ates, the ETstores the version number of the last enabling predi
ate re
eived. If the ETre
eives a
ommit bit with the same version number, it
an determine thatonly a null
ommit message needs to be sent for this instru
tion. With this161

optimization, the ET does not need to wait for the data pa
ket to identify null
ommit message bits for predi
ates.7.1.5 Changes to the Register TileThe register tile handles reads and writes to the ar
hite
tural register�le. The RT pro
esses the blo
k input instru
tions in ea
h blo
k by sendingvalues from the register �le or the write queues. Write instru
tions wake uppending read instru
tions when they rea
h the RT.Sin
e a produ
er
an send multiple versions of an operand with sele
tivere-exe
ution, the RT assigns a version number to ea
h read reply that it sendson the OPN. To handle the
ase where multiple produ
ers target the same
onsumer, the version numbers also
ontain a register instru
tion number, touniquely identify the reply from the RT.With re-exe
ution, multiple versions for a write instru
tion
an arriveat the RT. Every version of a write instru
tion that arrives at the RT wakesup any read instru
tions that are waiting on the write. Reads reply withmonotoni
ally in
reasing version numbers. The RT sets the
ommit bit forreplies that are sent by reading the ar
hite
tural register �le. If the readreply is satis�ed by a data-spe
ulative write instru
tion, the read reply isalso spe
ulative and its
ommit bit is not set. When the write be
omes non-spe
ulative, the read sends the
ommit bit to its
onsumers.The RT identi�es null
ommit messages by examining the version num-ber of the write instru
tions. To support re-exe
ution, the RT in
ludes a ver-162

Yes No

Mark dependent reads
for processing by the
read queue pipeline

Mark dependent reads

write queue pipeline
for processing by the

Null write?

No

this write?
that depend on

reads
Any

Yes

at the RT
Write instruction received

Update write value
and commit bit

Write processing done

Figure 7.6: Write pro
essing with re-exe
ution in the register tile (RT)sion number and a
ommit bit �eld with ea
h write queue entry. The readqueue entries in the RT have two version number �elds, a
ommit bit �eld,and a null
ommit message bit �eld. The two version number �elds are la-beled in-version-number and out-version-number. The in-version-number �eldstores the version number of the last write that woke up the read instru
-tion. The out-version-number �eld stores the version number of the last reply
orresponding to this read.When a new version of a write instru
tion is re
eived at the RT, itsear
hes the read queue and wakes up all read instru
tions that depend onthis write. The write queue pipeline also
ompares the version number of the163

write instru
tion with the in-version-number of the read instru
tion. If the twoversion numbers mat
h, the write is a null
ommit message. The null
ommitmessage bit for the read instru
tion is set on a mat
h. When read instru
tionshave the
orresponding null
ommit message bit set in the read queue, theysend a null
ommit message by sending the
ommit bit with the same versionnumber as the last reply.With sele
tive re-exe
ution, a spe
ulative write instru
tion may wakeup a
orresponding read instru
tion that is subsequently nulli�ed by a nullwrite instru
tion. When the RT re
eives a null write instru
tion, it resetsthe issued �eld of read instru
tions that were satis�ed by the previous versionof this write instru
tion. These reads are then pro
essed by the read queuepipeline, and get new values either from another write instru
tion or from thear
hite
tural register �le. Figure 7.6 shows the steps involved when a newwrite arrives at the RT.7.1.6 Changes to the Data TileThe DT is responsible for preserving sequential memory semanti
s inthe TRIPS pro
essor. The load-store queue in the DT tra
ks the dynami
dependen
es among in-
ight loads and stores. The DT forwards store valuefrom earlier stores to loads.The dependen
e predi
tor in the DT predi
ts if a load is independentof prior stores. When a load is predi
ted dependent on a store, it is pre-vented from sending a reply until all prior stores have resolved. Loads that164

are predi
ted independent in
orre
tly result in pipeline
ushes. Loads thatare predi
ted dependent in
orre
tly lose an opportunity to send their repliesearlier, thus resulting in lower performan
e.Withe DSRE, the DT
an send spe
ulative replies for loads that arepredi
ted dependent. The
ommit bit for the load is sent only when all priorstores resolve. Stores that mat
h with a later load
an initiate re-�ring ofthe load. Thus, using sele
tive re-exe
ution, a load
an send multiple repliesspe
ulatively. The load-reissue pipeline in the DT is used to send
ommit bitsfor loads when all prior stores have resolved.Using the dependen
e predi
tor in the DT, we
an implement
om-mit sli
ing by sending
ommit bits for loads that are predi
ted independent.We evaluate
ommit sli
ing using the simple 1-bit predi
tor implemented inthe TRIPS prototype and the more
omplex �rst-store predi
tor in the nextse
tion.Load Wake Up Poli
y With the �rst-store predi
tor, mat
hing stores areallowed to wake up deferred loads. With sele
tive re-exe
ution, stores thatarrive at the DT
an be data-spe
ulative. Hen
e we
an have two load wakeup poli
ies. In the �rst poli
y, data-spe
ulative stores are not allowed to wakeup loads by preventing the ETs from sending spe
ulative stores to the DT.Preventing spe
ulative stores from rea
hing the DT redu
es
ontention in thenetwork and the DT pipeline. However, it prevents the spe
ulative wave fromrunning ahead, and
an result in poor performan
e when the spe
ulative store165

value is
orre
t. The se
ond poli
y allows spe
ulative stores to rea
h the DTand wake up mat
hing loads. Allowing spe
ulative stores to wake up loads
an result in better performan
e when the store address and the store valueof spe
ulative and non-spe
ulative versions are the same. However, if thestore value
hanges, the DT needs to re-�re loads that mat
h with the store.Worse, if the store address
hanges, we need to identify loads that were wokenup in
orre
tly by the last version of this store and re-�re them. The DT alsoneeds to wake up the loads that mat
h the new address. Identifying both these
ases involves doing two
ontent addressable memory (CAM) mat
hes whenstores arrive at the DT, and is expensive in terms of timing and power. Also,with spe
ulative stores, the LSQ needs to be augmented to store the addressof the previous version of the store. The old address is used to identify loadsthat might have re
eived in
orre
t values. Hen
e, spe
ulative stores also havean area overhead asso
iated with them.Another
ase arises with spe
ulative stores when the spe
ulative ver-sions of the same store go to di�erent data tiles. When the non-spe
ulativeversion of the store eventually arrives at a data tile, its arrival is broad
ast onthe Data Status Network (DSN) to all the other DTs. Any DT that re
eived aspe
ulative version of this store has to perform a CAM mat
h to determine ifany loads re
eived in
orre
tly forwarded value from the store. All su
h loadsneed to be reissued. Sin
e every
y
le, ea
h DT gets a message from all theother three DTs on the DSN, in the worst
ase this will involve 3 CAM mat
hesfor stores re
eived by other tiles. Hen
e, the DT will have to do CAM mat
h166

using 5 addresses per
y
le in the worst
ase. Due to the large area and powerrequirements, we did not pursue this approa
h and spe
ulative stores were notallowed to rea
h the DT.For every load in the LSQ, we added an exe
uting bit to support re-exe
ution. The DT uses this bit to ensure that the null
ommit message arenot sent to the load's
onsumer before the load data. Null
ommit messages aresent by the reissue pipeline. It might happen that the reissue logi
 determinesthat it is safe to send the
ommit bit for a load, be
ause all prior stores haveresolved, while the main load-store pipeline is still pro
essing the load. In this
ase, the reissue logi

an potentially send the
ommit bit before the load valueto the load's
onsumer. This bit is set when the load enters the DT pipeline,and is reset when the load reply is sent. A null
ommit message
annot besent for a load when its exe
uting bit is set.7.2 DSRE Performan
eTo evaluate the performan
e of DSRE on an a
tual EDGE implemen-tation, the TRIPS prototype simulator was modi�ed to support re-exe
ution.As des
ribed in the last se
tion, we modi�ed the di�erent tiles in the simu-lator to implement basi
 sele
tive re-exe
ution. The details of the simulatedpro
essor are shown in Table 7.1.
167

Feature DetailsALUs 16 ALUs
onne
ted by a routed operand network.The ALUS have both integer and
oating point (FP)units.Instru
tion laten
y 1-
y
le for basi
 integer ops like add and shift. 3-
y
le, pipelined integer multiply. 24-
y
le, non-pipelined integer divide. 4-
y
le, pipelined FP add.4-
y
le, pipelined FP multiply. 2-
y
le, pipelined FP
onvert and
ompare. FP divide not supported inhardware.Bran
h Predi
tor Next blo
k predi
tor similar to the Alpha 21264 tour-nament predi
tor with lo
al, global, and
hoi
e pre-di
tors.Instru
tion
a
he 64 KB, 16 KB per bank, 2-way set asso
iative, 64byte line size.Data Ca
he 32 KB, 8 KB per bank, 2-way set asso
iative, 64 byteline size.L2
a
he 2 MB, 2-way set asso
iative, 64 byte line size.Table 7.1: Simulated TRIPS pro
essor
on�gurationThe initial implementation of DSRE on TRIPS involved adding supportfor sending multiple spe
ulative versions for the same operand, and sending a
ommit bit when the operand be
ame non-spe
ulative. Null
ommit messagesin this implementation were treated like regular messages in the ET and a
tedlike single-
y
le ALU operations. Thus, null
ommit messages went throughthe various pipeline stages before being pro
essed by the ET router. The LSQin the DT was augmented to store the reply for a load, and this stored loadvalue was sent with the null
ommit message. We
ompared the performan
eof this s
heme against an ora
le poli
y that does perfe
t load-store predi
tion,168

an aggressive poli
y that treats all loads as independent, a
onservative poli
ythat treats all loads as dependent, and a poli
y with the 1-bit dependen
epredi
tor that is implemented in the TRIPS prototype pro
essor. Table 7.2shows the performan
e of the EEMBC suite for these
on�gurations.

169

Ben
hmark
ons(IPC) aggr(IPC) all-stores(IPC) dsre(IPC) ora
le(IPC)a2time01 0.687 0.755 0.776 0.705 2.362ai�tr01 0.554 0.592 0.711 0.544 2.432ai�rf01 0.870 0.871 1.657 0.894 2.590aii�t01 0.542 0.567 0.672 0.535 2.539aut
or00 1.185 1.166 1.132 1.409 1.166basefp01 0.817 0.849 1.028 0.810 1.164bezier01 1.202 2.089 2.500 1.262 2.499bitmnp01 0.644 0.887 0.875 0.635 1.665
a
heb01 0.574 0.668 0.867 0.614 1.532
anrdr01 1.143 1.123 1.325 1.221 1.393
onven00 0.534 0.523 0.537 0.485 0.537�t00 1.057 2.601 2.633 1.052 2.630id
trn01 0.644 1.217 1.431 0.653 2.632iir
t01 0.489 0.477 0.826 0.499 1.910ospf 0.597 0.810 0.881 0.590 0.857pntr
h01 0.802 0.720 0.868 0.717 1.008pkt
ow 0.864 0.980 1.209 0.865 1.221puwmod01 0.686 0.583 0.901 0.656 2.178routelookup 0.554 0.554 0.554 0.702 0.554rspeed01 0.679 0.599 0.881 0.669 2.111tblook01 0.678 0.673 0.736 0.609 0.763ttsprk01 0.617 0.675 0.720 0.587 0.758viterb00 0.627 2.370 1.394 0.589 2.749Mean 0.692 0.782 0.925 0.691 1.310Table 7.2: Comparison of initial DSRE implementation on the TRIPS proto-type simulatorFrom Table 7.2, we see that our initial implementation DSRE performssimilarly to the
onservative poli
y. The aggressive poli
y performs 13% betterthan the
onservative poli
y. Rolling
ushes in the TRIPS pro
essor redu
e170

the
ost of
ushes
ontributing to the higher performan
e for the aggressivepoli
y. The 1-bit dependen
e predi
tor yields an average 18.2% improvementover the aggressive approa
h. The predi
tor has 1024 1-bit entries, and anentry is set for a load that mis-spe
ulates and
auses a dependen
e violation.All bits in the predi
tor are
leared un
onditionally after
ommitting 10,000blo
ks. Be
ause of the simple nature of the predi
tor, it is not good for
at
hing
omplex dependen
e patterns in ben
hmarks.The 4th
olumn in Figure 7.2 shows the performan
e of our basi
 se-le
tive re-exe
ution s
heme. The simple re-exe
ution s
heme performs sim-ilarly to the
onservative poli
y be
ause only multi-
y
le operations bene�tfrom DSRE. The aggressive and 1-bit predi
tor s
hemes outperform the basi
DSRE s
heme.To study the performan
e of DSRE with
ommit sli
ing, we evaluatedthe performan
e of DSRE with the 1-bit predi
tor, and the more
omplex 2-bit�rst-store predi
tor. Table 7.3 shows the performan
e, with
ommit sli
ing, forthe two predi
tor
on�gurations. Commit sli
ing with the all-stores predi
torperforms worse than the dependen
e predi
tion using the all-stores predi
tor,for the initial implementation of sele
tive re-exe
ution.
171

Commit sli
ingBen
hmark DSRE (IPC) all-stores (IPC) �rst-store (IPC)a2time01 0.705 0.779 1.416ai�tr01 0.544 0.673 0.552ai�rf01 0.894 1.572 1.637aii�t01 0.535 0.639 0.627aut
or00 1.409 1.422 1.422basefp01 0.810 0.991 1.184bezier01 1.262 2.487 2.494bitmnp01 0.635 0.871 0.890
a
heb01 0.614 0.883 1.165
anrdr01 1.221 1.600 1.573
onven00 0.485 0.510 0.483�t00 1.052 2.621 2.577id
trn01 0.653 1.243 1.041iir
t01 0.499 1.016 0.973ospf 0.590 0.961 0.847pntr
h01 0.717 0.742 0.867pkt
ow 0.865 1.115 1.313puwmod01 0.656 0.761 0.980routelookup 0.702 0.702 0.702rspeed01 0.669 0.818 0.883tblook01 0.609 0.737 0.770ttsprk01 0.587 0.755 0.776viterb00 0.589 1.330 1.433Mean 0.691 0.927 0.971Table 7.3: Comparison of DSRE with and without
ommit sli
ingWe found two reasons for the lower performan
e of sele
tive re-exe
ution.First, the null
ommit messages were being treated like regular messages, andhen
e ended up taking resour
es within the tiles, like the ALU bandwidth.172

Se
ond, the the extra traÆ
 generated by DSRE resulted in more
ontentionon the OPN. We looked at a number of enhan
ements to the various tile toin
rease the performan
e with sele
tive re-exe
ution. The following se
tionexplains the
ause for poor DSRE performan
e, along with the te
hniques weevaluated, to improve performan
e.7.3 Performan
e Enhan
ements to DSRE on TRIPSIn the simple implementation of sele
tive re-exe
ution, the pipelines inthe ET and DT treat null
ommit messages just like regular messages. Hen
e,in the ET for example, the messages go through the sele
t, read, exe
ute, andwriteba
k stages of the pipeline. Thus, using null
ommit messages does notyield any signi�
ant performan
e advantage. Sin
e the messages are treatedlike single-
y
le ALU operations, only multi-
y
le operations like multiply tendto bene�t from this na��ve implementation. In this se
tion, we dis
uss variousmodi�
ations to the DSRE implementation to in
rease its performan
e.7.3.1 A

elerating Commit MessagesAn important property of null
ommit messages is that they do notneed to use the ALU for
omputing the result. Sin
e null
ommit messagesare sent on a
orre
t spe
ulation, as long as instru
tions store the result oftheir last
omputation, they
an send a null
ommit message using the storedresult.
173

Local bypass

OPN In

ET Select ET Read ET Execute

Select buffer Read buffer ET local buffer

Arbiter

OPN router

OPN out

Regular

Ops Ops

Regular

Null commit
message

Null commit
message

ALU output

Figure 7.7: Modi�ed exe
ution tile pipelineWhen instru
tions arrive at the ET, we
an identify null
ommit mes-sages by examining the version number in the
ontrol pa
ket. Instru
tions thatneed to send null
ommit messages
an be retired without having to go throughthe regular ET pipeline, with little extra logi
 in the sele
t and read pipeline174

stages. With the extra logi
, the read stage
an send null
ommit messages forinstru
tions whose last operand is bypassed, and the sele
t stage
an handlenull
ommit messages for de�nitely sele
ted instru
tions. We added bu�ers inthe sele
t and read stages of the pipeline to store the null
ommit messagesfrom these stages. These instru
tions arbitrate for the OPN router with theexe
ute stage of the pipeline to send their replies. The modi�ed ET pipelineis shown in Figure 7.7. The shaded blo
ks in Figure 7.7 represent stru
turesthat we added to the ET to improve DSRE performan
e. The ability to sendnull
ommit messages from the read and sele
t stages redu
es ALU
ontention,and de
reases the laten
y to pro
ess null
ommit messages.In our simple sele
tive re-exe
ution implementation, the DT sent null
ommit messages using the main load-store pipeline. The reissue logi
 in theDT identi�es null
ommit messages after all prior stores have resolved for aload, and these null
ommit messages pass through the reissue pipeline beforerea
hing the load-store pipeline. Sin
e the LSQ stores the last reply for everyload, some extra logi
 in the reissue pipeline
an send null
ommit messagesto the load's
onsumer from the reissue pipeline. Spe
i�
ally, we need to allowthe reissue stage of the pipeline to write null
ommit messages to the outputbu�er in the DT. The ability to send null
ommit messages from the reissuepipeline redu
es
ontention in the main load-store pipeline and de
reases thelaten
y to pro
ess null
ommit messages in the DT.Table 7.4 shows the performan
e of DSRE, with
ommit sli
ing usingthe 2-bit �rst-store predi
tor, for the augmented ET and DT pipelines. The175

�rst
olumn in Table 7.4 shows the performan
e of DSRE without these en-han
ements. The se
ond
olumn in Table 7.4 shows the performan
e of DSREwith a

elerated
ommit messages. From Table 7.4, we see that modifyingthe ET and DT pipelines to a

elerate
ommit messages results in a 2.4% im-provement in performan
e over our initial implementation. We next analyzedthe OPN bandwidth to understand its impa
t on DSRE performan
e.7.3.2 OPN BandwidthSele
tive re-exe
ution always results in extra messages on the OPN,both when the spe
ulation is
orre
t and when it is in
orre
t. When thespe
ulation is
orre
t, we need to send null
ommit messages to validate thespe
ulation. When the spe
ulation is in
orre
t, we need to send the
orre
tvalue of the operand to the
onsumers. Thus, extra OPN bandwidth is requiredto eÆ
iently support sele
tive re-exe
ution.To evaluate the impa
t of bandwidth on performan
e, we ran experi-ments with in�nite OPN bandwidth. We simulated in�nite OPN bandwidthby ensuring that pa
kets fa
ed no
ontention in the network. The tiles
anstill pro
ess only one lo
al pa
ket every
y
le. Hen
e, pa
kets get queued atthe input and output bu�ers in ea
h tile. These bu�ers were made in�nitelylarge to avoid
ontention. In�nite OPN bandwidth does not in
rease the lo
albypass path in the ET, whi
h is still limited to one.Column 3 in Table 7.4 lists the performan
e of DSRE with in�niteOPN bandwidth. Comparing
olumn 3 and
olumn 4 in Table 7.4, we see that176

there is a 10% improvement in performan
e with in�nite bandwidth,
learlyindi
ating that limited bandwidth on the OPN does limit performan
e withsele
tive re-exe
ution.Ben
hmark DSRE(IPC) ET-DTNULL(IPC) Perfe
tOPN(IPC) MultipleOPN(IPC)a2time01 1.416 1.470 1.929 1.807ai�tr01 0.552 0.574 0.636 0.587ai�rf01 1.637 1.648 1.766 1.678aii�t01 0.627 0.664 0.754 0.677aut
or00 1.422 1.422 1.466 1.465basefp01 1.184 1.188 1.248 1.234bezier01 2.494 2.494 2.787 2.790bitmnp01 0.890 0.908 1.020 0.958
a
heb01 1.165 1.166 1.252 1.195
anrdr01 1.573 1.626 1.724 1.680
onven00 0.483 0.483 0.481 0.481�t00 2.577 2.577 2.695 2.658id
trn01 1.041 1.105 1.439 1.135iir
t01 0.973 1.003 1.057 1.005pntr
h01 0.867 0.867 0.954 0.900pkt
ow 1.313 1.316 1.404 1.367puwmod01 0.980 0.984 1.068 1.010routelookup 0.702 0.702 0.759 0.719rspeed01 0.883 0.894 0.957 0.907tblook01 0.770 0.773 0.919 0.867ttsprk01 0.776 0.778 0.861 0.811viterb00 1.433 1.588 1.878 1.716Mean 0.977 0.996 1.094 1.034Table 7.4: Performan
e (IPC) of DSRE with enhan
ements
177

Sin
e unlimited bandwidth is not feasible in a real implementation,we implemented a se
ond operand network to double the bandwidth. Thetiles were allowed to send operands on either one of the two OPNs, labeledOPN1 and OPN2. Doubling the OPN bandwidth requires twi
e as many wiresbetween tiles for
arrying the operands. It also requires two routers in ea
htile for routing pa
kets on the two OPNs. We also need logi
 at the outputof ea
h tile to de
ide whi
h OPN to use for a parti
ular pa
ket. We used asimple arbitration poli
y that
he
ked OPN1 �rst to see if we
ould send apa
ket. If OPN1 was busy, we
he
ked OPN2. The lo
al bypass in the ET wasalso doubled to a

ommodate two instru
tions that targeted their parent node.Finally, the bypass paths in the ETs were doubled to a

ommodate two OPNbypasses and two lo
al bypasses. Note that even with two lo
al bypasses,ALUs are allowed to retire only one instru
tion every
y
le. However, theET retires null
ommit messages from the sele
t and read stages, and thesemessages utilize the extra bandwidth.Column 5 in Table 7.4 lists the performan
e of DSRE when we doublethe OPN bandwidth. Comparing
olumn 3 and
olumn 5 in Table 7.4, wesee that doubling the OPN bandwidth does not yield the same performan
eimprovement as in�nite bandwidth, and results in a smaller 4% improvementin performan
e.
178

7.3.3 Dependen
e Predi
tor Poli
yThe �nal performan
e improvement te
hnique we evaluated involvedvarying the �rst-store dependen
e predi
tor. The 2-bit dependen
e predi
torwe used in our evaluation uses three states for dependen
e predi
tion. Withsele
tive re-exe
ution, we
an use all four states of the predi
tor to implementdi�erent load reply poli
ies. Table 7.5 shows two di�erent load reply poli
ieswith a 2-bit dependen
e predi
tor. We used a simple algorithm for training thepredi
tor that in
remented the
ounter when a load is in
orre
tly predi
ted
on
i
ting and de
remented the
ounter when the load is in
orre
tly predi
ted
on
i
ting. The results shown in the last se
tion use Poli
y 2 in Table 7.5.Sin
e we
an have �ve di�erent load reply poli
ies with sele
tive re-exe
ution, we implemented a 3-bit �rst-store predi
tor to
hoose the appro-priate load reply for a load, depending on the state of the predi
tor
ounter
orresponding to the load. We also evaluated the 3-bit �rst-store store withdependen
e predi
tion. Table 7.6 shows the load reply poli
y for dependen
epredi
tion and
ommit sli
ing with the 3-bit predi
tor. We used the sametraining algorithm as the 2-bit predi
tor, where the
ounter for a load is in-
remented when the load is in
orre
tly predi
ted
on
i
ting, and de
rementedwhen the load is in
orre
tly predi
ted
on
i
ting. The number of entries inthe predi
tor table was 1024.
179

Predi
tionCounter Value Poli
y 1 Poli
y 200 No
on
i
t: Com-mit bit is sent alongwith load reply.Pipeline
ush on amis-spe
ulation. No
on
i
t: Same aspoli
y 1.01 Might
on
i
t:Load reply sent with-out
ommit bit whenload arrives at theDT. Commit bit sentwhen all prior storeresolve.
Might
on
i
t:Same as poli
y 1.

10 First store without
ommit: Load replysent without
ommitbit on �rst mat
hingstore. Commit bit sentwhen all prior store re-solve.
First store with
ommit: Load replysent with
ommitbit on �rst mat
hingstore. Pipeline
ushon a mis-spe
ulation.11 All stores: Load re-ply and
ommit bitsent after all priorstores resolve. All stores: Same aspoli
y 1.

Table 7.5: Load reply poli
ies with a 2-bit predi
tor

180

Predi
tionCounterValue Dependen
e Predi
tion Commit sli
ing000,001 No Con
i
t: Load reply sentbefore prior stores resolve. No
on
i
t: Commit bitis sent along with load re-ply. Pipeline
ush on a mis-spe
ulation.010,011 First store: Load reply senton �rst mat
hing store. Might
on
i
t: Load replysent without
ommit bit whenload arrives at the DT. Com-mit bit sent when all priorstore resolve.100 First store: Load reply senton �rst mat
hing store. First store with
ommit:Load reply sent with
om-mit bit on �rst mat
hingstore. Pipeline
ush on a mis-spe
ulation.101 First store: Load reply senton �rst mat
hing store. First store without
om-mit: Load reply sent without
ommit bit on �rst mat
hingstore. Commit bit sent whenall prior stores resolve.110 All stores: Load reply sentafter all prior stores resolve. First store without
om-mit: Load reply sent without
ommit bit on �rst mat
hingstore. Commit bit sent whenall prior stores resolve.111 All stores: Load reply sentafter all prior stores resolve. All stores: Load reply and
ommit bit sent after all priorstores resolve.Table 7.6: Load reply poli
ies with a 3-bit predi
tor
181

Ben
hmark
ons(IPC) aggr(IPC) �rst-store(IPC) DSRE with
ommitsli
ing(IPC) ora
le(IPC)a2time01 0.702 0.767 0.842 1.797 2.418ai�tr01 0.560 0.600 0.715 0.752 2.477ai�rf01 0.884 0.890 1.675 1.734 2.635aii�t01 0.547 0.576 0.699 0.714 2.592aut
or00 1.208 1.210 1.208 1.208 1.210basefp01 0.845 0.886 1.072 1.204 1.212bezier01 1.195 2.137 2.793 2.784 2.789bitmnp01 0.678 0.922 0.965 0.896 1.714
a
heb01 0.579 0.689 0.992 1.002 1.535
anrdr01 1.197 1.189 1.430 1.423 1.483
onven00 0.535 0.526 0.538 0.538 0.538�t00 1.052 2.696 2.726 2.726 2.727id
trn01 0.652 1.249 1.532 1.466 2.719iir
t01 0.489 0.480 0.877 1.025 1.944ospf 0.633 0.864 0.908 0.911 0.917pntr
h01 0.820 0.740 0.916 0.901 1.039pkt
ow 0.896 1.026 1.188 1.272 1.272puwmod01 0.703 0.609 0.913 0.992 2.191routelookup 0.573 0.573 0.573 0.573 0.573rspeed01 0.697 0.633 0.889 0.906 2.129tblook01 0.751 0.744 0.825 0.825 0.854ttsprk01 0.636 0.696 0.748 0.746 0.782viterb00 0.647 2.642 2.217 1.786 3.053Mean 0.709 0.810 0.979 1.020 1.361Table 7.7: Comparison of load/store re
overy s
hemes with a 3-bit predi
torTable 7.7
ompares the performan
e of our best sele
tive re-exe
utions
heme against the
onservative load issue s
heme, aggressive load issue s
heme,182

dependen
e predi
tion using a 3-bit �rst-store predi
tor, and an ora
le pol-i
y. All the
on�gurations use two OPN
hannels for extra bandwidth. FromTable 7.7, we see that DSRE with
ommit sli
ing using the 3-bit �rst-storepredi
tor improves performan
e over the
onservative s
heme by 43.9%, ag-gressive s
heme by 25.9%, and the dependen
e predi
tion by 4.2%. Ora
lestill outperforms DSRE by 33.4%. As dis
ussed in Chapter 5, this gap
an bebridged using better
ompiler te
hnology, better predi
tor training algorithmsfor, and more sophisti
ated predi
tors for
ommit sli
ing.7.3.4 Performan
e SummaryThe performan
e improvement over dependen
e predi
tion of our bestsele
tive re-exe
ution implementation on the prototype simulator is lower thanthe performan
e improvement we saw with our high-level GPA simulator im-plementation. The reasons for this are four fold. First, the TRIPS prototypesimulator more a

urately models the
ontention in the ALUs and the net-work than the GPA simulator. Sin
e
ontention primarily a�e
ts the perfor-man
e of sele
tive re-exe
ution, the performan
e improvements are lower inthe TRIPS prototype simulator. Se
ond, the TRIPS
ompiler is still beingoptimized for performan
e, and hen
e the
ode generated is sub-optimal, asis re
e
ted in the poor IPC numbers for the ben
hmarks even with an ora
lepoli
y. For example, in the binaries we used, the
ompiler is unable to reg-ister allo
ate stati
 variables or optimize stru
tures, resulting in ben
hmarkshaving a larger number of load-store dependen
es. We saw an example of the183

performan
e improvement with sele
tive re-exe
ution with optimized
ode inSe
tion 5.1.1. Sele
tive re-exe
ution will produ
e larger performan
e bene-�ts with better
ode that exposes more instru
tion level parallelism. Third,the distributed nature of the LSQ,
oupled with the various pipeline stages,results in a larger propagation delay for null
ommit messages. Finally, our
ompiler and simulator infrastru
ture are not
ompletely mature and allowedus to evaluate only the loop-based EEMBC ben
hmarks. A number of theseben
hmarks have similar behavior, and behavior does not vary within the in-ner loop of ea
h ben
hmark. The performan
e of the ben
hmarks is in
uen
edin large part by their loop-based nature. For example, the loop-based natureof these ben
hmarks results in a large number of stores in-
ight to the samepointer address. In the steady state, loads that have multiple mat
hing priorstores are serialized be
ause the dependen
e predi
tor is unable to identifythe last mat
hing store. The performan
e will likely be di�erent with largerben
hmarks that have di�erent load-store patterns.7.4 Logi
, Timing, and Area Overhead with DSREIn this se
tion, we dis
uss the hardware
omplexity of sele
tive re-exe
ution in a real implementation. The basi
 sele
tive re-exe
ution me
ha-nism des
ribed in Chapter 4 requires only a
ommit bit and version numberfor ea
h operand. However, as we dis
ussed in this
hapter, in a prototypeimplementation, we need more state to deal with the various pipelines, andbypass paths present in the pro
essor. The bandwidth
onstraints in a real184

implementation also in
rease the resour
es required for sele
tive re-exe
ution.The logi
 for handling
ommit bits and version numbers
an be easilyimplemented in ea
h tile. We need a 17-bit
omparator to
ompare versionnumbers to identify null
ommit messages. We need an adder in the ET andDT to in
rement version numbers for su

essive replies. We need
ounters inthe ET and the DT to
ount the number of times an instru
tion has �redspe
ulatively. This fun
tionality
an be simpli�ed if we allow instru
tions to�re spe
ulatively only on
e, and tra
k it by using a single bit that is set whenthe instru
tion is exe
uted.The GT requires very little extra logi
 to implement sele
tive re-exe
ution.The GT ignores spe
ulative bran
h update messages and reuses the versionnumber and
ommit bit of the mfp
 (move from PC) instru
tions.The read and write queues in the RT require extra state for tra
kingversion number of in
oming writes and outgoing reads. Waking up dependentreads when writes arrive at the RT does not result in extra
omplexity, asthis fun
tionality is already part of the RT implementation. When a nullwrite arrives at the RT, it needs to reset the read instru
tions that in
orre
tlyre
eived forwarded values from the previous version of the write. This resetting
an be a

omplished by simply resetting the issued bit of the read, and hen
edoes not involve any signi�
ant in
rease in
omplexity.The load-store queue in the DT requires extra state bits to support re-exe
ution. Ea
h entry in the LSQ needs �elds for storing the in
oming version185

number and
ommit bit of loads and stores. It also needs a �eld to tra
k theversion number and
ommit bit of load replies. The LSQ also needs a register�le for holding the results of loads, and an exe
uting bit and null
ommitmessage bit for identifying when it is safe to send null
ommit messages. Theonly other signi�
ant pie
e of logi
 required is in the reissue stage of thepipeline for retiring null
ommit messages. As explained in Se
tion 7.1.6, toredu
e
omplexity of the implementation, we do not allow spe
ulative storesto rea
h the DT and wake up loads.The
ontrol and data paths of the OPN have to be expanded to a

om-modate the version number and the
ommit bit for ea
h operand. We believethat extra OPN bandwidth
an be provided without a signi�
ant in
rease inarea. The OPN o

upies 4% of the pro
essor area in the prototype RTL.Providing a se
ond OPN will in
rease the area to slightly less than 8% of thepro
essor area.The main
omplexity from sele
tive re-exe
ution arises in the ET.The ET needs to store version number and
ommit bit information for ea
hoperand. It also needs to store the last
omputed result of an instru
tion. TheET requires some state bits to identify null
ommit messages, and to tra
k aninstru
tion through various stages of the ET pipeline. We also need bu�ersin the read and sele
t stages of the pipeline for storing retired null
ommitmessages.The main logi

omplexity in the ET arises from pro
essing multipleinputs at the ET. Doubling the OPN bandwidth and the lo
al bypass requires186

that the ET pro
ess two inputs on the OPN and two inputs on the lo
albypass every
y
le. On
e we add the instru
tion
hosen by the sele
t stage,the arbiter in the read stage of the pipeline has to
hoose from �ve di�erentinputs for pro
essing the next
y
le by the exe
ute stage. The multiplexor inthe exe
ute stage has to be
hanged from 3:1 multiplexor to a 5:1 multiplexor.These
hanges are shown in Figure 7.8.

Select null
commit message
buffer

Dispatch/
Decode

GDN

Select
Read

(arbiter)

Remote requests

Definite select

Execute
(5: 1 mux)

OPN1 InOPN2 In

OPN1 Out OPN2 Out

Writeback
Local bypass2

Local bypass1

Output router

ALU output
buffer

Read null
commit message
buffer

Figure 7.8: Changes to the exe
ution tile required to support the extra band-width for re-exe
ution 187

In summary, implementing sele
tive re-exe
ution requires extra logi
 inall the major tiles in the TRIPS pro
essor. Even though the me
hanism itselfuses simple state bits, the various pipelines and bypass paths in the TRIPSpro
essor required extra state for tra
king the various states of an instru
tion.The area overhead asso
iated with sele
tive re-exe
ution is mainly due to thehigher bandwidth required to support the extra messages with DSRE. Theextra bandwidth was provided by doubling the number of physi
al
hannelson the OPN, and augmenting the input and output routers in the various tilesto support the two OPN
hannels. We found that the
omplexity of the extralogi
 required is minimal in most tiles, and the exe
ution tiles required themost hardware support for sele
tive re-exe
ution.This
hapter showed how DSRE
an be implemented on a prototypeTRIPS pro
essor. We used the TRIPS prototype simulator for implementingand evaluating DSRE. The TRIPS prototype simulator has been validatedagainst the TRIPS prototype RTL, and models all the low-level details of theimplementation. We identi�ed the
hanges required to the basi
 DSRE me
h-anism des
ribed in Chapter 4 to a

ommodate the TRIPS prototype pro
essorimplementation of its EDGE ISA. We also identi�ed the extra state that isrequired in ea
h tile of the pro
essor for fun
tional
orre
tness with DSRE.The initial implementation DSRE resulted in poor performan
e, and we sug-gested and evaluated te
hniques to improve the performan
e. We also did ananalysis of the logi
, timing, and area overhead with DSRE. We found thatthe performan
e improvements with DSRE are lower on the TRIPS prototype188

simulator when
ompared to the GPA simulator. We identi�ed the reasonsfor the lower performan
e and suggested solutions that
an bridge this perfor-man
e gap. The next
hapter summarizes this work and dis
usses its broaderimpli
ations.

189

Chapter 8Con
lusions
With pipeline
ushes be
oming expensive in wide-issue, deeply pipelinedma
hines, me
hanisms for low-
ost re
overy from mis-spe
ulations will be
omein
reasingly important in future mi
ropro
essors. Sele
tive re-exe
ution is onesu
h me
hanism for low-
ost re
overy from data mis-spe
ulations. Althoughmodern supers
alar pro
essors implement sele
tive re-exe
ution in a limitedfashion, its
omplexity in a
onventional implementation makes it unsuitableas a general me
hanism for re
overy from data mis-spe
ulations.In this dissertation, we have designed and evaluated a sele
tive re-exe
ution me
hanism for a new
lass of instru
tion set ar
hite
tures, Expli
itData Graph Exe
ution (EDGE) ar
hite
tures. EDGE ar
hite
tures are adata
ow-like ar
hite
ture, in whi
h the instru
tions spe
ify their outputs ex-pli
itly, and do not spe
ify their inputs. Instru
tions in this ar
hite
ture exe-
ute when they re
eive all their inputs. The expli
it spe
i�
ation of
onsumersin the instru
tion set obviates the need for dynami
 re
onstru
tion of the datadependen
es in the pro
essor, thus signi�
antly redu
ing the
omplexity ofdesigning a sele
tive re-exe
ution me
hanism for EDGE ar
hite
tures. Theme
hanism we propose is distributed, and uses simple state bits for re
overy.190

We used an EDGE-based TRIPS pro
essor as the hardware substratefor evaluating the proposed me
hanism. Sin
e EDGE ar
hite
tures have ablo
k atomi
 exe
ution model, blo
ks of instru
tions are fet
hed and
om-mitted atomi
ally. Instru
tions in a blo
k stay mapped on the reservationstation until the blo
k is ready for
ommit. Hen
e, the pro
essor
an initiatere-exe
ution of instru
tions by re-inje
ting the mis-spe
ulating input.We used load-store dependen
e spe
ulation as the driving spe
ulationme
hanism for evaluating the performan
e of the proposed DSRE me
hanism.Load-store dependen
e spe
ulation involves predi
ting the dynami
 depen-den
es between in-
ight loads and stores. As shown in Chapter 2, aggressiveissue of loads is important for high performan
e in future, large instru
tionwindow ma
hines to exploit high instru
tion-level parallelism.We used two software implementations of the TRIPS pro
essor to un-derstand and evaluate the proposed DSRE me
hanism. Our initial evaluationinvolved a high-level, Trimaran-based, GPA simulator that loosely modeledthe TRIPS ar
hite
ture without some of the resour
e
onstraints en
ounteredin a real implementation. We formulated basi
 me
hanisms for ensuring
or-re
tness of the me
hanism using the high-level simulator. These me
hanismsinvolved asso
iating a
ommit bit with ea
h operand to indi
ate when theoperand be
ame non-spe
ulative with respe
t to data spe
ulation, and a ver-sion number to identify the
orre
t non-spe
ulative version of the operand.We
ompared the performan
e of our basi
 me
hanism against di�er-ent load issue poli
ies. Our results showed that dependen
e predi
tion, using191

pipeline
ushing as a re
overy me
hanism, outperformed the
on�gurationthat used re-exe
ution for re
overy. We identi�ed the lag in the propaga-tion of the
ommit messages as the reason for the poor performan
e of thesele
tive re-exe
ution me
hanism, and evaluated two me
hanism for a

eler-ating the
ommit wave. These me
hanisms resulted in sele
tive re-exe
utionoutperforming the best dependen
e predi
tor.After initial evaluation on the high-level GPA simulator, we validatedthe me
hanism on the more a

urate TRIPS simulator that faithfully modelsall the details of the TRIPS prototype pro
essor. We found bandwidth andALU
ontention to be signi�
ant bottlene
ks to performan
e with sele
tivere-exe
ution. We proposed and evaluated me
hanisms to alleviate these
on-straints. The
ommit bit propagation delay was exa
erbated in the TRIPSprototype pro
essor due to the distributed nature of the LSQ. Our resultsshowed that sele
tive re-exe
ution does provide performan
e bene�ts in fu-ture, large instru
tion window ma
hines, but it needs to be
arefully tuned toa

ount for the limitations imposed by an a
tual implementation.Should designers
onsider DSRE?DSRE on the TRIPS prototype simulator resulted in a mere 4% mean perfor-man
e improvement a
ross the set of EEMBC ben
hmarks. In the light of this,we are for
ed to ask whether the extra
omplexity with DSRE is worth the per-forman
e improvement. We identi�ed four reasons for the lower performan
eof DSRE on the TRIPS prototype simulator:192

1. More a

urate network and ALU
ontention modeling.2. Extra logi
 required to handle the
omplexity asso
iated with a proto-type implementation.3. Sub-optimal
ode that exposed low instru
tion level parallelism.4. Sub-optimal
ode that generated a large number of redundant loads andstores.We hand-optimized one ben
hmark, aii�t01, by removing some redun-dant loads and stores, whi
h resulted in a 39% improvement in performan
eover dependen
e predi
tion with sele
tive re-exe
ution. The low performan
eof the non-optimized
ode with DSRE was primarily due to the fourth reason.The performan
e improvement with the hand-optimized
ode demonstratedthat the DSRE me
hanism is able to tolerate the extra ALU and network
ontention, and provide speedup despite the added overhead. Although wehand-optimized only one ben
hmark in this dissertation, we expe
t DSRE willprovide substantial improvement in performan
e with load-store dependen
espe
ulation on optimized ben
hmarks with similar
hara
teristi
s. Whetherfuture TRIPS workloads will have these
hara
teristi
s remains to be seen andis an open question.8.1 Dissertation SummaryThis resear
h has demonstrated one way to implement distributed, se-le
tive re-exe
ution for Expli
it Data Graph Exe
ution ar
hite
tures. Using193

one parti
ular implementation of an EDGE ar
hite
ture, the TRIPS pro
es-sor, we evaluated the performan
e bene�ts of the me
hanism, on a high-levelsimulator, and a low-level simulator that models a prototype implementa-tion in great detail. The basi
 me
hanism requires simple, distributed, lo
alstate ma
hines, and hen
e is s
alable to future,
ommuni
ation-dominatedte
hnologies. DSRE me
hanisms will be
ome in
reasingly important for highperforman
e in large instru
tion window ma
hines of the future. Me
hanismssu
h as the one presented in this dissertation will provide future, distributedmi
roar
hite
tures with low-overhead re
overy from value mispredi
tions.The evaluation on a high-level GPA simulator showed that the pro-
essing of the
ommit tokens, not ALU or network
ontention,
aused themost performan
e losses in the DSRE me
hanism. We evaluated one te
h-nique (spe
ulative
ommit sli
ing) that a
hieved 82% of the performan
e ofan ora
le predi
tor, and proposed and evaluated a bottom-up
ommit graphpre-traversal for hiding parts of the
ommit graph traversal. The bottom-up
ommit graph pre-traversal approa
h did not result in performan
e improve-ments large enough to justify its additional hardware
omplexity.When evaluated on the TRIPS prototype simulator that a

uratelymodels the bandwidth
onstraints of a prototype pro
essor implementation,ALU and network
ontention signi�
antly
onstrained the performan
e of theDSRE me
hanism. We proposed and evaluated me
hanisms for over
om-ing these
onstraints. These involved adding a se
ond network for
arryingoperands, and adding extra logi
 in the exe
ution and data tile pipelines to194

expedite
ommit messages.We proposed a dependen
e predi
tor that works in the distributed,TRIPS environment. We used the dependen
e predi
tor for load-store depen-den
e spe
ulation without re-exe
ution, and also used it to drive the
ommitsli
ing me
hanism with re-exe
ution. Our results showed that the 17% per-forman
e improvement we see with re-exe
ution on the high-level simulatorredu
es to 4.2% on TRIPS prototype simulator, be
ause of the implementa-tion
onstraints.The sele
tive re-exe
ution me
hanism that we propose has a
ost asso-
iated with it, both when the spe
ulation is
orre
t and when it is in
orre
t.When the spe
ulation is
orre
t, we need to send null
ommit messages thatresult in extra network and ALU
ontention. The
ommit bit propagationdelay is another
ost asso
iated with
orre
t spe
ulation. The
ost asso
iatedwith in
orre
t spe
ulation is the extra ALU and network
ontention generatedby the spe
ulative values. Traditional mis-spe
ulation re
overy with pipeline
ushing has no
ost asso
iated with
orre
t spe
ulation, but has a higher
ostasso
iated with in
orre
t spe
ulation due to pipeline
ushes. Our results haveshown that to a
hieve high performan
e, we need to use both re
overy me
h-anisms. Con�den
e estimators
an be used to
hoose between the re
overyme
hanism to use for ea
h spe
ulation. High
on�den
e predi
tions
an usetraditional mis-spe
ulation re
overy, while low
on�den
e predi
tions
an usea DSRE based re
overy. We used two types of dependen
e predi
tors as
on�-den
e estimators for load-store dependen
e predi
tion. Su
h me
hanisms will195

be
ome in
reasingly important in future, large instru
tion window pro
essorswith multiple predi
tors.Although we fo
used mainly on load/store dependen
e spe
ulation,DSRE me
hanisms
an easily handle other types of value spe
ulation, in
lud-ing value predi
tion, predi
ate predi
tion, and even \physi
al spe
ulation,"exe
uting instru
tions on ultra-fast or ultra-low-energy ALU that may o
-
asionally produ
e a wrong answer but has physi
al bene�ts in the
ommon
ase [17℄. We did a brief evaluation of last-value predi
tion to show that DSRE
an work with multiple spe
ulation engines
on
urrently. The following se
-tions dis
uss some future dire
tions for this resear
h.8.2 Looking AheadThe sele
tive re-exe
ution me
hanism proposed in this work was evalu-ated in the
ontext of load-store dependen
e predi
tion. However, the natureof the me
hanism makes it amenable for use with with other types of data spe
-ulation like last-value predi
tion, stride predi
tion, and
oheren
e spe
ulationamong others.8.2.1 Closing the Performan
e GapEven with all the proposed enhan
ements, the ora
le poli
y outperformssele
tive re-exe
ution with
ommit sli
ing by 33.4% on the TRIPS prototypesimulator. We found delay in
ommit propagation to be the reason for thisdi�eren
e in performan
e. A number of fa
tors
ontributed to this delay.196

The ben
hmarks that have the largest performan
e gap have store-load-store dependen
es. Compiler optimizations in the future will likely removesome load-to-store dependen
es by register allo
ating these variables. How-ever, to a
hieve performan
e
lose to ora
le, we will need better
ommit sli
ingpredi
tors that
an identify the exa
t mat
hing store for a load. The �rst-storepredi
tor that we use for
ommit sli
ing is unable to identify the exa
t mat
h-ing store, when there are multiple stores in
ight to the same address. Loadsthat
on
i
t with multiple prior stores are for
ed to send their
ommit afterall prior stores resolve, resulting in unne
essary delay in the
ommit bit prop-agation. Dependen
e predi
tion will be
ome in
reasingly diÆ
ult in future,large instru
tion window ma
hines with a large number of loads and stores in
ight. The diÆ
ulty in predi
ting load-store dependen
es,
oupled with higherpipeline
ush
osts, will result in a growing di�eren
e in performan
e betweenan ora
le poli
y and pure dependen
e predi
tion. Using more sophisti
atedpredi
tors that work in a distributed environment for dependen
e predi
tion,will only be able to bridge part of this performan
e gap. Te
hniques like se-le
tive re-exe
ution,
oupled with more sophisti
ated dependen
e predi
tion,will be required to a
hieve performan
e
lose to ora
le.The
ompiler and simulation infrastru
ture for the TRIPS prototypeis still under development, and is not mature enough to run large programslike the SPEC CPU2000 suite. We used a set of EEMBC ben
hmarks forour evaluation in this dissertation, whi
h
onsist of small kernels that are re-peatedly exe
uted within a main loop. Hen
e, parti
ular
hara
teristi
s of197

these programs are ampli�ed due to the repeated exe
ution. For example,the RAM�lePtr variable used in a number of EEMBC programs results in alarge number of load-to-store and store-to-load dependen
es. This dependen
eslows down the propagation of the
ommit bit. Another example is the pres-en
e of a large number of stores to the same address that are part of di�erentloop iterations. We hand-optimized one ben
hmark, aii�t01, and showed howDSRE
an yield large performan
e improvement on optimized binaries evenon the detailed TRIPS implementation. The low variation in the ben
hmarkbehavior over the simulated region results in poor performan
e in these ben
h-marks. Ben
hmarks that are more varied in their behavior will show betterperforman
e with DSRE.Finally, the TRIPS
ompiler that we used to
ompile the EEMBCben
hmarks is still being optimized to produ
e higher performing binaries.For example, the
ompiler
urrently does not have support to register allo
atestati
 variables that results in a large number of load-store dependen
es. Thehyperblo
k generator in the
ompiler is also being optimized to produ
e largerhyperblo
ks. Performan
e with DSRE will improve with an optimized TRIPS
ompiler.8.2.2 Spe
ulative Data
ow Ma
hines?Bran
h mispredi
tions still
ause enormous performan
e losses in high-end pro
essors, and bran
h predi
tors are improving with only diminishingreturns. While some other ar
hite
tural proposals advo
ate moving to a \more198

pure" data
ow model [67℄ that has little
ontrol, they merely shift the
ontroldependen
es to data dependen
es that must be exe
uted
onservatively, bothin registers and memory, pla
ing a tight asymptote on a
hievable parallelism.DSRE me
hanisms
an enable a di�erent solution in emerging EDGEar
hite
tures|the
ompiler grows enormous hyperblo
ks to
ontrol-
ow graphmerge points, whi
h en
ompass any
ontrol
ow splits and merges. Withinthese large, predi
ated blo
ks, a predi
ated produ
er of a value may
hooseto exe
ute spe
ulatively and inje
t its operands to the rest of the graph. Ifthe a
tual needed operand should have been generated on a di�erent path,the
orre
t operand
an be re-inje
ted and handled gra
efully by the DSREme
hanism. The exe
ution of predi
ates
an thus be removed from the
riti
alpath by spe
ulating the values of
ertain predi
ates, with a low-overhead,DSRE-supported re
overy guaranteed if the predi
ate was mispredi
ted.The EDGE ar
hite
ture model with huge hyperblo
ks, little expli
it
ontrol
ow, and a �ne-grained data
ow ISA, starts to resemble in manyaspe
ts past data
ow ma
hines like Monsoon [51℄, but with one importantdistin
tion: the dynami

hanging of data
ow ar
s
an be supported by for-warding values into the DFG spe
ulatively and aggressively, with the DSREme
hanism providing a
lean re
overy if wrong. Monsoon also had multiplefun
tional units
onne
ted by a dynami
 network, with ea
h fun
tional unithaving a token-store for re
eiving tokens. This token-store was made expli
itin the data
ow model to simplify resour
e management. However, data
owar
s in Monsoon were �xed, as it did not have support for spe
ulation. EDGE199

ar
hite
tures enable
onventional, imperative languages, and data spe
ulation,
oupled with distributed sele
tive re-exe
ution, may eventually make data
owar
hite
tures truly
ompetitive by also allowing them to a
hieve high perfor-man
e on irregular
odes while supporting traditional programming modelsand languages.

200

Bibliography[1℄ HaithamAkkary and Srikanth Srinivasan. Using per
eptron-based bran
h
on�den
e estimation for spe
ulation
ontrol. In Pro
eedings of TheTenth International Symposium on High-Performan
e Computer Ar
hi-te
ture, pages 265{274, De
ember 2004.[2℄ Todd Austin. DIVA: A Reliable Substrate for Deep Submi
ron Mi
roar-
hite
ture Design. In International Symposium on Mi
roar
hite
ture,pages 196{207, November 1999.[3℄ Doug Burger et al. S
aling to the end of sili
on with EDGE ar
hite
tures.IEEE Computer, 37(7):44{55, July 2004.[4℄ Martin Burts
her and B. G. Zorn. Exploring last n value predi
tion. InPro
eedings of the International Conferen
e on Parallel Ar
hite
tures andCompilation Te
hniques (PACT), pages 66{76, O
t 1999.[5℄ Martin Burts
her and Benjamin G. Zorn. Hybrid load value predi
tors.IEEE Transa
tions on Computers, 51(7):759{774, July 2002.[6℄ B. Calder, P. Feller, and A. Eusta
e. Value pro�ling and optimization.Journal of Instru
tion Level Parallelism, 1:1{6, 1999.[7℄ B. Calder and G. Reinman. A
omparative survey of load spe
ulationar
hite
tures. Journal of Instru
tion-Level Parallelism, 2, May 2000.201

[8℄ Brad Calder, Glenn Reinman, and Dean M. Tullsen. Sele
tive value pre-di
tion. In Pro
eedings of the 26th International Symposium on ComputerAr
hite
ture, ISCA-99, pages 64{74, 1999.[9℄ Ji
huan Chang, Jaehyuk Huh, Rajagopalan Desikan, Doug Burger, andGuri Sohi. Coheren
e de
oupling: Using sharing spe
ulation and valuepredi
tion to improve multipro
essor performan
e. In Pro
eedings of theFirst Value Predi
tion Workshop VPW03, June 2003.[10℄ Saugata Chatterjee, Chris Weaver, and Todd Austin. EÆ
ient
he
kerpro
essor design. In Pro
eedings of the 33rd Annual ACM/IEEE Inter-national Symposium on Mi
roar
hite
ture, pages 87{97, De
ember 2000.[11℄ Ben-Chung Cheng, Daniel A. Connors, and Wen mei W. Hwu. Compiler-dire
ted early load-address generation. In Pro
eedings of the 31st AnnualACM/IEEE International Symposium on Mi
roar
hite
ture, pages 138{147, De
ember 1998.[12℄ George Z. Chrysos and Joel S. Emer. Memory dependen
e predi
tionusing store sets. In Pro
. of the 25th Annual Int'l Symp. on ComputerAr
hite
ture (ISCA'98), pages 142{153, June 1998.[13℄ Weihaw Chuang and Brad Calder. Predi
ate predi
tion for eÆ
ient out-of-order exe
ution. In Pro
eedings of the 17th annual International Con-feren
e on Super
omputing, pages 183{192, November 2003.
202

[14℄ Rajagopalan Desikan, Doug Burger, Stephen W. Ke
kler, and Todd M.Austin. Sim-alpha: a validated exe
ution driven alpha 21264 simulator.Te
hni
al Report TR-01-23, Department of Computer S
ien
es, Univer-sity of Texas at Austin, 2001.[15℄ Dan Ernst and Todd Austin. Pra
ti
al Sele
tive Replay for Redu
ed-TagS
hedulers. In Pro
eedings of the 2nd Annual Workshop on Dupli
ating,De
onstru
ting, and Debunking (WDDD-2), pages 58{63, June 2003.[16℄ Dan Ernst, Andrew Hamel, and Todd Austin. Cy
lone: A broad
ast-free dynami
 instru
tion s
heduler with sele
tive replay. In Pro
eedingsof the 30th Annual International Symposium on Computer Ar
hite
ture(ISCA'03), pages 253{262, June 2003.[17℄ Dan Ernst, Nam Sung Kim, Sanjay Pant, Shidhartha Das, Rajeev Rao,Toan Pham, Conrad Ziesler, David Blaauw, Todd Austin, Krisztian Flaut-ner, and Trevor Mudge. Razor: A low-power pipeline based on
ir
uit-level timing spe
ulation. In Pro
eedings of the 36th Annual InternationalSymposium on Mi
roar
hite
ture, pages 7{18, De
ember 2003.[18℄ I. Flores. Lookahead
ontrol in the IBM system 370 model 165. IEEEComputer, (7):24{38, November 1974.[19℄ Freddy Gabbay and Avi Mendelson. The e�e
t of instru
tion fet
h band-width on value predi
tion. In Pro
eedings of the 25th International Sym-posium on Computer Ar
hite
ture, ISCA-98, pages 272{281, 1998.203

[20℄ David M. Gallagher, Willliam Y. Chen, S
ott A. Mahlke, John C. Gyllen-haal, and Wen mei W. Hwu. Dynami
 memory disambiguation using thememory
on
i
t bu�er. In Pro
eedings of the Sixth International Confer-en
e on Ar
hite
tural Support for Programming Languages (ASPLOS-VI),pages 183{193, O
tober 1994.[21℄ Amit Gandhi, Haitham Akkary, and Srikanth T. Srinivasan. Redu
ingbran
h mispredi
tion penalty via sele
tive bran
h re
overy. In Pro
eed-ings of The Tenth International Symposium on High-Performan
e Com-puter Ar
hite
ture, pages 254{264, De
ember 2004.[22℄ S
ott Hareland, Jose Maiz, Mohsen Alavi, Kaizad Mistry, Steve Walsta,and Changhong Dai. Impa
t of CMOS pro
ess s
aling and SOI on thesoft error rates of logi
 pro
esses. Symposium on VLSI Te
hnology Digestof Te
hni
al Papers, pages 73{74, 2001.[23℄ Peter Hazu
ha and Christer Svensson. Impa
t of CMOS Te
hnologyS
aling on the Atmospheri
 Neutron Soft Error Rate. IEEE Transa
tionson Nu
lear S
ien
e, Vol. 47, No. 6, pages 2586{2594, De
. 2000.[24℄ Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Doug Carmean,Alan Kyker, and Patri
e Roussel. The mi
roar
hite
ture of the Pentium4 pro
essor. Intel Te
hnology Journal Q1, 2001.[25℄ Jaehyuk Huh, Ji
huan Chang, Doug Burger, and Gurindar S. Sohi. Co-heren
e de
oupling: Making use of in
oheren
e. In Pro
eedings of the204

Eleventh International Conferen
e on Ar
hite
tural Support for Program-ming Languages (ASPLOS-XI), pages 97{106, O
tober 2004.[26℄ Daniel Jiminez and Calvin Lin. Dynami
 bran
h predi
tion with per-
eptrons. In Pro
eedings of The Seventh International Symposium onHigh-Performan
e Computer Ar
hite
ture, pages 197{206, January 2001.[27℄ Daniel A. Jimnez. Pie
ewise linear bran
h predi
tion. In Pro
eedingsof the 32nd annual International symposium on Computer Ar
hite
ture,pages 382{393, June 2005.[28℄ Stefanos Kaxiras and James R. Goodman. Improving CC-NUMA per-forman
e using instru
tion-based predi
tion. In Pro
. of the 5th Inter-national Symposium on High Performan
e Computer Ar
hite
ture, pages161{170, Jan 1999.[29℄ Stefanos Kaxiras and Cli� Young. Coheren
e
ommuni
ation predi
-tion in shared-memory multipro
essors. In Pro
. of the 6th Interna-tional Symposium High Performan
e Computer Ar
hite
ture, pages 156{167, 2000.[30℄ Stephen W. Ke
kler, Doug Burger, Charles R. Moore, Ramadass Nagara-jan, Karthikeyan Sankaralingam, Vikas Agarwal, M.S. Hrishikesh, NityaRanganathan, and Premkishore Shivakumar. A wire-delay s
alable mi-
ropro
essor ar
hite
ture for high-performan
e systems. In Pro
eedingsof the 2003 International Solid-State Cir
uits Conferen
e, February 2003.205

[31℄ James B. Keller, Ramsey W. Haddad, and Stephan G. Meier. S
hedulerwhi
h dis
overs non-spe
ulative nature of an instru
tion after issuing andreissues the instru
tion. United States Patent 6,564,315, May 2003.[32℄ R. Kessler. The Alpha 21264 mi
ropro
essor. IEEE Mi
ro, 19(2):24{36,Mar
h 1999.[33℄ Ilhyun Kim and Mikko Lipasti. Understanding s
heduling replay s
hemes.In Pro
eedings of The Tenth International Symposium on High-Performan
eComputer Ar
hite
ture (HPCA'04), pages 138{147, De
ember 2004.[34℄ A-C. Lai and B. Falsa�. Memory sharing predi
tor: The key to a spe
u-lative
oherent DSM. In Pro
eedings of the 26th Annual Int'l Symp. onComputer Ar
hite
ture (ISCA'99), pages 172{183, May 1999.[35℄ Chih-Chieh Lee, I-Cheng K. Chen, and Trevor N. Mudge. The bi-modebran
h predi
tor. In Pro
eedings of the 30th Annual ACM/IEEE Inter-national Symposium on Mi
roar
hite
ture, pages 4{13, De
ember 1997.[36℄ J. K. L. Lee and A. J. Smith. Bran
h predi
tion strategies and bran
htarget bu�er design. IEEE Computer, 17(1), Jan 1984.[37℄ Kevin M. Lepak and Mikko H. Lipasti. On the value lo
ality of storeinstru
tions. In Pro
eedings of the 27th Annual International Symposiumon Computer Ar
hite
ture, pages 182{191, 2000.[38℄ Peter Liden, Peter Dahlgren, Rolf Johansson, and Johan Karlsson. OnLat
hing Probability of Parti
le Indu
ed Transients in Combinational206

Networks. In Pro
eedings of the 24th Symposium on Fault-Tolerant Com-puting (FTCS-24), pages 340{349, 1994.[39℄ Mikko H. Lipasti and John Paul Shen. Exploiting value lo
ality to ex-
eed the data
ow limit. International Journal of Parallel Programming,26(4):505{538, 1998.[40℄ Mikko H. Lipasti, Christopher B. Wilkerson, and John Paul Shen. Valuelo
ality and load value predi
tion. In Ar
hite
tural Support for Program-ming Languages and Operating Systems, pages 138{147, 1996.[41℄ Gabriel H. Loh and Dana S. Henry. Predi
ting
onditional bran
heswith fusion-based hybrid predi
tors. In Pro
eedings of the 11th Interna-tional Conferen
e on Parallel Ar
hite
tures and Compilation Te
hniques(PACT), pages 165{176, September 2002.[42℄ Pedro Mar
uello, Jordi Tubella, and Antonio Gonzalez. Value predi
tionfor spe
ulative multithreaded ar
hite
tures. In Pro
eedings of the 32ndInternational Symposium on Mi
roar
hite
ture, MICRO-32, pages 230{236, Nov 1999.[43℄ S
ott M
Farling and John Hennessy. Redu
ing the
ost of bran
hes.In Pro
eedings of the 13th annual International symposium on ComputerAr
hite
ture, pages 396{403, June 1986.[44℄ Amit A. Mer
hant, David J. Sager, and Darrell D. Boggs. Computer pro-
essor with a replay system. United States Patent 6,163,838, De
ember207

2000.[45℄ Amit A. Mer
hant, David J. Sager, Darrell D. Boggs, and Mi
hael D.Upton. Computer pro
essor with a replay system having a plurality of
he
kers. United States Patent 6,094,717, July 2000.[46℄ Andreas Moshovos, S
ott E. Brea
h, T. N. Vijaykumar, and Gurindar S.Sohi. Dynami
 spe
ulation and syn
hronization of data dependen
es. InPro
eedings of the 24th Annual International Symposium on ComputerAr
hite
ture, pages 181{193, June 1997.[47℄ S. S. Mukherjee and M. D. Hill. Using predi
tion to a

elerate
oher-en
e proto
ols. In Pro
. of the 25th Annual Int'l Symp. on ComputerAr
hite
ture (ISCA'98), pages 179{190, June 1998.[48℄ Ramadass Nagarajan, Sundeep K. Kushwaha, Doug Burger, Kathryn S.M
Kinley, Calvin Lin, and Stephen W. Ke
kler. Stati
 Pla
ement, Dy-nami
 Issue (SPDI) S
heduling for EDGE Ar
hite
tures. In 13th Interna-tional Conferen
e on Parallel Ar
hite
ture and Compilation Te
hniques,pages 74{84, O
tober 2004.[49℄ Ramadass Nagarajan, Karthikeyan Sankaralingam, Doug Burger, andStephen W. Ke
kler. A design spa
e evaluation of grid pro
essor ar-
hite
tures. In Pro
eedings of the 34th International Symposium on Mi-
roar
hite
ture, pages 40{51, De
ember 2001.
208

[50℄ Ramesh Panwar and Ri
ky C. Hetherington. Appartus for exe
uting
oded dependent instru
tions having variable laten
ies. United StatesPatent 5,987,594, November 1999.[51℄ G.M. Papadopoulos and D.E. Culler. Monsoon: an expli
it token-storear
hite
ture. In Pro
eedings of the 17th Annual International Symposiumon Computer Ar
hite
ture, pages 28{31, May 1990.[52℄ R. Rajwar and J. R. Goodman. Spe
ulative lo
k elision: Enabling highly
on
urrent multithreaded exe
ution. In Pro
eedings of the 34th Inter-national Symposium on Mi
roar
hite
ture, MICRO-34, pages 294 { 305,De
 2001.[53℄ Nitya Ranganathan, Ramadass Nagarajan, Doug Burger, and Stephen W.Ke
kler. Combining hyperblo
ks and exit predi
tion to in
rease front-endbandwidth and performan
e. Te
hni
al Report TR-02-41, Departmentof Computer S
ien
es, The University of Texas at Austin, Austin, TX,September 2002.[54℄ Steven K Reinhardt and Shubhendu Mukherjee. Transient Fault Dete
-tion via Simultaneous Multithreading. In International Symposium onComputer Ar
hite
ture, pages 25{36, July 2000.[55℄ Glenn Reinman and Brad Calder. Predi
tive te
hniques for agggressiveload spe
ulation. In Pro
eedings of the 31st Annual ACM/IEEE Interna-tional Symposium on Mi
roar
hite
ture, MICRO-98, pages 127{137, De
1998. 209

[56℄ Eri
 Rotenberg. AR/SMT: A Mi
roar
hite
tural Approa
h to Fault Tol-eran
e in Mi
ropro
essors. In International Symposium on Fault-TolerantComputing, pages 84{91, 1998.[57℄ Eri
 Rotenberg, Quinn Ja
obson, Yiannakis Sazeides, and Jim Smith.Tra
e pro
essors . In Pro
eedings of the 30th annual ACM/IEEE in-ternational symposium on Mi
roar
hite
ture, pages 138{148, De
ember1997.[58℄ Eri
 Rotenberg, Quinn Ja
obson, and James E. Smith. A study of
on-trol independen
e in supers
alar pro
essors. In Pro
eedings of The FifthInternational Symposium on High-Performan
e Computer Ar
hite
ture(HPCA'99), pages 115{124, January 1999.[59℄ Amir Roth and Gurindar S. Sohi. Register integration: a simple andeÆ
ient implementation of squash reuse. In Pro
eedings of the 33rd An-nual ACM/IEEE International Symposium on Mi
roar
hite
ture, pages223{234, De
ember 2000.[60℄ Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, ChangkyuKim, Jaehyuk Huh, Stephen W. Ke
kler, Doug Burger, and Charles R.Moore. Exploiting ilp, tlp and dlp with the polymorphous trips ar
hi-te
ture. In Pro
eedings of the 30th Annual International Symposium onComputer Ar
hite
ture, pages 422{433, June 2003.[61℄ Yiannakis Sazeides and James E. Smith. The predi
tability of data210

values. In Pro
eedings of the 30th International Symposium on Mi
roar-
hite
ture, MICRO-30, pages 248{258, De
 1997.[62℄ Timothy Sherwood, Erez Perelman, and Brad Calder. Basi
 blo
k dis-tribution analysis to �nd periodi
 behavior and simulation points in ap-pli
ations. In Pro
eedings of the International Conferen
e on ParallelAr
hite
tures and Compilation Te
hnique, pages 3{14, September 2001.[63℄ Premkishore Shivakumar, Mi
hael Kistler, Stephen W. Ke
kler, DougBurger, and Lorenzo Alvisi. Modeling the E�e
t of Te
hnology Trendson the Soft Error Rate of Combinational Logi
. In Pro
eedings of theInternational Conferen
e on Dependable Systems and Networks, pages389{398, June 2002.[64℄ James E. Smith. A study of bran
h predi
tion strategies. In Pro
eedingsof the 8th annual International symposium on Computer Ar
hite
ture,pages 135{148, May 1981.[65℄ Avinash Sodani and Gurindar S. Sohi. Dynami
 instru
tion reuse. InPro
eedings of the 24th annual International symposium on ComputerAr
hite
ture, pages 194{205, June 1997.[66℄ Jared Stark, Paul Ra
unas, and Yale N. Patt. Redu
ing the perfor-man
e impa
t of instru
tion
a
he misses by writing instru
tions into thereservation stations out-of-order. In International Symposium on Mi-
roar
hite
ture, pages 34{43, De
ember 1997.211

[67℄ Steven Swanson, Ken Mi
helson, Andrew S
hwerin, and Mark Oskin.Waves
alar. In Pro
eedings of the 36th Annual International Symposiumon Mi
roar
hite
ture, pages 291{302, De
ember 2003.[68℄ Kai Wang and Manoj Franklin. Highly a

urate data value predi
tion us-ing hybrid predi
tors. In International Symposium on Mi
roar
hite
ture,pages 281{290, De
 1997.[69℄ J. Yang and R. Gupta. Energy-eÆ
ient load and store reuse. InIEEE/ACM International Symposium on Low Power Ele
troni
s and De-sign (ISLPED), pages 72{75, 2001.[70℄ Jun Yang and Rajiv Gupta. Load redundan
y removal through instru
-tion reuse. In International Conferen
e on Parallel Pro
essing, pages61{68, 2000.[71℄ T. Y. Yeh and Yale N. Patt. Alternative implementations of two-leveladaptive bran
h predi
tion. In Pro
eedings of the 20th annual Interna-tional symposium on Computer Ar
hite
ture, pages 124{134, May 1992.[72℄ T. Y. Yeh and Yale N. Patt. A
omparison of dynami
 bran
h predi
torsthat use two levels of bran
h history. In Pro
eedings of the 21st annualInternational symposium on Computer Ar
hite
ture, pages 257{266, May1993.[73℄ Adi Yoaz, Mattan Erez, Ronny Ronen, and Stephan Jourdan. Spe
u-lation te
hniques for improving load related instru
tion s
heduling. In212

Pro
. of the 26th Annual Int'l Symp. on Computer Ar
hite
ture (ISCA'99),pages 42{53, May 1999.[74℄ Huiyang Zhou, Chao ying Fu, Eri
 Rotenberg, and Tom Conte. A studyof value spe
ulative exe
ution and misspe
ulation re
overy in supers
alarmi
ropro
essors. Te
hni
al report, ECE Department, N. C. State Uni-versity, January 2000.

213

IndexAbstra
t, viA

elerating Commit of Re-exe
utedBlo
ks, 103A
knowledgments, ivall-stores, 20Ba
kground, 9Ben
hmarks, 49Bibliography, 213Bottom-up Commit Traversal, 118Changes to the Data Tile, 164Changes to the Exe
ution Tile, 153Changes to the Global Tile, 152Changes to the Operand Network,150Changes to the Register Tile, 162Commit Waves, 57Con
lusions, 190Dissertation Contributions, 8Dissertation Organization, 13Dissertation Summary, 193Distributed Sele
tive Re-Exe
ution,53Distributed Sele
tive Re-Exe
ution(DSRE), 6DSRE a

eleration, 103DSRE and Energy, 143DSRE and Last-Value Predi
tion,138DSRE Appli
ations, 138DSRE Evaluation, 79DSRE for EDGE Ar
hite
tures, 53

DSRE for Reliability, 144DSRE on the TRIPS Prototype Sim-ulator, 146DSRE Performan
e, 79, 167DSRE Performan
e with Perfe
t Bran
hPredi
tion, 92DSRE Performan
e withe Perfe
t L1Data Ca
he, 96DSRE Performan
e withe Perfe
t L2Ca
he, 99DSRE with Multiple Produ
ers, 147EDGE Ar
hite
tures, 34EÆ
ient Mis-spe
ulation Re
overy,2EÆ
ient Spe
ulation Re
overy, 16Expli
it Data Graph Exe
ution (EDGE),4�rst-store, 22Grid Pro
essor, 37Handling predi
ate or-ing, 150Introdu
tion, 1Load Wake Up Poli
y, 165Load-store dependen
e spe
ulation,18Looking Ahead, 196Maintaining Sequential Memory Se-manti
s, 18Memory Spe
ulation for LargeWin-dows, 24214

Methodology, 34Mis-spe
ulation Re
overy, 27one-store, 20OptimalMaximumVersion Number,122Performan
e Enhan
ements to DSREon TRIPS, 173Performan
e Studies with CommitSli
ing, 126Pipeline Flush, 28Related Work, 9Sele
tive Re-exe
ution, 30Spe
ulative Commit Sli
ing, 105Spe
ulative Data
owMa
hines?, 198Supporting DSRE on the TRIPS Pro-
essor, 147The Tera-op, Reliable, Intelligentlyadaptive Pro
essing System(TRIPS), 5Thesis Statement, 8TRIPS Mi
roar
hite
ture, 41TRIPS Pro
essor, 40TRIPS simulator, 48TRIPS Software Model, 47Version Numbers: Out-of-Order Mes-saging, 62

215

VitaRajagopalan Desikan was born in New Delhi, India on May 23rd 1977,the son of Desikan Rajagopalan and Radha Desikan. He re
eived a Ba
he-lor of Engineering degree in Ele
tri
al and Ele
troni
s Engineering from theRegional Engineering College, Tri
hy, India in May 1999. He entered the grad-uate program in Computer Engineering at the University of Texas at Austin inFall 1999. In De
ember 2001, he re
eived a Master of S
ien
e degree in Com-puter Engineering, and subsequently joined the PhD. program in ComputerEngineering at the University of Texas at Austin.
Permanent address: 3605 Ste
k AvenueApt. 1050Austin, Texas 78759
This dissertation was typeset with LATEXy by the author.yLATEX is a do
ument preparation system developed by Leslie Lamport as a spe
ialversion of Donald Knuth's TEX Program. 216

