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Speculation is a key technique that modern processors use to achieve
high performance. Traditionally, speculation meant control speculation, in
which the processor predicts the outcome of control instructions when they
are fetched, and validates the prediction when the instructions are executed.
More recently, processors have adopted another form of speculation called data
speculation to improve performance. Data speculation involves the prediction
of the data values produced by instructions, and forwarding the predicted
values to consumers in the data-flow graph. For both control and data specu-

lation, mis-speculation recovery is required when the speculation is incorrect.

The conventional mechanism for mis-speculation recovery consists of
flushing the processor pipeline of all incorrect state and restarting execution

from the corrected state. However, pipeline flushes have become increasingly
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expensive in modern microprocessors with large instruction windows and deep
pipelines. Selective re-execution is a technique that can reduce the penalty
of mis-speculation recovery by re-executing only instructions that received in-
correct values due to the mis-speculation. Conventional mechanisms to imple-
ment selective re-execution have had limited success because of the enormous

complexity involved in the implementation.

In this dissertation, we introduce a new selective re-execution mecha-
nism that exploits the properties of a dataflow-like Explicit Data Graph Execu-
tion (EDGE) architecture to support efficient mis-speculation recovery, while
scaling to large window sizes. This Distributed Selective Re-Execution (DSRE)
mechanism permits multiple speculative waves of computation to traverse a
dataflow graph simultaneously. The mechanism has no centralized state, and
uses simple state bits to determine instructions to re-fire on a mis-speculation,

thus reducing the complexity of selective re-execution.

We evaluate DSRE as a recovery mechanism for load-store dependence
mis-speculation on a high-level EDGE architecture simulator, the Grid Proces-
sor Architecture (GPA) simulator, and on the more detailed TRIPS prototype
processor simulator. DSRE provides 17% and 4.2% speedup, respectively, over
dependence prediction, on the two simulators. Our results show that DSRE
needs to be used in conjunction with pipeline flushing to achieve high per-
formance. Predictors need to be aware of the the costs associated with each

mechanism, and use the appropriate recovery mechanism for each speculation.
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Chapter 1

Introduction

Speculation has become an increasingly important technique in proces-
sors to achieve high performance. Modern processors like the Alpha 21264
and Pentium IV already have more than half a dozen predictors in various
pipeline stages. This trend is likely to continue, as growing wire delays in
current and future technologies will force microarchitectural structures within
the processor to make decisions with incomplete information, thus requiring

more speculative techniques to achieve high performance.

However, the trend towards large instruction windows will result in
large mis-speculation penalties, both in terms of performance and power, us-
ing the conventional mis-speculation recovery mechanism of pipeline flushing.
Pipeline flushing results in the processor re-executing all instructions after a
mis-speculating instruction, irrespective of whether the instruction executed

correctly the first time.

Thus, the number of predictors, the number of mispredictions, and the
cost of each misprediction are all likely to increase, forcing future processors to
spend larger fractions of execution time recovering from mispredictions. Hence,

to achieve high performance using aggressive speculation, future processors will



need a mechanism for efficient, low-cost recovery from mis-speculations. This

need is evident from Figure 1.1.

Figure 1.1 shows the performance of a high IPC processor, with different
mis-speculation costs, as a function of the number of mis-speculations per
thousand instructions. The data represented in the graph is not empirical, and
assumes an ideal machine in which the only source for performance degradation
is pipeline flushes due to mis-speculations. The solid lines represent future
machines that have a peak throughput of 8 instructions per cycle, with varying
mis-speculation costs. The dashed line represents a present day superscalar

processor that has a peak IPC of 4.

We see from Figure 1.1 that with increasing mis-speculation costs, even
a small number of mis-speculations can result in a significant drop in perfor-
mance. Since the graph is not an experimental curve and represents worst case
scenario for a particular issue width, the actual drop in performance due to
pipeline flushes will likely be lower, because of other performance constraining
factors in the processor. However, Figure 1.1 does illustrate the general future

trend of increasing mis-speculation cost.

1.1 Efficient Mis-speculation Recovery

There are a number of ways of to alleviate the performance loss due
to mis-speculations. Processors can have fewer predictors in their pipelines
thus reducing the number of predictions, and consequently, mis-speculations.

Processors can tradeoff area and power for complex predictors that are more
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Figure 1.1: Variation in IPC with mis-speculation cost and rate

accurate, and hence incur fewer mis-speculations. Finally, more efficient mis-
speculation recovery mechanisms can reduce performance losses. In this disser-
tation, we look at efficient mis-speculation recovery to reduce the performance

loss due to mis-speculations.

One mechanism for efficient data mis-speculation recovery involves se-
lectively re-executing only those instructions that produced incorrect values,
by identifying executed instructions in the processor that are part of the data
flow graph (DFG) of the mis-speculating instruction. This technique, called
selective re-execution (SRE), is implemented in a limited fashion in modern
processors. For example, both the Alpha 21264 [32] and the Pentium 4 [24] use

scheduling speculation to schedule the consumers of loads, and use a limited



form of SRE to recover from mis-speculations arising from an incorrect sched-
ule. However, making SRE more general in future conventional processors will

become progressively more difficult due to the following three challenges:

1. Tracking and maintaining dependences between large amounts of in-

flight state.

2. The increasing physical distance between the distributed detection of

violations and the centralized recovery control.

3. The complexity of having many predictions in flight from multiple, dis-

tributed heterogeneous predictors.

In a recent study of various current and proposed re-execution schemes,
Kim and Lipasti [33] conclude that “universal selective replay, where an in-
struction can cause a recovery event at any point during its lifetime, is barely
feasible for current-generation designs, and does not scale to wider machines
or additional types of speculation.” These challenges need to be overcome to

support aggressive speculation in future processors.

1.2 Explicit Data Graph Execution (EDGE): A New
Architecture Model

Explicit Data Graph Execution (EDGE) instruction set architectures
(ISA) are a new class of instruction set architectures that are designed to scale

to high performance in future communication-dominated technologies [3,49].



The two main characteristics of EDGE ISA are block atomic execution model,
wherein blocks of instructions are fetched and committed atomically and direct
instruction communication, wherein an instruction sends its results directly to
its consumers without using a shared namespace. Using direct instruction com-
munication, EDGE architectures overcome the first difficulty encountered in
implementing selective re-execution in conventional architectures. EDGE ar-
chitectures permit limited dataflow execution within defined program regions,
and conventional execution across those regions, with sequential memory, ex-
ception, and register semantics, and a conventional programming model. The
explicit representation of the dataflow graph in the EDGE ISA obviates the

dynamic reconstruction of data dependences in the processor.

1.2.1 The Tera-op, Reliable, Intelligently adaptive Processing Sys-
tem (TRIPS): An EDGE Architecture Implementation

The TRIPS processor is one particular initial implementation of the
EDGE architecture [30,60]. We use the EDGE-based TRIPS architecture as
the platform for implementing distributed selective re-execution. The EDGE
ISA specifies a block atomic execution model. Hence in the TRIPS processor,
we compile programs into sets of instructions called hyperblocks. During pro-
gram execution, the processor fetches the hyperblocks atomically and places
the instructions within a block in the reservation stations of the arithmetic
logic units (ALUs) in the processor. Instructions execute in dataflow fashion,
firing when they receive all their input operands, and forwarding results to

their consumers.



The processor commits a block atomically when all the block has pro-
duced all its outputs—the register writes, the stores, and a branch. Since the
instructions in a block remain in the reservation stations until the block is com-
mitted, instruction refiring can be initiated by simply sending new values of
the input operands. Thus, recovery from mis-speculation can be accomplished
in a completely distributed fashion. The block atomic execution model over-
comes the second difficulty encountered in implementing selective re-execution
in conventional architectures, where the recovery needs to be centralized. The
proposed selective re-execution mechanism takes advantage of this character-

istic of TRIPS processors.

1.2.2 Distributed Selective Re-Execution (DSRE) for TRIPS

The explicit representation of the dataflow graph and the block atomic
execution model in the EDGE ISA lend themselves to the efficient implementa-
tion of a distributed, selective re-execution mechanism (DSRE). The proposed
mechanism provides a simple technique that multiple heterogeneous predic-
tors can use for mis-speculation recovery, while scaling to both increasing
instruction window sizes and wire delays. The general nature of the recovery
mechanism overcomes the last difficulty encountered in implementing selec-
tive re-execution in conventional architectures, by decoupling the underlying

recovery mechanism from the type of data speculation that uses it for recovery.

The DSRE mechanism enables multiple “waves” of speculative exe-

cution to traverse the dataflow graph simultaneously. However, we need a



mechanism to detect the non-speculative value for each operand. The solution
we explore in this dissertation involves associating a commit bit with each
operand in the machine. This bit is set for an operand when it becomes non-
data speculative. Thus, to ensure that the right answer is eventually produced
and committed, a “commit wave” traverses the DFG behind the waves of spec-
ulative execution, and ensures that the correct results are eventually saved. In
this dissertation, we propose two techniques to accelerate the commit wave,
which can become the bottleneck in this scheme. We use DSRE to increase
the performance with two types of data speculation, load-store dependence

speculation and last-value prediction.

The DSRE mechanism, which enables lightweight recovery from load /store
order violations, is not limited to dependence prediction recovery. The same
mechanism can be used to recover from any data value mis-speculation—
including other types of value predictors, such as last-value prediction, stride
prediction, predicate prediction, and coherence speculation—as well as recov-
ery from soft errors. Since the DSRE mechanism we propose uses only point-
to-point messages to implement recovery, it is ideal for distributed microarchi-
tectures built in future technologies, and may be an enabling technology that
supports new types of speculation or execution on highly unreliable computa-

tional substrates.

The DSRE mechanism described in this dissertation has significant lim-
itations. First, it increases the contention within the processor, both for the

operand network and for the ALUs. Second, the serial nature of speculation



validation can result in the commit wave falling significantly behind the ex-
ecution wave. Third, having speculative multiple versions of an operand can
result in unexpected race conditions within the processor. We validated the
mechanism on a low-level prototype simulator to delineate some of these issues.
However, our simulation infrastructure is limitated due to its slow simulation
speed, and the compiled benchmarks have sub-optimal code with redundant

loads and stores. Future work in DSRE can involve tackling those issues.

1.3 Thesis Statement

This dissertation proposes Distributed Selective Re-Execution(DSRE)
as an alternative, low-cost mechanism for recovering from data mis-speculations.
We evaluate the overhead associated with DSRE, and suggest potential uses

in future, large instruction window processors.

1.4 Dissertation Contributions

This dissertation makes the following contributions:

1. Identify the importance of efficient mis-speculation recovery in large in-

struction window machines.

2. Enumerate the drawbacks of current schemes for mis-speculation recov-

ery.

3. Explain the features of a new instruction set architecture (EDGE), and



its one particular implementation (TRIPS) that make it amenable to

implementation of efficient mis-speculation recovery.

4. Propose a selective re-execution scheme, Distributed Selective Re-Execution
(DSRE) that is simple, distributed, and supports many different forms

of data speculation.

5. Evaluate DSRE on a research simulator for one type of data speculation,
load-store dependence speculation. Identify bottlenecks in DSRE and

evaluate methods for overcoming these bottlenecks.

6. Validate DSRE on a simulator that faithfully models the TRIPS proto-
type processor. Expose challenges involved with implementing selective
re-execution on a simulator that models the low-level hardware details,

and propose mechanisms for overcoming these challenges.
7. Explain implementation complexity of DSRE.

8. Identify the importance of using the appropriate recovery scheme for

each type of speculation in future processors.

9. Suggest additional uses for DSRE.

1.5 Background and Related Work

Mis-speculation recovery has been a subject of active research ever since

control speculation was first introduced in processors. Control speculation,



also known as branch prediction, is one class of speculation that has been ex-
tensively researched in computer architecture. Branch misprediction recovery
in conventional processors is done by pipeline flushing. Due to the high cost
of mis-speculation recovery, researchers have examined ways to reduce mis-
speculation by improving branch predictor accuracy. Thus, branch predictors
have evolved from simple 2-bit tables to complex, two-level predictors that
track multiple histories [35,36,43,64,71,72]. More recently, researchers have

looked at neural branch predictors to increase predictor accuracy [1, 26,27, 41].

Data speculation is another class of speculation that is increasingly im-
portant in modern processors. Data speculation involves predicting the values
of operands before they are computed, using the predicted values to accelerate
program execution. Lipasti et al. [40] introduced the notion of value locality
and described methods to capture it to perform load value prediction. The
authors propose microarchitectural enhancements (load value prediction) to
PowerPC 620 and Alpha 21164 to predict 32 and 64 bit register values, and get
3% and 6% average improvement in performance, respectively. Sazeides and
Smith defined two predictor models for value prediction—computational pre-
dictors and context predictors [61]. The authors perform simulations with un-
bounded prediction tables, and find highly predictable data values in SPEC95

benchmarks.

Wang and Franklin [68] investigated a variety of data value prediction
schemes including stride-based and pattern-based two-level predictors, and a

hybrid predictor combining the two schemes. The authors find that the hybrid
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predictor was able to correctly predict 50-80% of register-result producing in-
structions, with the percentage of mispredictions ranging from 5-18%. A num-
ber of other papers have examined various aspects of data value speculation
in uni-processors [4,5,19,37,39,42,55,69]. Researchers have also proposed
a number of data speculation techniques for improving the performance of

multi-processors (28,29, 34,47, 52].

With the increasing number of predictors resulting in increasing mis-
speculations, many researchers have explored and are exploring selective re-
execution to defray growing mis-speculation costs. Some of the earliest work in
selective re-execution was done by Rotenberg et al. [57], who discussed apply-
ing selective re-execution to both control and data mis-speculations recovery
for Trace Processors. Selective re-execution for control prediction exploits
control independence [58], and can be used for techniques like out-of-order
fetch [66]. Researchers have also looked at techniques like dynamic instruction
reuse for dynamically reusing the results of instructions with the same inputs,
and squash reuse to reuse values in the register file that did not change due to
the mis-speculation [59,65]. More recently, researchers have looked at exact
convergence to reuse the results computed after the convergence of control

paths [21].

Calder et al. [7, 8] showed that selective re-execution coupled with de-
pendence prediction can—in a centralized microarchitecture with small issue
windows—approach the performance of a perfect dependence predictor. Those

techniques are insufficient to provide the same gain on distributed microarchi-
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tectures with much bigger (10004 entry) instruction windows, which is the

problem that we address.

Despite its potential benefit, implementation complexities prevent cur-
rent selective re-execution schemes from being used as a single unified recov-
ery mechanism for multiple types of data value speculation. Recent patents
from AMD |[31], Sun Microsystems [50], and Intel [44,45] propose selective
re-execution for recovering only from load scheduling speculation, using sig-
nals from the lower-level cache [50] or circular queues [44,45] to facilitate
the re-execution schemes. Multiple disparate recovery modes are used due
to the design complexity introduced by interaction among distinct types of
speculation, complexity which is exacerbated by slowing global wires. Slowing
communication is causing multi-cycle delays between misprediction detection
and reporting, which will grow progressively worse if speculation resolution
remains centralized. Ernst et al. [15] also made this observation in their recent
work. The selective re-execution scheme that we propose in this dissertation
does not suffer from these challenges, since it provides a single, distributed

framework for handling potentially many types of speculation simultaneously.

Zhou et al. [74] identify the challenges associated with implementing ag-
gressive selective re-execution on a conventional superscalar processor, which
include retention of issued instructions that may be re-executed, the reissue
mechanism itself, and the data-dependence driven identification of the set of in-
structions to be re-executed. Of the solutions they describe, the re-order buffer

(ROB) augmentation that holds instructions in the window until committed
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is most similar to the DSRE mechanism proposed in this work. However, their
approach is not scalable to larger windows and distributed microarchitectures,
nor does it eliminate the performance losses associated with their proposed
solutions to the other two challenges—the complexity of the reissue mecha-
nism and the data-dependence driven identification of the set of instructions
to re-execute. Ernst et al. [16] present a mechanism for a dynamic scheduler
that uses selective replay without using broadcast communication. The selec-
tive replay mechanism presented in their work is specific to recovering from

scheduling speculation.

Finally, Kim and Lipasti [33] recently looked at various replay schemes
for conventional superscalar processors. The paper finds that current and pro-
posed replay schemes do not scale well to future, large instruction window
machines. The authors propose a token-based selective replay scheme that re-
duces complexity of replay by moving the dependence tracking information out
of the scheduler at the expense of marginal degradation in IPC. The authors
look at ways for early termination of an incorrect speculation wave, and the
techniques proposed in the paper primarily addresses scheduling speculation.
The approach taken in this dissertation is more general, and can be used for

any type of data speculation.

1.6 Dissertation Organization

This dissertation focuses on efficient recovery from mis-speculations

in future processors. Chapter 2 describes speculation in modern processors,
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along with its importance for high performance. The chapter also lists the
various types of speculation and their growing importance. We discuss one
particular type of data speculation, load-store dependence speculation, for the
selective re-execution mechanism described in later chapters. The chapter then
describes mis-speculation recovery, and explains the two mechanisms that are

available for recovery.

Chapter 3 explains the features of a new class of instruction set archi-
tectures called Explicit Data Graph Execution (EDGE) architectures. The
chapter also describes an initial implementation of an EDGE architecture, the
TRIPS processor that we use to evaluate the performance of the proposed
selective re-execution scheme. We use two different simulators in our study.
The first simulator is a high-level simulator that approximately models the key
architectural features processor. We use this simulator to perform an initial
study of the DSRE mechanism. We then implemented DSRE on a more de-
tailed simulator that accurately models the TRIPS prototype processor. This
chapter describes these simulators, along with the benchmarks we used on the

two simulators.

In Chapter 4, we describe the distributed selective re-execution mecha-
nism and its implementation on EDGE architectures. We discuss the necessary
enhancements in the architecture to support selective re-execution, and dis-
cusses the additional state needed to fulfill this requirement. The chapter
also analyses the performance of the proposed mechanism for load-store de-

pendence prediction. In Chapter 5, we describe two methods to improve the
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performance of the base mechanism. These methods primarily involve ways to
accelerate the commit wave. Even with the enhancements to the base DSRE
mechanism, there is a significant difference in performance between the DSRE
mechanism and an oracle policy that does perfect load-store prediction, and

we discuss the reason for this performance gap in this chapter.

DSRE is designed as a recovery mechanism for any type of data spec-
ulation. In Chapter 6, we perform a brief evaluation of another data specu-
lation mechanism, last-value prediction, to show that DSRE can concurrently
support multiple speculation engines. The chapter also discusses how DSRE
affects energy expended in the processor, and suggests ways for using DSRE

to support recovery from soft errors to enhance reliability.

Chapter 7 discusses the implementation complexity of DSRE. We iden-
tify the challenges involved with implementing DSRE on a low-level simulator
that models the TRIPS prototype processor. We propose and evaluate mech-

anisms for overcoming these challenges.

Finally, Chapter 8 talks about future directions for DSRE. The chap-
ter discusses techniques for closing the performance difference still remaining
between DSRE and an oracle policy, and as well as other potential speculation

mechanisms that can benefit from DSRE.
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Chapter 2

Efficient Speculation Recovery

Microprocessors have evolved from simple, non-pipelined, single issue
machines to out-of-order, superscalar processors, capable of executing multi-
ple instructions concurrently. Out-of-order execution of multiple instructions
exploits the instruction level parallelism (ILP) in the program by allowing the
processor to execute independent instructions concurrently. To exploit the
ILP in a program and achieve high performance, processors use a technique
called speculative execution. Speculative execution involves predicting values
in hardware, and using the predicted values, to execute instructions further
down in the instruction stream. There are many different types of speculation.

Some of these include :

Control speculation [18, 64]

Scheduling speculation [24, 32]

Load-store dependence speculation [12,46, 73]

Data-value speculation [40]

Predicate prediction [13]
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e Coherence speculation [9, 25]

Control speculation, also known as branch prediction, is a well known
speculation technique for predicting the outcome of control instructions during
instruction fetch [18,64]. The processor uses the predicted outcome to fetch
and execute instructions speculatively, and validates the speculation when it
executes the corresponding control instruction. Over the years, researchers
have proposed and implemented a number of different branch predictors in
processors to improve branch prediction accuracy [1,26,27,35,36,41,43, 64,
71,72]. Recovery from control mis-speculation involves discarding instruc-
tions that were fetched down the wrong path, and restarting execution with

instructions from the right path.

Modern processors with deep pipelines and large issue widths are ca-
pable of managing a large number of instructions in flight. To keep the in-
struction window full, a number of other speculation mechanisms have been
implemented in processors. These mechanisms include set and way prediction
for caches [32], scheduling speculation for loads [24, 32|, and load-store depen-
dence speculation [32]. Set and way prediction involves predicting the next
set and way in a set-associative instruction cache for fetching. In scheduling
speculation, the consumers of load instructions are scheduled assuming a load
hit, while load-store speculation tries to predict if loads conflict with earlier
in-flight stores. We discuss load-store dependence speculation in detail in the
next section, as it is the type of speculation that we use to evaluate distributed

selective re-execution.
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2.1 Load-store Dependence Speculation

In this dissertation, we evaluate the use of DSRE to reduce the mis-
speculation penalty for load-store dependence speculation. Issuing loads out
of order with respect to stores is necessary for high ILP in current and future
machines. Current machines use load-store dependence prediction to facilitate
early issue of loads. However, effective load speculation is growing more dif-
ficult for several reasons. First, larger instruction windows mean that more
conflicting load/store pairs will exist in the window, putting more pressure on
the dependence predictors. Second, the cost of flushing the pipeline upon a
misprediction is increasing as the in-flight state increases and control becomes
more distributed. Third, the performance losses due to dependence mispre-
dictions become more of a bottleneck as ILP elsewhere is increased. Fourth,
since wire delays will force partitioning in future architectures, dependence
predictors are likely to be distributed along with cache banks, reducing their

accuracy.

2.1.1 Maintaining Sequential Memory Semantics

In out-of-order processors, sequential memory semantics must still be
maintained. Program-earlier stores must forward their values to later loads
for correct execution. The conservative policy for addressing this issue is to
prevent a load from issuing until all earlier stores with unresolved addresses
have issued. The ideal policy is an oracle, in which loads that do not conflict

with earlier stores access the cache to retrieve data but wait for the latest
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conflicting store in program order before the load if a conflict exists.

Researchers have investigated compiler-assisted approaches for efficient
memory disambiguation. Gallagher et al. [20] proposed the memory conflict
buffer for memory disambiguation. In their approach, the compiler aggres-
sively hoists load instructions above store instructions and inserts correction
code to provide recovery when there is an address conflict. The memory con-
flict buffer detects these conflicts. This scheme relies on a centralized issue
queue for initiating recovery, and is thus unsuitable for distributed architec-
tures. Cheng et al. [11] investigate early load address computation using com-
piler support. However, their approach requires changes to the ISA so that
the microarchitectures can differentiate between the various types of loads in

the system.

Microarchitects have tried to approach oracle performance by providing
dependence predictors, which allow some loads to issue in the presence of
earlier unresolved stores, speculating that they will not be dependent, and
flushing the pipeline if incorrect. Loads incorrectly predicted to be dependent
on an earlier in-flight store do not cause a pipeline flush—they merely lose an
opportunity for higher performance by issuing late, after previous stores are

resolved even though they could safely issue earlier.

A few examples of simple dependence predictors include those proposed
by Moshovos et al. [46], which used the load’s program counter to index into a
table of saturating counters that specified whether or not a load should issue

speculatively. Store-wait tables, as implemented in the Alpha 21264 [32], is
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another PC-based dependence prediction mechanism, where a load predicted
conflicting waits for all previous stores to resolve. Store sets [12] are a more
complex proposal that attempts to match up loads with specific stores, so
that potentially dependent loads do not have to wait for all previous stores to
resolve, just the ones likely to conflict. Finally, Yoaz et al. [73] propose a pre-
dictor that uses distance estimations to approximate store set capabilities with
reduced complexity. The proposed dependence predictors need to be modified
to work in a distributed environment. In this dissertation, we simulate three
types of dependence predictors that work in a distributed environment, all-

stores, one-store, and first-store.

All-stores: This strategy is similar to the predictor organization of
Moshovos et al. [46]. This predictor uses the PC to index a 1-bit table that
is set on a conflict, and only predicts no conflict for a load when the counter
value is not set. When all-stores predicts a conflict, a load waits until all prior
stores complete before issuing safely. The table is cleared unconditionally
every 10,000 blocks. PC-indexing outperformed the other indexing functions
we measured, including address and PC-address hybrid indices, as well as the
less aggressive store-wait tables of the Alpha 21264. This predictor matches

the predictor in the TRIPS prototype processor implementation [3].

One-store: The second type of predictor we simulate is a modified
variant of store sets [12]. Modifications were necessary because the distributed
architecture that we simulate cannot enforce issue-order among stores due to

the distributed fetch mechanism. Stores in this model fire in dataflow fashion
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when they receive their address and data. Thus, we modified the predictor,
which we call one-store, to force a load to wait for exactly one store, rather
than a set of stores as in the original proposal. The next paragraph explains

the differences between the one-store scheme and store sets.

The one-store predictor uses a PC-indexed Store Set Identifier Table
(SSIT) to maintain a common tag for each load and store pair. These tags are
called Store Set Identifiers (SSID). The predictor uses a Last Fetched Store
Table (LFST) to store the SSIDs. The implementation is described in detail
in the original paper [12]. Initially, these tables are empty and all loads are
predicted as non-conflicting. When the processor detects a load-store ordering
violation, it allocates an SSID index to the violating load-store pair, and also
creates an entry in the SSIT for the load and the store containing this SSID.
During block dispatch, all stores in the dispatched block access the SSIT table
to check for a valid LFST entry. If a store finds a valid entry, it inserts its
instruction identifier in the corresponding entry in the LFST table. Loads
in a block also index the SSIT table during dispatch. When a load finds a
valid SSIT entry, it checks the LFST table for a valid store entry. If a load
finds a valid store in the SSID table, it marks itself as being dependent on the
store. When a load resolves and reaches the memory interface, it checks to
see if it has been marked as being dependent on a store. If the load is marked
dependent, it sends data back to its consumers only after the pertinent store
arrives at the memory interface. In our experiments, we used a 4K entry SSIT

table and a 128 entry SSID table. The SSIT table was indexed using the last
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12 bits of the PC and was unconditionally cleared every million cycles.

The main difference between the one-store predictor and the store sets
scheme is that in the one-store predictor a load is marked as being dependent
on only one store. The store sets scheme is able to track loads that are depen-
dent on multiple stores by examining the LFST table during store issue, and
replacing the store in the table with a matching store that is later in program-
order. Due to the decentralized nature of store issue in the TRIPS processor,
the one-store predictor is unable to track multiple stores that conflict with a
load. This one-store predictor was used in the Trimaran/TRIPS-based high-

level GPA simulator.

First-store: The first-store predictor is an alternative dependence pre-
dictor for the TRIPS prototype processor. The predictor is not implemented
in the TRIPS ASIC prototype processor, but might be included in subsequent
designs. The first-store predictor uses a table of 2-bit up-down saturating
counters. The training of the predictor is entirely distributed and happens at
the memory interface. The processor indexes the table using the load’s PC.
The counter corresponding to a load is incremented on a load violation and
decremented when a load executes without a conflict. The predictor is dis-
cussed in more detail in the next chapter. The predictor can predict a load
to be non-conflicting, conflicting-one-store, or conflicting-all-store. If the pre-
dictor predicts a load as non-conflicting, the load can send its reply without
waiting for prior stores to resolve. If a load is predicted conflicting-all-store, it

waits for all prior stores to resolve before sending a reply. If a load is predicted
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conflicting-one-store, it sends its reply when the first matching store arrives
at the memory interface or when all prior stores resolve, whichever happens

earlier.

We used a Trimaran/TRIPS-based simulation environment for initially
evaluating DSRE performance. This simulation environment modeled an EDGE
architecture at a higher level of detail for initial evaluation of the architec-
ture. We subsequently validated the protocol on a simulator that models the
low-level details of a processor implementation. The simulated processor is de-
scribed in greater detail in the next chapter. Figure 2.1 shows the performance
of the simulated GPA processor using conservative load/store issue, all-stores,
one-store, and oracular prediction. These experiments assumed the TRIPS
prototype configuration of 64 frames, which corresponds to a 1K issue window
across the 16 ALUs. The graph confirms prior results that the conservative
policy performs poorly with respect to the oracle policy, which is 2.37 times
faster on average. The all-stores dependence predictor improves performance
significantly over the conservative approach, but only by 46%, which is approx-
imately only one third of the additional performance improvement obtained
by the oracle policy. The more aggressive one-store predictor performs much
better (66 %) but still achieves only a fraction of what is possible with oracle,

due to the performance lost by flushing the pipeline on a mis-speculation.
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Figure 2.1: Performance effects of load/store ordering policies with a 1K win-
dow

2.1.2 Memory Speculation for Large Windows

As issue windows grow larger, from hundreds to thousands and eventu-
ally tens of thousands of instructions, the number of potential conflicts (stores
followed by loads to the same address) grows. This growth threatens to limit

the parallelism that can be exploited in future high-ILP machines.

Window IPC
size conservative | oracle | all-stores | one-store
1K 1.06 3.14 1.63 2.03
2K 1.06 3.66 1.67 2.07
4K 1.05 3.82 1.68 2.05
8K 1.07 3.85 1.70 2.08

Table 2.1: Performance characterization with memory dependence prediction
for a 4K store sets predictor
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Dependence predictor
Window | Potential performance (% Accesses)
size conflict || Predicted| Predicted| Predicted | Predicted
Depen- Depen- | Indepen- | Indepen-
dent dent dent dent
Exe- Exe- Exe- Exe-
cuted cuted cuted cuted
Depen- | Indepen- | Indepen- | Depen-
dent dent dent dent
(PD:ED) | (PD:EI) (PI:EI) (PI:ED)
1K 12.17 17.04 12.17 71.57 1.03
2K 14.58 19.19 13.64 68.26 0.92
4K 17.10 21.04 15.02 65.35 0.76
8K 19.37 21.61 15.85 64.21 0.55

Table 2.2: Conflict breakdown with increasing window size

Table 2.1 lists the load/store conflict behavior for four different win-
dow sizes (1K-8K instructions). These experiments assume a perfect branch
predictor, so the window is always filled with useful work unless the proces-
sor pipeline is being flushed from a load/store mis-speculation. The three IPC
columns show the average instruction throughput for three of the four ordering
schemes from Figure 2.1. From Table 2.1, we see that performance saturates
with a conservative load issue policy when the window size is increased. How-
ever, with an oracle policy, performance continues to increase as the window
size is increased until 4K instructions. Performance with the one-store predic-
tor increases only marginally, because of the increasing number of load-store

conflicts with a larger window size.
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Table 2.2 shows a breakdown of the dependence predictor performance
with increasing window size. The column labeled Potential Conflict shows the
fraction of loads in the instruction window that reference the same address as
a store that is also in the window, when using oracle load/store dependence
prediction. Note that a conflict will actually occur only if the load issues out
of order from the store. Not surprisingly, the fraction of potentially conflicting
loads increases with window size, and combined with a larger number of loads
in the window, results in a much larger total possibly conflicting loads. The
remaining columns show the behavior of the one-store predictor. The first
column, labeled Predicted Dependent Executed Dependent (PD:ED), shows
the percentage of loads that are predicted dependent and actually end up
being dependent during the execution. The second column, labeled Predicted
Dependent Executed Independent (PD:EI), shows the percentage of loads that
are predicted dependent but actually end up being independent. The third
column, labeled Predicted Independent Executed Independent (PI:EI), shows
the percentage of loads that are predicted independent correctly while the last
column, labeled Predicted Independent Executed Dependent (PI:ED), shows
loads that are predicted independent but end up conflicting with a prior store

during execution.

For large instruction windows (8K), on average 15% of the predicted
accesses are predicted as dependent (PD) and actually end up independent at
execution time (EI), thus increasing the load latency for these accesses. Fewer

than 0.6% of the accesses are predicted independent (PI) and are actually
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dependent (ED), requiring a rollback recovery. The remaining 85% of the loads
have their dependence predicted correctly and incur no penalty. As the window
size is increased, we have a greater fraction of loads that conflict with earlier
unresolved stores, resulting in the predictor becoming more conservative in its
prediction. From column 4 in Table 2.2, we can see that the predictor becomes
increasingly conservative as window size increases, and a greater percentage
of the loads are incorrectly predicted to conflict, unnecessarily forcing them to

wait. This class of loads stands to benefit greatly from DSRE.

With the larger in-flight state reducing the accuracy of predictors, ef-
ficient mis-speculation recovery will become increasingly important in future
processors. The number of potential conflicts can be somewhat reduced with
more aggressive compiler optimizations. For example, the compiler can regis-
ter allocate load-store pairs that are likely to conflict. The compiler can also
increase the distance, in terms of instructions, between a load and store, to pre-
vent them from being in the instruction window at the same time. Even with
aggressive optimizations, a compiler cannot completely eliminate load-store
conflicts as these dependences are not always known at compile time. Hence,
the number of potential conflicts is likely to increase with larger instruction

windows.

2.2 Mis-speculation Recovery

Mis-speculation recovery involves discarding the incorrectly computed

values resulting from the mis-speculation and computing the correct values.
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The traditional method to deal with mis-speculation recovery, called a pipeline
flush, involves purging the pipeline of all instructions after the mis-speculating
instruction and re-executing them with correct values. This approach is in-
efficient as it re-executes instructions not control or data dependent on the
mis-speculating instruction. A more efficient approach to mis-speculation re-
covery, called selective re-execution, re-executes only those instructions that
executed incorrectly the first time. However, this approach involves tracking
data dependences between in-flight instructions, and is complex to implement
in current processors. We discuss both these approaches, along with examples,

in the next section.

2.2.1 Pipeline Flush

The traditional method to recovering from mis-speculation involves
flushing the pipeline of all instructions after the mis-speculating instruction in
program order, and re-executing them. This approach has a high performance
penalty as instructions that are independent of the mis-speculating instruc-
tions also get re-executed. To illustrate the pipeline flush solution, Figure 2.2
shows part of the data flow graph (DFG) from the SPEC CPU2000 bench-
mark, bzip2. The program order in the DFG is represented by traversing the

graph top to bottom and left to right.

In one particular execution of this graph, let us assume that the load
instruction lws—shown in gray in Figure 2.3—mis-speculates, and gets incor-

rect value from the cache instead of an earlier matching store. A pipeline flush
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Figure 2.2: Part of the DFG from bzip2

involves flushing the lws instruction, as well as all instructions after the lws
in program order, and re-executing them after computing the correct value
of lws. This graph is shown in Figure 2.4, where the gray instructions are
re-executed. This solution is inefficient as instructions that are not part of
the DFG of the lws instruction are re-executed. The advantage of pipeline
flushing is its simplicity—the processor flushes all instructions after the mis-

speculating instruction and re-executes them, making recovery simpler to im-
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Figure 2.3: Load instruction lws mis-speculates

plement. However, flushing the pipeline is becoming increasingly expensive,
both in terms of performance and energy, for processors that have a large

number of instructions in flight because of the cost to refill the pipeline.

2.2.2 Selective Re-execution

Figure 2.5 shows another method to recover from mis-speculations, se-

lective re-execution. In this method, only instructions that received incorrect
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Figure 2.4: Traditional flush

values from the mis-speculating instruction are re-executed. Thus, selective
re-execution prevents unnecessary re-execution of independent instructions on
a mis-speculation. However, selective re-execution in current superscalar pro-

cessors is implemented in only a limited fashion for two reasons:

1. The dynamic tracking of data dependences between all instructions that

are in-flight in a conventional ISA involves an enormous amount of
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Figure 2.5: Selective re-execution

state [33]

2. Re-execution of a subset of instructions that have executed already re-

sults in scheduler complexity [15]

In this dissertation, we present a selective re-execution protocol that

overcomes the drawbacks of traditional approaches, thus enabling aggres-

sive data speculation. Using the features of Explicit Data Graph Execution
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(EDGE) architectures and an example implementation, the TRIPS processor,
we implement a distributed selective re-execution protocol that uses simple lo-
cal state, thus scaling to future communication dominated architectures. The
protocol permits multiple data-speculative values for an operand to exist con-
currently in the processor. We propose mechanisms to determine when an
operand becomes non-data speculative, and is safe to commit to the architec-
tural state. We evaluate the performance of this basic selective re-execution
protocol, and identify the bottlenecks to performance. We then suggest two
mechanisms for improving the performance with selective re-execution. We
evaluate the protocol on the high-level GPA simulator, and validate it using
the TRIPS prototype simulator, thus exposing some of the constraints encoun-

tered with a real implementation.
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Chapter 3

Methodology

In this chapter, we describe Explicit Data Graph Execution (EDGE)
instruction set architectures and an EDGE implementation, the TRIPS proces-
sor that we use to study the performance benefits of DSRE. The EDGE archi-
tecture and the TRIPS processor is a result of the collaborative effort of a num-
ber of researchers at UT Austin. This chapter describes only those features of
the architecture that are exploited by DSRE for correctness and performance.
The architecture is described in more detail elsewhere [3, 30, 48,49, 53, 60]. We
also describe the benchmarks that we used in our study. It is important to note
that even though the DSRE mechanism takes advantage of some features of
the TRIPS implementation, the basic DSRE mechanism relies on fundamental

characteristics of an EDGE ISA that can be applied to any implementation.

3.1 EDGE Architectures

Explicit Data Graph Architecture (EDGE) instruction set architectures
are a new class of architectures designed for processors in future, communica-
tion dominated technologies. The two main characteristics of an EDGE ISA

are:
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1. Block-atomic execution, in which the compiler compiles a program into
blocks of instructions. These blocks are fetched and committed atomi-
cally by the processor during execution. In this model, a block must be

committed in its entirety and a fraction of a block may not be committed.

2. Direct instruction communication between instructions within a block,
where the hardware delivers an instruction’s output directly to its con-
sumers. An EDGE ISA specifies the consumers of an instruction in the
producing instruction. Hence, there is no need for a shared namespace
like the register file to communicate values between instructions within

a block.

Instructions in an EDGE ISA execute in dataflow order, with each
instruction firing when it receives all its input operands, and forwarding its
output to consumers. Thus, in an EDGE ISA, a producer with multiple con-
sumers would specify these consumers explicitly in the ISA using a software
fan-out tree. In a conventional ISA, instructions write their outputs to the

register file that is subsequently read by multiple consumers.

Figure 3.1 shows an example of how instructions are specified in one
EDGE ISA implementation, the TRIPS processor. On the left side, we have
shown a conventional reduced instruction set computer (RISC) code snippet,
and the on the right side, we have shown the corresponding TRIPS code. Un-
like RISC instructions that specify both inputs and outputs using a shared

namespace (register file), TRIPS instructions do not specify inputs within a
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RISC Code EDGE Code

genuR1, 16 ;R1=16 #1 genu 16, #(3,0]
genuR2,3;R2=3 #2 genu 3, #3.1]
Add R3, R1, R2; R3=R1 + R2 #3 add #[4,0]

muli R4, R3, 2; R4 = R3*2 #4 muli 2, #[5,0]
slliR1,R4,3;R1=R4<<3 #5 slli 3, #[6,0]

Figure 3.1: RISC code and corresponding EDGE code

block, and specify outputs as target instructions that are explicitly encoded
in the producing instruction. The explicit specification of targets solves the
problem of global broadcast required to propagate values in conventional RISC
architectures. For example, if we take the add instruction in Figure 3.1, the
RISC instruction specifies architectural register R1 and R2 as inputs to the
instruction, and register R3 as the output of the instruction. The correspond-
ing TRIPS instruction specifies no inputs, and specifies instruction #4 as the
target of the add instruction. The add instruction in this example will fire
when it receives its two inputs from instructions #1 and #2, and will send its

result to instruction #4.

The explicit representation of the DFG in an EDGE ISA facilitates
selective re-execution by obviating the need to dynamically track data depen-
dences between in-flight instructions, thus overcoming one of the drawbacks

to implementing selective re-execution in modern RISC processors. Selective
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Figure 3.2: Simulated 4x4 grid processor

re-execution in an EDGE ISA can be implemented by sending correct operand
values to the consumers of a mis-speculating instruction, that can in turn
forward new results to their consumers. The next two sections describe two
implementations of EDGE architectures that we used for evaluating selective

re-execution.

3.2 Grid Processor

The grid processor was an early simulator implementation of an EDGE
ISA to evaluate the feasibility of the architecture. The Grid Processor Ar-
chitecture (GPA) simulator used the Trimaran infrastructure to simulate an
EDGE ISA. The Trimaran infrastructure consists of a compiler, which gen-
erates machine instructions for the Trimaran ISA from C code. The GPA

simulator maps these instructions to an explicit data graph ISA and executes
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them. This mapping is an approximation of an actual implementation that

helped with initial performance evaluation of this class of architectures.

In the grid implementation of an EDGE ISA, the compiler compiler con-
ventional code written in C, C++, and FORTRAN into blocks of instructions
called hyperblocks. During execution, the processor fetches, executes, and com-
mits instructions belonging to a hyperblock atomically. Consequently, flushes
in this model occur at a block granularity, with entire blocks being flushed on

a trap or mis-speculation.

The microarchitecture preserves sequential semantics at the block level.
Thus each block behaves like a “megainstruction” that is executed one after
the other in the order specified by the program. Inside the blocks, instructions
execute using a fine-grained dataflow model specified by an EDGE ISA. The
grid processor supports conventional programming semantics by preserving the
memory order among instructions within the block, and across blocks using
a load-store queue that forwards earlier program-order store values to later

loads.

The simulated grid processor consists of a grid of ALUs as shown in
Figure 3.2. The ALUs have reservation stations for holding instructions and
their operands. The compiler statically maps the instructions in a hyperblock
onto the reservation stations in the ALUs. The instructions, however, fire dy-
namically when they receive their input operands. The processor concurrently

fetches and maps the instructions for each row in a block.
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The point-to-point communication among instructions within a block
eliminates the need for a fully shared structure like a register file. However, we
do need a register file for communication across blocks. The only shared struc-
ture that is still required is the load-store queue, to preserve correct ordering
among loads and stores. There are different ways to implement the load-store
queue and the data cache. We can have a centralized design that has a large
area and timing overhead. We can have a physically partitioned, logically cen-
tralized design that results in design simplicity. However, this approach has
a large area overhead due to replication, and also has similar timing issues to
the centralized approach because of the large structures. We can have a logi-
cally and physically partitioned design that is both area and timing efficient.
However, this approach significantly increases the design complexity, since we
need to deal with overflow in the load-store queues. We used a centralized
load-store queue and data cache in the GPA simulator. The TRIPS prototype
processor replicates the load-store queue, resulting in a logically centralized,

physically distributed design.

The grid processor has a lightweight network connecting the set of exe-
cution nodes. There are 4 register file banks on the top, along with an instruc-
tion cache bank for holding “read” and “write” instructions. The instruction
cache banks are situated on one side and the centralized data cache is located
on the other side. The global control logic, responsible for issuing fetch and
commit commands, is situated at the bottom. Execution in the grid proces-

sor happens at a block granularity, with the processor fetching, mapping, and
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committing blocks atomically [49].

Since the GPA simulator was an early high-level simulator implemen-
tation of an EDGE ISA, we made the following assumptions to aid its imple-

mentation:

1. The number of instructions in each hyperblock is not fixed, and there is

no upper limit on the number of instructions per block.
2. There is no limit on the number of input and output registers per block.
3. The data cache and load-store queue is centralized.

4. There is no limit on the size of the load-store queue.

Having these approximations kept the simulator simple and flexible,
and helped us do the scalability study reported in Chapter 5. Also, not having
strict limits on the composition of blocks helped us achieve high performance
on the GPA simulator without aggressive compiler optimizations. The TRIPS
simulator performance is more sensitive to compiler optimizations because of
the implementation constraints imposed on the architecture. Despite these
differences, the GPA simulator is a good representation of an example EDGE

architecture for initial performance evaluation.

3.3 TRIPS Processor

The TRIPS processor is a prototype hardware implementation of an

EDGE architecture [3]. The TRIPS processor consists of 16 ALUs in a 4x4
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Figure 3.3: 4x4 TRIPS prototype processor

grid that are connected by a routed operand network (OPN) as shown in Fig-
ure 3.3. The processor core consists of five major types of units or tiles called
global control tile (GT), instruction tile (IT), execution tile (ET), register tile
RT), and the data tile (DT). The processor has a number of special networks

connecting the different tiles.

3.3.1 TRIPS Microarchitecture

Figure 3.4 shows the various steps in the execution of a TRIPS block.
The global tile initiates the fetching and mapping of instructions on the pro-
cessor. After a block is fetched and mapped, instructions within the block
execute in dataflow fashion, firing and forwarding values to their consumers.
The placement of instructions on the processor is statically assigned by the
compiler /scheduler, but they are issued dynamically by the issue logic at

each node—the processor uses a Static Placement, Dynamically Issue (SPDI)
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model [48].

The execution tile consists of the ALUs (integer and floating point),
reservation stations for holding instructions and their operands, and logic for
issuing instructions. The ET has a 4-stage pipeline consisting of the select
stage, the read stage, the execute stage, and the writeback stage. The TRIPS
processor uses a 2-packet operand network for sending operands between two

tiles.

The register tiles handle reads and writes to the architectural register
file. The RT has two pipelines—the read pipeline and the write pipeline—for
sending register values to a block. The read pipeline in the RT is responsible for
sending the register inputs from the architectural register file to the consuming
instructions within a block. The write pipeline in the RT handles forwarding

of register values from an older block to a newer block.

The data tiles handle the loads and stores within a block. The load-
store queue (LSQ) in the data tile tracks the loads and stores that are in flight
in the processor. The LSQ in the TRIPS processor has a physically distributed,
logically centralized design. The DT has a main load-store pipeline for sending
load replies and handling store arrivals. Incoming loads check for matching
prior stores in the LSQ, and retrieve their data from the LSQ on a match.
The loads get their data from the cache if they do not find a matching prior
store. The DT has a dependence predictor for dynamically tracking load-store
dependences. The DT also has a reissue pipeline for reissuing loads that are

deferred by the dependence predictor.
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Once the register tiles receive all the register outputs for a block, they
send a completion signal to the GT on the Global Status Network (GSN).
Similarly, the DTs send a completion signal to the GT when all the stores for
a block have arrived at the data tiles. The GT also receives exactly one branch
update message on the OPN from the ET that points to the next block to fetch.
Once the GT receives all the three completion signals for a block, it sends a
commit message on the Global Commit Network (GCN) to all the tiles. The
commit message results in the ETs invalidating all the state corresponding to
the committed block, the RTs writing the block outputs to the architectural
state, and the DTs committing the stores in the block to the memory system.
The RTs and DTs send a commit acknowledgment signal to the GT on the
GSN after committing the register writes and stores to the architectural state.
Upon receiving this signal, the GT can now free the resources allocated to this

block and reassign it to another block.

To achieve high instruction level parallelism, the TRIPS processor can
have up to 8 blocks in execution concurrently. The processor uses a variation of
a 2-level predictor to predict the next block to fetch [53]. On a mis-speculation,
the global tile sends a flush signal to all the other tiles. The TRIPS processor

uses rolling flushes; blocks are flushed as soon as a mis-speculation is detected.

3.3.2 Dependence Prediction in the DT

The dependence predictor in the DT is used to predict if in-flight loads

are independent of previous unresolved stores. Each DT has a 1024-entry 1-bit

44



dependence predictor that is indexed by exclusive or-ing (zor-ing) the top 5
bits of the block address, and the reversed load-store identifier (LSID) of the
load. The LSID is a 5-bit identifier that the compiler assigns to each load or
store in a block. The predictor is accessed by loads in the first stage of the
load-store pipeline. If the bit corresponding to a load is not set, the predictor
predicts no conflict and the load sends its reply immediately. However, if the
bit in the predictor is set for a load, the DT defers the load. The reissue logic
in the DT subsequently selects the load for execution after all prior stores have

resolved.

When stores arrive at the DT, they check the LSQ to ensure that no
newer load that matches the store address has replied incorrectly. If the store
finds a mis-speculating load, it marks the block containing the load as violating
and the bit corresponding to the load is set in the predictor. The next time
the load executes, it will find this bit set and will send its reply only after all
prior stores have resolved. The predictor is cleared unconditionally by the DT

after the execution of 10,000 blocks.

The predictor described above is the one implemented in the TRIPS
prototype. In this dissertation, we also evaluate an extension to the above
scheme. This scheme, called the first-store scheme, uses an adaptive 2-bit pre-
dictor to track dependences between loads and stores. The predictor is again
indexed by the block address and the load’s LSID. The 2-bit value stored in
the predictor identifies the load as non-conflicting, conflicting-one-store, or

conflicting-all-store. The non-conflicting and conflicting-all-store states cor-
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respond to the states of the 1-bit predictor. When the predictor predicts
conflicting-one-store, the load reply is sent when the first matching store ar-

rives at the DT.

To implement conflicting-one-store, the LSQ was enhanced with a ready
bit for each load. The DT defers loads that are predicted conflicting-one-store
by the predictor. When a later store arrives and its address matches with a
load that has been predicted conflicting-one-store, it sets the ready bit for the
load. The load reissue logic is modified to also issue deferred loads that have
their ready bit set. If there is no store match, the deferred load is issued after

all prior stores have resolved.

Since the predictor used for this scheme has a 2-bit up-down counter,
clearing the entire predictor is not necessary. The counter is incremented
when a load results in a violation. The counter is decremented when a load
is held back unnecessarily. Identifying loads that were incorrectly predicted
independent is easy, as it results in a pipeline flush. Loads that were incorrectly
predicted dependent are difficult to identify. To identify this case, every load
in the LSQ has a counter that stores the number of stores that forwarded
values to this load. Stores increment this value for a load every time they
forward a value. The reissue logic checks this counter for every load, after
all prior stores have resolved. If the counter is zero and the prediction for
this load was conflicting-one-store or conflicting-all-store, the load prediction
is identified as an incorrect prediction to the dependence predictor by the load-

store queue. If the counter is one and the prediction is conflicting-all-store,
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again it is identified as an incorrect prediction. This information is used by

the DT for training the predictor.

3.3.3 TRIPS Software Model

The TRIPS processor executes binaries generated by using the tcc com-
piler. The compiler takes code written in conventional programming lan-
guages, C and FORTRAN, and compiles it into blocks of machine instruc-
tions. These blocks, called hyperblocks, are single entry, multiple exit blocks.
The high-level code is first compiled into an intermediate form called TRIPS
Intermediate Language (TIL). TIL code resembles the assembly code for con-
ventional processors and is in a human readable form. The scheduling phase
of the compiler operates on the TIL code and converts it into TRIPS assem-
bly (TASL) code. The linker links the TASL code into a TRIPS binary. For
the TRIPS prototype processor, the compiler builds 128-instruction fixed size
blocks.

The compiler assigns LSIDs to all the load and store instructions to
establish the memory order within a block. The compiler also creates a 32-bit
store mask that the DT uses to identify the stores in the block. The compiler
needs to ensure that all the stores specified in the store mask reach the DT,

for the DTs to signal completion.
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3.3.4 TRIPS Cycle-accurate Simulator

The TRIPS simulator was developed by the TRIPS team at the Univer-
sity of Texas at Austin to model the TRIPS prototype processor. The purpose

of the simulator was two-fold:

e To perform functional validation of the processor to ensure correctness

of the design.

e To validate the performance of the processor, and explore techniques to

improve performance.

The simulator models all the different tiles found in the prototype in
great detail. The tiles are connected by the operand network that also matches
the implementation. All the different pipelines in the various tiles of the
prototype are faithfully modeled in the simulator. The simulator also models
the various predictors found in the prototype, and has been matched with the
processor RTL to within 5% accuracy on a wide array of microbenchmarks and
random-tests. Thus, the simulator provides a good setting for the evaluation

of DSRE in an actual processor implementation.

Due to the closeness of the simulator to the actual prototype processor,
it is not as flexible as the GPA simulator used for initial evaluation of the DSRE
mechanism. Also, because of its detailed modeling, the TRIPS simulator is
considerably slower than the GPA simulator. However, the TRIPS simulator

exposes some of the issues with the practical implementation of the mechanism,
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and hence gives valuable insights into the difficulties encountered in an actual

hardware implementation.

3.4 Benchmarks

We used a set of benchmarks from the SPEC CPU95, SPEC CPU2000,
and the MediaBench suite with the GPA simulator. The modified Trimaran
infrastructure we used could compile only a subset of benchmarks from this
suite, and we used these in our initial study. The simulated benchmarks
are listed in Table 3.1. For each benchmark, we fast-forwarded through the

initialization phase and simulated 100 million instructions.

Benchmark | Fast-forward count
compress 6000000000
hydro2d 1000000000
tomcatv 1000000000
turb3d 1000000000
m88ksim 1000000000
ammp 3000000000
art 1000000000
equake 400000000
bzip2 1000000000
mcf 1000000000
mgrid 1000000000
parser 1000000000
twolf 1000000000
mpeg2encode 1000000000

Table 3.1;: GPA simulator benchmarks
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The higher instruction throughput of the GPA simulator allowed us to
execute longer benchmarks. On a 1.7 GHz Intel machine, the GPA simulator
can simulate 10,000 cycles/second on an average. The TRIPS simulator has a
lower instruction throughput of around 600 cycles/second, because it models
the low-level details of the processor. Hence, we were forced us to use smaller

benchmarks with the TRIPS simulator.

The TRIPS prototype simulator was validated using a set of bench-
marks that comprised a regression suite. This suite consists of a number of
handwritten assembly programs designed to test all the functionality of the
processor. The same suite was used initially to identify many of the bugs

associated with the implementation of DSRE on the TRIPS processor.

After initial validation of the correctness of the DSRE mechanism, we
used a set of benchmarks from the EEMBC suite for performance analysis. The
self-checking nature of these benchmarks also helped us identify corner cases
that showed up only after the execution of thousands of instructions. These
programs were compiled with the tcc compiler. The EEMBC benchmarks are
loop-based benchmarks that execute for a user-specified number of iterations.
To skip the initialization phase, we found the number of blocks that need
to be executed for each benchmark for a single iteration. We fast forwarded
that many number of blocks for each benchmark to skip the initialization
phase. The EEMBC benchmark main loops have widely varying instruction
counts. Due to the slow simulation speed of the TRIPS prototype simulator,

we fixed the number of iterations to simulate for each benchmark between
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50 and 5000, to get reasonable simulation time. The number of blocks fast-
forwarded, along with the number of committed instructions simulated, is

listed for each benchmark in Table 3.2.

Benchmark | Blocks Fast-forwarded | Instructions committed
a2time01 14219 5495586
aifftr01 70038 64456170
aifirf01 14616 5209529
alifft01 59718 59152208
autcor00 24519 1122004
basefp01 14138 827732
bezier01 19372 42770766
bitmnp01 22274 5998634
cacheb01 16991 1777907
canrdr01 14483 2131544
conven00 497864 3180085
fft00 270339 26850943
idctrn01 17282 2626483
iirflt01 14574 1520803
ospf 36289 11386322
pktflow 685311 12467818
pntrch01 15866 5691186
puwmodO01 14337 3425108
routelookup 60449 26801639
rspeed01 14149 2393817
tblook01 14199 2534138
ttsprk01 14399 4466450
viterb00 53384 15315283

Table 3.2: EEMBC benchmarks fast-forward and simulation count for the
TRIPS prototype simulator

In the next chapter, we describe and evaluate the proposed DSRE mech-
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anism on the GPA and TRIPS simulator.
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Chapter 4

Distributed Selective Re-Execution

In this chapter, we describe the selective re-execution mechanism and
its initial evaluation on the high-level GPA simulator. We also compare these
results to those obtained using the more detailed TRIPS prototype simulator.
We first start by explaining how to implement selective re-execution on the
EDGE based TRIPS architecture using a code snippet. We then describe the
extra state necessary for correct execution with selective re-execution. Finally,
we do a performance analysis of the proposed scheme using the GPA and the

TRIPS prototype simulator.

4.1 DSRE for EDGE Architectures

In the TRIPS instantiation of an EDGE ISA, instructions and their
operands are buffered as they arrive at the reservation stations. When an
operand arrives, its tag indicates the reservation station and instruction operand
to which it corresponds. When an instruction receives all its operands, it fires,
executes, and sends the result to its consumers, which are specified using the

target fields in the just-issued instruction.

The multiple hyperblocks in flight effectively form a large dataflow
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graph (DFG). Within hyperblocks, the DFG is a statically constructed graph,
with arcs going from ALU to ALU. Cross-block arcs are instantiated through
register names; each block reads from and writes to a subset of the archi-
tectural registers. If a hyperblock produces an output allocated to R3, and
the subsequent hyperblock requires an input read from R3, the processor will
forward the value of R3 from the older to the younger block as soon as it is
produced. Thus, the large DFG is a collection of smaller, statically produced
DFGs stitched together by dynamically resolved cross-block arcs through the

register file and inter-block and intra-block arcs through memory.

Figure 4.1 shows the C-code for a simple loop, along with the corre-
sponding EDGE assembly code. We also show the data flow graph for 3 differ-
ent iterations of the main loop body in the figure. The code snippet has two
loop-carried dependences, one through memory and one through the register
file (register 0). The loads in successive iterations of the loop depend upon the
store in the previous iteration. The loop-carried dependence through memory
is shown by dashed lines. As shown in the figure, this dependence is enforced
by the load-store queue. If a load mis-speculates, the DFG sub-tree of the
load gets incorrect values. These nodes are shown shaded in the figure. In a
conventional implementation without selective re-execution, a mis-speculation

will trigger a flush of all instructions after the violating load.

To initiate re-execution of an instruction that has computed with a
wrong value, the correct value is sent to the incorrect instruction’s node with

the same tag as the original instruction. Asshown in Figure 4.1, the instruction
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C-Code
for (j=1;j < 10; j++)
a[o] = a[0]+j;

TRIPS Assembly
loop_body:

Read G[0] N[0, 0] ; Read |

Read G[1] N[2,0] N[4,0] ; Read a[0] address
N[0] addi 1 N[1,0] ; j=j+1

N[1] mov N[3,0] N[5,0]

N[2] Iw 0 N[3,1] ; Load a]0]

N[3] add N[4,1] ; a[0] = a[0] +j

N[4] sw 0 ; Store a[0]

N[5] mov N[6,0] W[0] ; write j to register

N[6] addi 1 N[7] ; Increment loop count

N[7] teqi 10 N[8] ; Check for loop termination
N[8] mov N[9,P] N[10,P] ; Move predicte bits
N[9] bro_f loop_body ; if false, jump to loop_body
N[10] bro_t exit ; Exit if true

Register File

7
[

Load-store Queue

© Mis—speculated instructions

Figure 4.1: Re-execution on EDGE architectures
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re-fires, sending a new output value to its dependent children. The children
subsequently re-fire, and so on, eventually re-executing the entire DFG that
is subtree data dependent on the faulting instruction. A re-fired instruction
producing a value that crosses hyperblock boundaries sends a newer version
of its result to the target hyperblock, which will cause additional instructions
to re-fire. Note that this model permits selective re-execution without having
to reissue any instructions not dependent on the erroneous instruction, nor do
any instructions need to be re-fetched, re-dispatched, or moved. If the ALUs
and the network can support the extra traffic, re-execution in an EDGE ISA
is always beneficial, since re-executing an operation and everything dependent
on it is no worse than having waited for the actual correct value rather than

speculating.

When multiple speculative versions of an operand are allowed in the
system, we need a mechanism to identify the non-speculative value of the
operand. Selective re-execution can result in speculative sub-graphs for parts
of the dataflow graph that the processor is executing. When a speculative
operand finally resolves, it needs to communicate this resolution to all its
children that are speculative. Thus, the problem becomes one of identifying
when an operand is non-speculative, identifying the nodes in the speculative
sub-graph of this operand, and communicating the speculation resolution to

all the nodes in this sub-graph.

There are different ways to approach this problem. One solution is

to have a centralized manager in hardware that keeps track of the dataflow
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graph under execution. When a speculative operand resolves, it can check the
manager to identify the nodes that depend on this operand, and mark them as
non-speculative. However, this approach does not work in a distributed envi-
ronment. Also, multiple independent speculative values might be traversing a
dataflow sub-graph simultaneously, and it is difficult to isolate the value that

becomes non-speculative.

Another solution to this problem is to have each node maintain its
own dataflow sub-graph. The node can then identify all its children when it
becomes non-speculative, and communicate the speculation resolution. The
problem with this approach is the large amount of state that will be required
at each node to maintain the dataflow sub-graph. Also, it is difficult to create
the sub-graph when multiple speculative data values are allowed to overlap in

the dataflow graph.

A third solution to this problem is to have a token that is propagated to
the consumers of a speculating node, when the node becomes non-speculative.
The children in turn propagate this token to their consumers when all their
input operands become non-speculative. In this approach, we can imagine
the set of tokens as a wave that follows execution and marks operands as

non-speculative. This is the solution we explore in this dissertation.

4.1.1 Detecting Block Completion with Commit Waves

In the TRIPS processor, when each hyperblock completes, it is removed

from the array and its instructions are all committed at once; hyperblocks log-
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ically commit atomically. The processor writes the stores in a hyperblock back
to the memory system in order during hyperblock commit. Since the TRIPS
processor is a distributed microarchitecture, detecting completion of the oldest
hyperblock is accomplished with point-to-point messages. The block header
of each hyperblock contains a count of all hyperblock outputs (register writes,
stores, and a single branch). When an output instruction in a hyperblock
reaches the register banks or caches, the output counter for that hyperblock is
decremented. When it reaches zero, all of the outputs of the hyperblock have

fired, meaning that the block is safe to commit if it is the oldest hyperblock.

However, this scheme for detecting block completion cannot work with-
out modification with selective re-execution. Since multiple waves of execution
may be traversing the hyperblock’s DFG simultaneously, the output instruc-
tions may receive their source operands multiple times, and thus do not know
when it is safe to signal the completion logic that they have completed non-

speculatively.

The solution we explore in this work is to add a commit bit to each valid
bit at the instructions’ operand buffers. When a commit bit is set, it signals
that its operand is no longer speculative, and none of that operand’s parents
in the DFG may be speculative. The commit bit is only zero if there are still
unresolved data speculations among its parents. Note that the control specula-
tion (branch prediction) mechanisms are separate from these data speculation
techniques. For a block to commit, it must be the control non-speculative

block, and all of its register and store outputs must be non-speculative.
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When all of an instruction’s operands have received their commit bit,
then the result computed using those operands is also non-data-speculative.
Figure 4.2 shows the different instruction states with re-execution. When an
instruction receives all its input operands, it goes into the ready state. The
execution unit can now issue the instruction to a functional unit for execution.
Once the instruction is issued to a functional unit, it executes and goes into
the executed state. If any of the operands of the instruction is speculative, the
instruction sends a speculative result to its consumers. The instruction will
re-execute every time it receives a new version of any of its operands. The
instruction remains in the executed state until it receives commit bits for all of
its input operands. Once the instruction receives commit bits for all its inputs,

it goes into the commitied state and sends a commit bit to its consumers.

We simulate two types of commit bit messaging, shown in Figure 4.3.

First, if an operand arrives at an ALU with its commit bit set, and the in-
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struction’s other operands are also non-speculative, then the instruction fires
(or re-fires) and sends its result to its consumers with its commit bit set in
the message control header. The second case occurs when an instruction has
already fired—and has already sent its result with a zero commit bit—but is
later determined to have been correct and becomes non-speculative. In this
case, if the other operands of the instruction are non-speculative, a null com-
mit message is sent to the consumers of that instruction, signaling that the
operand previously sent is now non-speculative. However, if the the other
operands of the instruction are still speculative, the operand is buffered and is
marked as a null commit message operand. If the other speculative operands
resolve correctly, a null commit message is sent after their resolution. If multi-
ple parents target the same operand, only one parent is guaranteed to send the
non-speculative value for the operand. Once a tile receives the non-speculative

value for an operand, it ignores all other values for that operand.

An instruction may send a null commit message for several reasons. An
arithmetic operation may compare its speculative, buffered operand with the
receipt of a committed operand, and if they are the same, the result need not
be recomputed, and the instruction can send a null commit message. More
commonly, a load may have issued speculatively, in the presence of earlier
unresolved stores (with a zero commit bit). When the load’s address has
received its commit bit, and all earlier stores have also received their commit
bits—and if there was no address conflict with a store—then the load becomes

non-speculative and a null commit message may be sent. A node can send
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a null commit bit if the non-speculative output it produces matches the last

speculative output that it produced.

A block is thus safe to commit when it is the oldest block (guaranteeing
that there is no more control speculation) and when the block has received the
commit bits of all its outputs. In terms of the DFG, the process of detect-
ing completion can be thought of as a “commit wave” traversing the DFG
behind the dataflow execution, and signaling completion when traversal of a

hyperblock’s portion of the DFG is complete.

4.1.2 Version Numbers: Out-of-Order Messaging

The scheme described thus far allows multiple, partially or fully over-
lapping waves of speculative execution traversing the DFG, succeeded by a
“clean-up” commit wave. This model is simple so long as multiple speculative
versions of an operand are always injected into the inter-ALU network in or-
der and the network supports in-order delivery of messages. If either of those
requirements are not met, then the possibility of overwriting the correct com-
putation with later-arriving mis-speculative data arises. For example, assume
that an instruction fires twice and produces versions A and B, where B is later
determined to be correct, so is followed by a null commit message. If A and B
are re-ordered (either by injection into the network or by the network itself),
then the instruction’s consumers will receive B, fire correctly, then receive A,
fire incorrectly, and then receive the null commit message saving the incorrect

result computed with A.
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This case would occur if the network re-ordered messages, although
the network we simulate does not exhibit this problem, because routing is
deterministic and messages are never dropped. However, another window of
vulnerability is opened by the possibility of injecting speculations in the wrong
order. For example, assume a load with earlier unresolved stores accessed the
cache but missed. Subsequently, a program-earlier store to the same address
issued, so the store value is forwarded to the load and sent to the load’s
consumers (version B). The mis-speculated cache access eventually returns a
value that could be forwarded to the load’s consumers (version A) overwriting
the correct computation triggered by version B. This case could be avoided
by adding extra support to the memory system, but serves as an illustrative

example.

We handle out-of-order messaging by augmenting transmitted operands
with version numbers as well as commit bits. Each arc of the DFG can be
traversed multiple times, with its version number increasing with each of its
source operands. For example, if an ADD instruction fired three times, the
version numbers of the operands sent to its consumers would be 0, 1, and 2, in
order, regardless of what the version numbers of the ADD’s source operands
were. The highest version number is always the correct operand, and null com-

mit messages are tagged with the version number that they are committing.

This scheme permits operands to be re-ordered and still function cor-
rectly, since version numbers are buffered with the operands and commit bits

at the consuming instruction’s reservation station. With version numbers, we
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guarantee that the highest version number for an operand is always the correct
value. If an ADD instruction has fired twice because it received two values of
its left operand, which arrived with version numbers 0 and 2, and then later a
version of the left operand arrives with version number 1, the last message is
discarded because that operand has already received a higher version number,
guaranteeing that the lower one is incorrect. If a null commit message ar-
rived with a version number 3 for the left operand, the instruction would wait
to receive the actual operand tagged with version number 3 before re-firing
and propagating the result to the consumers with the commit bit set. This
policy permits operands and commit bits (whether arriving with an operand
or as null commit messages) to arrive in any order but still produce correct

execution and guaranteed completion.

The simple version number scheme outlined above needs to be aug-
mented if we allow multiple parents to target the same operand. In this case,
we need to add an instruction identifier field to the version number to identify
the particular parent of the operand. The highest version number, correspond-
ing to a particular parent that generated the commit bit, is then guaranteed

to be the right value.

We illustrate the role of version numbers with an example in Figure 4.4.
The instruction shown in the example is a two input add instruction. The
example shows one particular sequence of events related to the reception of
operands for the instruction. Initially, the add instruction receives the first

version of one of its operands. This operand is data speculative as its commit
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02=45, v=2, c=0

INCOMING STATE ACTION
MESSAGE owviC o02/v/C
01=2, v=0, c=0 2/0/0 - No action - only one operand has arrived.
02=42,v=0,c=0 | 2/0/0 42/0/0 | Add inputs and send output message
(out=44; v = 0, c= 0). The output is
speculative because inputs are speculative.
02=49,v=3,c=0| 2/0/0 49/3/0 | The execution unit re—executes the add instruction and a new
result is sent out with a new version number. The results
are still speculative (out=51, v =1, c=0).
01=null, v=0, c=1| 2/0/1 49/3/0 | The execution unit marks operand 1 as non—speculative.
New output is not generated because the operand
values have not changed.
02=null, v=4, c=1{ 2/0/1 49/3/1 | Generate null token; both inputs are non—speculative

The execution unit drops the message because its version
number is lower than the last version number
received for this operand.

Table Legend:

STATE: Output value/Version number (V)/Commit bit (C)

Figure 4.4: Version number example
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bit is not set, and is buffered in the reservation station entry corresponding to
the add instruction. The instruction then receives a speculative version of its
second operand. The instruction can now fire and send a speculative result to

1ts consumers.

Next the instruction receives a newer, speculative version of its second
operand. The instruction fires and sends another speculative result to its
consumers. The instruction then receives a null commit message for its first
operand. Since the operand value has not changed, and the other operand is
still speculative, the instruction does not re-fire and operand 1 is marked as
non-speculative. Next the instruction receives a null commit bit for the second
operand. Since all the operands of the instruction have received their commit
bit and their values haven’t changed, the instruction can now fire and send a
null commit bit to its consumers. Finally, we see that the instruction receives
an incorrect message for its second operand. This message is dropped and not

acted upon by the instruction.

With commit bits, completion of distributed selective re-execution can
be detected, and with version numbers, the computation will still be correct in
the presence of reordered messages. While we have used load /store dependence
prediction as the driving example for this mechanism, any data speculation
scheme may use this underlying framework for low-overhead recovery, so long
as it obeys the rules of the mechanism: The last version sent is always the
correct one (with no versioning support), or the highest version number is

always the correct one (with versioning support). Thus, many types of data
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value speculation may make use of this common framework for low-overhead

recovery.

Version numbers also provide a convenient mechanism to throttle spec-
ulation. ALUs can be prevented from firing speculatively when the version
number of their result reaches a certain maximum value. This throttling can
be done for several reasons. Having a large number of speculative firings can
result in extra traffic in the network, and extra contention in the ALUs, po-
tentially reducing performance. Also, speculative firing of ALUs consumes
dynamic power. Hence, speculative execution of ALUs can be throttled using
version numbers to save energy. In the next subsection, we look at the impact
of speculative firing of ALUs on performance using the GPA simulator and the

TRIPS prototype simulator.

4.1.2.1 Impact of Speculative Execution—GPA Simulator

To find the impact on performance for various maximum values of ver-
sion numbers, we ran experiments using the GPA simulator varying the number
of times an instructions is allowed to fire speculatively. Table 4.1 shows the
performance for the various benchmarks, when we vary the maximum number
of speculative executions for an instruction. Loads that arrive at the memory
interface send speculative values to their consumers in the presence of earlier
unresolved stores. Later arriving stores that match the address of the loads,
and are earlier in program order, are allowed to wakeup these loads. The

number of load replies is also bound by the maximum version number allowed.
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Maximum speculative firing 1 2 3 4 5 6
ammp | 1.52 | 1.52 | 1.52 | 1.51 | 1.51 | 1.51
art || 1.89 | 1.74 | 1.74 | 1.74 | 1.74 | 1.88
bzip2 || 2.14 | 2.13 | 2.13 | 2.13 | 2.13 | 2.13
compress || 1.55 | 1.55 | 1.55 | 1.55 | 1.55 | 1.55
equake || 1.20 | 1.24 | 1.31 | 1.36 | 1.36 | 1.37
m88ksim || 1.10 | 1.08 | 1.08 | 1.07 | 1.06 | 1.06
mcf || 0.79 | 0.80 | 0.79 | 0.77 | 0.75 | 0.73
mgrid || 1.68 | 1.60 | 1.62 | 1.62 | 1.58 | 1.55
mpeg2encode || 3.12 | 3.13 | 3.13 | 3.13 | 3.14 | 3.14
parser || 1.30 | 1.30 | 1.30 | 1.30 | 1.30 | 1.29
twolf || 1.11 | 1.13 | 1.13 | 1.13 | 1.12 | 1.11
hydro2d || 1.34 | 1.32 | 1.28 | 1.23 | 1.20 | 1.19
tomcatv || 3.82 | 3.82 | 3.82 | 3.82 | 3.82 | 3.82
turb3d | 0.72 | 0.72 | 0.70 | 0.69 | 0.68 | 0.68

| Mean | 1.40 [ 1.40 [ 1.39 [ 1.38 | 1.37 | 1.36

Table 4.1: DSRE IPC variation with increasing maximum speculative firing
on the GPA simulator

The loads send their commit bits only after all previous stores have resolved.

From Table 4.1, we see that benchmarks like bzip2, compress, parser,
mpeg2encode, twolf, and tomcatv are relatively unaffected when we increase the
number of times ALUs are allowed to fire speculatively. In these benchmarks,
either there are very few load-store dependences, or these dependences are
satisfied by the first arriving store. Figure 4.5 plots number of load replies
for different maximum version number, normalized to the number of loads
executed when we allow only one speculative value per operand. For these
benchmarks, we see that the number of loads executed is relatively unchanged

with maximum allowed speculative execution for an operand.
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Figure 4.5: Normalized executed loads for various maximum speculative exe-
cution allowed

The performance of art decreases with increasing maximum version
number allowed, and then increases when the maximum speculative execution
is set to 6. With selective re-execution, later arriving stores are not allowed to
wakeup a load, if the load has already received its value from a store that is
later in program order than the arriving store. art has some loads that match
with multiple earlier stores. These stores result in multiple speculative load
executions when we increase the maximum version number, thus decreasing
the performance. However, when the maximum speculative execution is set to
6, the number of load executions due to matching stores is actually reduced,
because the store that is later in program order arrives at the memory interface
before a matching store that is earlier in program order. Both these stores
match the address of a later program order load, but only one store is allowed

to wakeup the load, resulting in fewer load replies. The same phenomenon is
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seen in equake, which shows increasing performance with increasing number of
allowed maximum executions. From Figure 4.5, we see that the number of load
replies increases as we increase the maximum allowed version number for art,
and decreases when the maximum number of allowed speculative executions is
6. For equake the number of load replies decreases as we increase the maximum

allowed version number for an operand.

ammp, m88ksim, mcf, mgrid, hydro2d, and turb3d show a reduction
in performance when we increase the maximum allowed version number. For
these benchmarks, as seen from Figure 4.5, the number of load replies in-
creases as we increase the maximum allowed version number. In ammp, mcf,
and mgrid, increasing the maximum allowed version number results in more
versions of the same load reaching the memory interface. The speculative loads
result in a larger number of speculative load replies. In m88ksim, increasing
the maximum allowed version number results in a higher number of load replies
because multiple speculative versions of a store end up waking up the same
load. hydro2d and turn3d exhibit both the above mentioned behavior, and

hence suffer reduction in performance.

Figure 4.6 plots the number of arithmetic instructions executed when
we increase the maximum allowed version number, normalized to the total
number number of arithmetic instructions executed when we allow each in-
struction to execute at most once speculatively. From Figure 4.6, we see that
the number of arithmetic instructions executed increases as we increase the

maximum allowed version number for all the benchmarks.
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Figure 4.6: Normalized executed arithmetic instructions for various maximum
speculative execution allowed

In summary, increasing the maximum version number allowed results
in an increase in the number of instructions executed. The higher ALU and
network traffic, resulting from the large number of instructions executed, gen-
erally lowers performance. A few benchmarks show improved performance
with increasing version number. However, this improvement in performance
is a result of the earlier resolution of matching stores that results in fewer
executed loads. Since most of the benchmarks either show no improvement
in performance or reduction in performance when we increase the number of
allowed maximum version number, we restricted the number of speculative

executions to one in the GPA simulator.
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4.1.2.2 Impact of Speculative Execution—TRIPS Prototype Sim-
ulator

Maximum speculative 1 2 3 4 5 6
firing

a2timeO1 || 0.765 | 0.910 | 0.927 | 0.936 | 0.942 | 0.942
aifttr01 || 0.606 | 0.618 | 0.630 | 0.651 | 0.654 | 0.652
aifirf01 || 1.036 | 1.055 | 1.072 | 1.069 | 1.062 | 1.062
aiifft01 || 0.585 | 0.606 | 0.623 | 0.641 | 0.644 | 0.645

autcor00 || 1.210 | 1.210 | 1.210 | 1.210 | 1.210 | 1.210

basefp01 || 0.885 | 0.890 | 0.894 | 0.886 | 0.876 | 0.867

bezierO1 || 1.740 | 1.748 | 1.698 | 1.670 | 1.678 | 1.680

bitmnpO01 || 0.779 | 0.783 | 0.779 | 0.773 | 0.770 | 0.768

cacheb01 || 0.692 | 0.699 | 0.710 | 0.699 | 0.692 | 0.691

canrdrO1 || 1.292 | 1.342 | 1.351 | 1.352 | 1.353 | 1.353

conven00 || 0.538 | 0.538 | 0.538 | 0.538 | 0.538 | 0.538

fft00 || 1.359 | 1.382 | 1.408 | 1.408 | 1.408 | 1.408

idctrn01 || 0.738 | 0.735 | 0.737 | 0.770 | 0.765 | 0.760

iirflt01 || 0.525 | 0.525 | 0.555 | 0.636 | 0.623 | 0.612
ospf || 0.641 | 0.705 | 0.714 | 0.715 | 0.717 | 0.717

pntrchO1 || 0.822 | 0.827 | 0.822 | 0.969 | 0.981 | 0.983

pktflow || 1.001 | 1.054 | 1.046 | 1.047 | 1.046 | 1.044
puwmodO1 || 0.801 | 0.814 | 0.790 | 0.762 | 0.729 | 0.698
routelookup || 0.573 | 0.573 | 0.573 | 0.573 | 0.573 | 0.573

rspeed01 || 0.804 | 0.837 | 0.866 | 0.875 | 0.883 | 0.884

tblook01 || 0.776 | 0.817 | 0.818 | 0.818 | 0.818 | 0.818

ttsprk01 || 0.667 | 0.697 | 0.698 | 0.700 | 0.701 | 0.703

viterb00 || 0.779 | 0.805 | 0.828 | 0.838 | 0.847 | 0.847

| Mean || 0.777 [ 0.799 | 0.807 | 0.822 | 0.820 | 0.816 |

Table 4.2: DSRE IPC variation with increasing maximum speculative firing
on the TRIPS simulator

To validate the results shown in the last subsection, we ran experi-

ments using the TRIPS prototype simulator, and studied the performance for
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different maximum version numbers. Table 4.2 shows the performance of the
EEMBC benchmarks for different values of maximum version number on the

TRIPS prototype simulator.

From Table 4.2, we see that the variation in mean performance on
the TRIPS simulator is different from what is seen on the GPA simulator.
On the TRIPS simulator, the mean performance increases as we increase the
maximum number of times an instruction is allowed to execute speculatively
from 1 to 4, and then decreases. To understand the reason for this behavior,
we looked at the benchmarks that show the most difference in performance
as we increased the maximum version number. These benchmarks include

a2time01, canrdr01, idctrn01, wrfit01, pntrch01, rspeed01, and wviterb00.

All the EEMBC benchmarks consist of a main loop that is repeatedly
executed for a set number of iterations that can be specified by the user. A
large number of these benchmarks write their output using a pointer to a
structure. The benchmarks write their results after each major computation
within the loop. Hence, there are multiple loads and stores to this pointer
in the instruction window. To illustrate this behavior, Figure 4.7 shows part
of the source code from the inner loop of the benchmark rspeed01. rspeed01
repeatedly computes the road speed based on differences between timer counter
values. The calculation involves straight-forward arithmetic, but must also
deal with the situation when the timer rolls over, or when the measurement

results show abrupt changes.

The main loop in rspeed01 repeatedly computes the value of three vari-
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/* Time to update ? */
if( toothCountl >= tonewheelTeeth / 2) {
I*Yes, */
if( toothTimeAccum1 >
MAX_TOOTH_TIME *tonewheelTeeth / 2) {

[* ...check for zero road speed */
roadSpeed1 =0 ;

else {
[* ...or compute road speed */
roadSpeedl = (varsize)(SPEEDO_SCALE_FACTOR /
(toothTimeAccuml / tonewheelTeeth * 2));
/* ...then reset the filter counter */
toothCountl =0 ;
/* ...and clear the accumulator */
toothTimeAccuml1 =0 ;

}
WriteOut( roadSpeed1l ) ; /* Store result */

Figure 4.7: Code in the main loop of rspeed01

ables stored in memory, roadSpeed1, roadSpeed?, and roadSpeed3. Figure 4.7
shows the code for the computation of roadSpeedl. After computing each
value, the result is stored using the WriteOut function. Figure 4.8 shows the
source code for this function. This function uses the address in RAMfilePtr
pointer to write the computed result. The WriteOut function writes the value

of the result and increments the pointer.

The compiler breaks up the inner loop into a number of hyperblocks.
The computation and storage of roadSpeedl, roadSpeed2, and roadSpeed3 is
done using three separate hyperblocks that can be in the instruction window
at the same time. Figure 4.9 shows part of the TIL code for one of these hy-

perblocks. The predicated stores enforce bounds checking. From Figure 4.9,
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n_void
WriteOut( varsize value ) {
if (( RAMfilePtr+RAMfile_increment) > RAMfileEOF )
RAMfilePtr = RAMfile;

*(varsize *)RAMfilePtr = value;
AMfilePtr += RAMfile_increment;

} /* End of function "WriteOut’ */

Figure 4.8: WriteOut function code from rspeed01

we see that the program repeatedly loads and stores to the address of the
RAMfilePtr variable. Any load to this address has to get its value from the
most recent store. When this code is executed on the TRIPS prototype sim-
ulator, the loads to RAMfilePtr address resolve before all the previous stores
to RAMfilePtr address. Matching stores, which arrive after the load, wake up

these loads, and the loads send the updated value to their consumers.

Matching stores, which arrive after a load has already speculatively
executed the maximum number of times, are not allowed to wake up the
load. These loads send their non-speculative result after all prior stores have
resolved. If the load receives the last speculative value from the last matching
store before the load, it can send a null commit message, when all prior stores
resolve. Otherwise, the load has to send the new store value, along with the
commit bit. Thus, there is no benefit to using DSRE if the last speculative
execution of the load did not get its value from the latest matching store before
the load. Matching stores that arrive at the DT do not wakeup loads, if the
load has already received the value from a store that is later in program order

to the matching store.
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.bbegin t_run_test$25

entera $t18, RAMfilePtr

ld  $t19, ($t18) L[6]

entera $t20, roadSpeed3$$6220
ld  $t21, ($t20) L[7]

sd  ($t19), $t21 S[8]

entera $t22, RAMfile_increment
lws  $t23, ($t22) L[9]

entera $t24, RAMfilePtr

Id  $t25, ($t24) L[10]

mul  $t26, $t23, $t0

add  $t27, $t25, $t26

entera $t28, RAMfilePtr

sd  ($t28), $t27 S[11]

entera $t37, RAMfilePtr
sd_t<$t34> ($t37), $t36 S[14]
null_f<$t34> $t38

sd  ($t38), $t38 S[14]

entera $t39, RAMfilePtr

Id  $t40, ($t39) L[15]

Figure 4.9: Piece of TRIPS intermediate language (TIL) code from a rspeed01
hyperblock to show loads and stores to the address of RAMfilePtr
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1000000

500000 '//
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Figure 4.10: Number of load executions for various maximum speculative ex-
ecution
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Figure 4.11: Number of load null commit messages for various maximum spec-
ulative execution

When we increase the number of times a load is allowed to execute
speculatively, we increase the number of stores that are allowed to wakeup
the load. The increase in the number of stores in turn increases the chances
of the load executing speculatively with the right store value. Thus, loads
send a larger number of null commit messages when we increase the maximum
allowed version number. Figure 4.10 shows the number of times loads execute
and Figure 4.11 shows the number of load null commit messages, when we
increase the number of times loads are allowed to execute speculatively. We
see from Figure 4.10 and Figure 4.11 that for rspeed01, the number of null
commit messages sent by the DT increases as we increase the maximum version
number, while the number of speculative load executions saturates. The larger
number of null commit messages result in higher performance for rspeed01 as

we increase the maximum version number.
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Increasing the maximum version number does not always result in
higher performance. For some benchmarks like idctrn01, aifirfO1, basefp01,
and matriz01, performance increases at first and then decreases. To under-
stand this behavior, we looked at the number of null commit messages and
speculative load executions in these benchmarks. Figure 4.10 shows the num-
ber of times loads execute speculatively, and Figure 4.11 shows the number
of null commit messages for idctrn01 when we increase the number of times
loads are allowed to execute speculatively. From Figure 4.10 and Figure 4.11,
we see that for this benchmark, the number of load null commit messages sat-
urates after the maximum number of speculative executions reaches 4, while
the number of speculative loads executed keeps increasing. Hence, peak per-
formance is obtained when we restrict the number of maximum speculative

execution to 4 for idctrn01.

In summary, the number of speculative load executions and load null
commit messages is benchmark dependent, and is a function of the arrival or-
der of loads and stores at the D'T. There are fewer load re-executions if the last
program-order matching store before the load arrives at the DT before earlier
stores. For the benchmarks that we study in this dissertation, maximum per-
formance is obtained when we restrict the number of maximum speculative
firing to 4. Hence, we use this value for the rest of experiments in this dis-
sertation. Future work can involve examining policies that dynamically vary
this threshold, depending on the number of speculative executions and null

commit messages being sent for a particular phase of a benchmark.
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4.2 DSRE Evaluation

In this section, we look at the performance of DSRE and compare it
to the other load/store recovery schemes. We first present results obtained
using the GPA simulator, and then present results obtained using the detailed
TRIPS prototype simulator. We also present an analysis of the results obtained

using the TRIPS prototype simulator.

4.2.1 DSRE Performance

Table 4.3 shows the performance of the simulated GRID processor with
all of the load/store speculation policies we evaluate in this paper. Perfor-
mance is displayed in instructions per cycle (counting useful, non-overhead,
committed instructions only). We assumed that flushes are rolling, initiated
when a misprediction is first detected, which is a higher-performance assump-
tion than initiating flushes when the block containing the faulting instruction

is ready to commit.

Column two (the leftmost data column) shows performance using con-
servative ordering (cons), in which every load waits for all prior stores to
complete. As we showed in Chapter 2, this conservative model is by far the
worst-performing model. The third column shows performance with a pure
re-execution mechanism (DSRE), in which all loads issue as soon as they are
ready, and re-execute if an earlier store resolves to the same address. As dis-
cussed in the last section, we restrict the number of times instructions are

allowed to fire speculatively to one on the GPA simulator. Pure DSRE pro-
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No flush Flush on load mis-speculation

Benchmark | cons | DSRE all-stores one-store oracle

(IPC) | (IPC) (IPC) (IPC) (IPC)
ammp 0.94 1.52 2.41 3.11 3.96
art 1.37 1.89 3.72 3.50 3.73
bzip2 1.90 2.14 3.16 3.23 3.24
compress 1.40 1.55 1.56 1.56 1.66
equake 0.79 1.20 1.71 1.71 1.75
m88ksim 0.88 1.10 0.93 1.28 2.31
mcf | 0.42 0.79 0.87 0.83 0.88
mgrid 1.27 1.68 1.31 1.56 4.23
mpeg2encode 2.63 3.12 3.43 3.32 3.51
parser 1.27 1.30 1.31 1.31 1.32
twolf | 0.88 1.11 1.27 1.36 2.09
hydro2d 0.78 1.34 1.03 1.73 3.35
tomcatv 2.88 3.82 4.96 4.95 4.96
turb3d 0.53 0.72 0.62 0.74 3.85

| Mean | 097 | 1.40 | 1.42 1.61 | 230 |

Table 4.3: IPC of load/store recovery schemes on the GPA simulator

vides a 40% performance boost over conservative load-store ordering, making
it a potential alternative to dependence prediction. As shown in Chapter 5, the

difference in performance between the DSRE and the oracle policy is primarily

due to the commit wave falling behind the execution wave.

Columns 4 and 5 show the performance of traditional dependence pre-
diction, using all-stores and one-store to selectively stall loads that are pre-
dicted to be dependent, and flush the pipeline if a load is speculatively issued
before a conflicting store. all-stores shows almost exactly the same average

performance as DSRE. The more complex, but more aggressive, one-store pol-
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Figure 4.12: Percentage of loads that conflict with earlier stores

icy improves performance over the base case by an additional 13%, since some
stalled loads can proceed earlier when their conflicting store arrives, instead of
waiting for all stores. Despite these relatively large performance gains, a large
gap still exists with the upper-bound performance of an oracle, which shows a
mean IPC of 2.30, 43% higher than the one-store policy. In the next chapter,
we will look at enhancements to the base DSRE technique that bridges this

gap in performance.

The one-store dependence policy results in performance comparable to
the oracle policy for all but six benchmarks. These are ammp, m88kim, mgrid,
twolf, hydro2d, and turb3d. To understand the low performance in these bench-
marks, we looked at the dynamic load-store dependences in these benchmarks.
Figure 4.12 shows the number of loads that depend on earlier stores during
execution, as a fraction of the total number of memory instructions. As seen
from Figure 4.12, these benchmarks have a significant number of loads con-

flicting with earlier stores. The one-store predictor is unable to predict these
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dependences correctly. m88kim, mgrid, and twolf suffer too many flushes due
to loads being incorrectly predicted conflicting. In ammp and hydro2d, the
predictor is too conservative and predicts a large number of independent loads
as being dependent. turb3d has a mix of loads incorrectly predicted conflicting

and non-conflicting.

Table 4.4 compares the performance of DSRE against the various load /store
recovery schemes across the set of EEMBC benchmarks on the TRIPS proto-
type simulator. From Table 4.4, we see DSRE provides 16% improvement over
the conservative scheme. The performance improvement is lower than what is

seen with the GPA simulator due to the following reasons:

1. Asexplained in Chapter 7, the network and ALU contention are more ac-
curately modeled in the TRIPS prototype simulator, and hence influence

performance to a larger degree with DSRE.

2. Since the LSQ is physically distributed, the arrival of stores at the data
tile is communicated through the data status network (DSN). Hence,
stores take longer to resolve in the DT. For example, arrival of a store
at DTO is communicated to DT3 after 3 cycles. Since loads can send
their commit bits only after all the stores before them have resolved,
propagation of load commit bits is delayed by the distributed nature of
the LSQ.

3. The reissue pipeline in the DT adds an extra cycle delay to the propa-

gation of the commit bit.
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No flush Flush on load mis-speculation
Benchmark | cons | DSRE all-stores one-store oracle
(IPC) | (IPC) (IPC) (IPC) (IPC)
a2time01 | 0.702 0.936 0.793 0.842 2.418
aifftr01 || 0.560 0.651 0.714 0.710 2.477
aifirf01 | 0.884 1.069 1.692 1.677 2.635
aiifftOl || 0.547 0.641 0.676 0.698 2.592
autcor(00 1.208 1.210 1.208 1.208 1.210
basefp01 || 0.845 0.886 1.068 1.074 1.212
bezier01 | 1.195 1.670 2.789 2.793 2.789
bitmnp01 || 0.678 0.773 0.920 0.945 1.714
cacheb01 || 0.579 0.699 0.861 0.993 1.535
canrdr01 | 1.197 1.352 1.400 1.431 1.483
conven00 | 0.535 0.538 0.538 0.538 0.538
fft00 1.052 1.408 2.725 2.726 2.727
idctrn01 || 0.652 0.770 1.566 1.530 2.719
iirflt01 | 0.489 0.636 0.849 0.869 1.944
ospf | 0.633 0.715 0.906 0.908 0.917
pntrch01 || 0.820 0.969 0.930 0.900 1.039
pktflow | 0.896 1.047 1.187 1.187 1.272
puwmodO1 || 0.703 0.762 0.922 0.913 2.191
routelookup || 0.573 0.573 0.573 0.573 0.573
rspeed01 || 0.697 0.875 0.887 0.889 2.129
tblook01 || 0.751 0.818 0.821 0.825 0.854
ttsprk01 | 0.636 0.700 0.743 0.749 0.782
viterb00 || 0.647 0.838 1.490 1.780 3.053
Mean | 0.709 | 0822 |  0.955 0972 | 1.361 |

Table 4.4: IPC of load/store recovery schemes on the TRIPS prototype simu-
lator
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4. Only one load is allowed to send a commit bit every cycle. Hence, if
there are a number of loads after a store that become non-speculative
when the store arrives, we can process null commit messages for only

one load per cycle.

5. A large fraction of the variables in the EEMBC suite are either global
or static variables. The current compiler did not register allocate these
variables, and is forced to allocate them in memory, resulting in a large

number of load-store dependences in these programs.

6. The load-store pipeline in the DT stalls during load-store forwarding.
Thus, programs with a a large number of load-store dependences incur
more stalls in the DT. Also, when a store wakes up a load, the pipeline
stalls when the load is being processed to get the forwarded value from

the store.

7. For a number of EEMBC benchmarks, within a hyperblock we have loads
that compute the data for stores. These loads are interleaved with other
loads and stores in the block. This load-to-store dependence serializes
the propagation of commit bits between stores. This serialization is
illustrated using a piece of TIL code from a2time in Figure 4.13. For
brevity we have shown only the loads and stores in the block that exhibit
load-to-store dependence, and omitted the rest of the instructions. The
variables being stored in Figure 4.13 are global variables, and hence were

not register allocated by the compiler.
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.bbegint_run_test$14 ;
Id $t7, ($t6) L[2]
entera $t8, angleCounter
sd ($t8), $t7 S[3]
entera $t33, angleCounter
Id $t34, ($t33) L[10]
entera $t35, angleCounterLast1$$6805
sd ($t35), $t34 S[11]
entera $t38, pulseDeltaTimel1$$6799
Id $t39, ($t38) L[13]
add $t40, $t37, $t39
entera $t41, rotationTime1$$6826
sd ($t41), $t40 S[14]

Figure 4.13: Piece of TRIPS intermediate language (TIL) code from a2time01
to show load-to-store dependence

From Figure 4.13, we see that the store with LSID 3 depends on the load
with LSID 2 for its value. This store can resolve only after the load sends
its commit bit. The load can send its commit bit only after all previous
stores before the load have resolved, and received their commit bit. The
load with LSID 10 can send its commit bit only after all previous stores,
including the store with LSID 3, have received their commit bit. The
store with LSID 11 depends on the load with LSID 10 for its value.
Similarly, the store with LSID 14 depends on the load with LSID 13
for its value. From the TIL code shown in Figure 4.13, we see that the
commit bit forwarding for the three stores listed above are serialized,

thus delaying the propagation of the commit wave.

The worst performing benchmarks with DSRE include a2time01, aifftr01,
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asfirf01, aunfftO1, bitmnp01, cacheb01, idctrn01, wrflt01, matriz01, pntrch01,
puwmod01, and rspeed01. All these benchmarks write their output using the
RAMfilePtr variable which results in multiple stores to the same address in the
instruction window. When a load gets woken up multiple times by matching
stores, it results in the DT stalling for a cycle every time a value is forwarded.
The large number of DT stalls, along with the extra network and ALU traffic
generated by the multiple speculative executions, result in the poor perfor-

mance for these benchmarks.

For some benchmarks like autocor00, canrdr01, conven00, and tblook01,
DSRE performance is similar to that of the oracle policy. These benchmarks
do not have a large number of global or static variables. Hence, more vari-
ables in these benchmarks are register allocated, resulting in fewer load-store
dependences. Also, these benchmarks have small average block size, resulting
in fewer useful instructions in the instruction window. Small average block
size reduces the number of in-flight load-store dependences, but also results in
overall poor performance because of the large overhead associated with fetch-
ing and committing the small blocks. Table 4.5 shows the average block size
of the EEMBC benchmarks along with the IPC with perfect load-store pre-
diction. We see from Table 4.5 that the benchmarks with small average block

sizes have the poorest performance.
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Benchmark | Average Block Size | Oracle
(Instructions) IPC
a2time01 58.060 2.418
aifftr01 59.252 2477
aifirf01 49.973 2.635
alifft01 63.035 2.592
autcor(00 18.066 1.210
basefp01 24.231 1.212
bezier01 35.660 2.789
bitmnp01 35.732 1.714
cacheb01 51.703 1.535
canrdr01 22.314 1.483
conven(0 7.130 0.538
fft00 31.106 2.727
idctrn01 50.826 2.719
iirfit01 50.658 1.944
ospf 18.739 0.917
pntrch01 34.092 1.039
pktflow 23.889 1.272
puwmodO01 57.989 2.191
routelookup 18.871 0.573
rspeed01 60.233 2.129
tblook01 23.821 0.854
ttsprk01 22.602 0.782
viterb00 42.696 3.053
| Mean | 37.421 | 1.361 |

Table 4.5: Average block size and IPC with oracle policy for the EEMBC

benchmarks

Dependence prediction with the all-stores and first-store predictor for

fft00 has performance close to oracle. fft00 has a significant number of loads,

but a large majority of these loads are independent loads. Hence, dependence
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prediction works very well for this benchmark. With DSRE, these independent
loads generate a large number of null commit messages. The extra ALU and
network traffic, generated by the null commit messages, result in the poor

performance of DSRE when compared to dependence prediction.

DSRE outperforms dependence prediction for a2time01 and pntrch01.
As explained earlier, these benchmarks have the serialized loads to the RAM-
filePtr function that don’t benefit from dependence prediction. Dependence
prediction also causes load violation flushes in these benchmarks, before the
predictor is trained to predict these loads as conflicting. DSRE is able achieve
higher performance than dependence prediction because of the lack of pipeline
flushes, and the null commit messages that are sent when the correct matching

store happens to wakeup these loads.

On the TRIPS prototype simulator, the 1-bit all-stores predictor and
the 3-bit first-store predictor improve the mean performance by 35% and 37%
over the conservative policy. There is still 42% and 40% difference in perfor-
mance between the predictors and the oracle policy. The large difference in
performance between the all-stores predictor and oracle can again be explained

using the load-to-store dependence shown in Figure 4.13.

The all-stores predictor uses a PC-indexed 1-bit table to identify loads
that cause a dependence violation. The load PC is computed by zor-ing the
top b bits of the blocks address with the reversed LSID of the load. If the bit
is set for a load, the load is deferred and sends its reply only after all prior

stores have resolved. If the deferred load happens to be part of a load-to-store

88



.bbegin t_run_test$40 ;
entera $t2, RAMfilePtr
Id $t3, ($t2) L[0]
entera $t4, firingTime3$$6819
ld $t5, ($t4) L[1]
sd ($t3), $t5 S[2]
entera $t8, RAMfilePtr
Id $t9, ($t8) L[4]
mul $t10, $t7, $t0
add $t11, $t9, $t10
entera $t12, RAMfilePtr
sd ($t12), $t11 S[5]
entera $t23, RAMfilePtr
Id $t24, ($t23) L[9]

Figure 4.14: Piece of TRIPS intermediate language code (TIL) from a2time01
to show load-to-store and store-to-load dependence

dependence chain, the propagation of the load result is delayed, thus resulting

in poor performance.

Figure 4.14 shows TIL code, again from the a2time01 benchmark that
illustrates this case. We have shown only the instructions that highlight the
load-to-store dependence and the store-to-load dependence in Figure 4.14.
From Figure 4.14, we see that that store with LSID 2 depends on the loads
withe LSID 0 and LSID 1 for its address and data. The store with LSID 5
depends on the load with LSID 4. Finally, the load with LSID 9 uses the value

stored by the store with LSID 5.

During program execution, the load with LSID 9 causes a load-store
dependence violation, and the bit corresponding to this load is set in the 1-

bit dependence prediction table. When this load is encountered again during
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program execution, it is deferred and waits for all prior stores to resolve before
sending its reply. Since the stores before the load are serialized due to a load-
to-store dependence, it takes longer for the stores to resolve, thus delaying the
load reply. Code similar to that shown in Figure 4.14 is found in a number of
EEMBC benchmarks that write their result using the RAMfilePtr. Like the
DSRE policy, the all-stores predictor performs similar to the oracle policy on

benchmarks with few load-store dependences and small average block size.

The more aggressive 3-bit first-store predictor performs better than the
all-stores predictor for most benchmarks. There is still a large gap in perfor-
mance between the first-store predictor and the oracle policy. This difference
can be attributed to the presence of multiple matching stores to the same ad-
dress in the instruction window. As described in Section 4.1.2.2, the EEMBC
benchmarks use a global pointer to store the output after each computation.
Loads and stores repeatedly access this pointer during program execution, re-
sulting in a load matching with multiple, earlier in-flight stores. These multiple
stores result in the first-store predictor becoming more conservative, and be-

having like the all-stores predictor for these loads, thus reducing performance.

The first-store predictor does benefit from an aggressive load wakeup
policy for some benchmarks. viterb00 shows an 19.4% improvement in perfor-

mance with the first-store predictor when compared to the all-stores predictor.

The all-stores predictor performs better than the first-store predictor
for aifirf01 and matriz01. The first-store predictor results in a larger number

of flushes in these benchmarks for loads that match with multiple stores. For
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these loads, the first-store predictor can incur up to five extra flushes in each
data tile before it is trained to predict to defer the loads until all prior stores
resolve. These extra flushes result in lower performance with the first-store

predictor for these benchmarks.

In summary, there is a significant difference in performance between
DSRE and the the oracle policy across the set of EEMBC benchmarks. The
difference in performance is primarily due to multiple matching stores for a
load that results in a large number of stores forwarding their value to loads
in the DT. Load-store forwarding results in the DT stalling for a cycle, thus
reducing performance. The multiple store forwarding also generates extra
ALU and network traffic that reduces performance. The EEMBC benchmarks
also have a number of load-to-store dependence that serializes propagation of
commit bit among stores. This delay in commit propagation also contributes

to the poor performance of DSRE.

Dependence prediction using all-stores and first-store predictor also per-
forms poorly when compared to the oracle policy across the set of EEMBC
benchmarks. In this case also, the difference in performance is primarily due to
multiple matching stores to the same address in the main loop of these bench-
marks. The multiple matching stores incorrectly wakeup loads, resulting in a
larger number of flushes. In the steady state, the predictor becomes conserva-
tive for these loads, and defers the load reply until all prior stores resolve. The
first-store predictor will yield better performance if it can accurately identify

the matching store for each load, and allow only that store to wakeup up the
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load. Future work can involve looking at predictors that provide this func-
tionality in the distributed TRIPS environment. In the next few sections, we
compare the performance of DSRE against the various dependence prediction
with perfect branch prediction that results in a larger instruction window and

perfect level one and level two caches that results in lower memory latency.

4.2.2 DSRE Performance with Perfect Branch Prediction

No flush Flush on load mis-speculation
Benchmark | cons | DSRE all-stores one-store oracle
(IPC) | (IPC) (IPC) (IPC) (IPC)
ammp 0.95 1.55 2.41 3.22 4.23
art 1.38 1.91 3.89 3.15 3.89
bzip2 2.35 2.79 2.51 4.73 5.31
compress 1.98 2.21 2.36 2.39 2.42
equake 0.80 1.26 1.95 1.94 1.99
m88ksim 0.89 1.13 0.95 1.53 2.44
mcf 0.43 0.89 1.07 1.03 1.09
mgrid 1.39 1.65 1.46 1.55 4.31
mpeg2encode 2.85 3.48 3.93 3.93 4.05
parser 1.38 1.41 1.43 1.43 1.44
twolf 0.97 1.21 1.33 1.49 2.79
hydro2d 0.82 1.47 1.08 2.12 3.42
tomcatv 2.93 3.90 5.12 5.10 5.12
turb3d 0.53 0.73 0.66 0.81 4.20
| Mean | 1.02 | 1.47 | 1.55 | 1.85 | 270

Table 4.6: IPC of load/store recovery schemes on the GPA simulator with
perfect branch prediction
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In this section, we evaluate the effect of perfect branch prediction on
the various data mis-speculation recovery schemes. Perfect branch prediction
results in the instruction window of the processor being filled with a larger
number of useful instructions. Hence, it has the potential for higher perfor-
mance by increasing the amount of instruction level parallelism that we can
exploit. However, having a larger instruction window also increases the num-

ber of conflicting loads and stores that can be present in the window.

Table 4.6 shows the performance of the various load/store schemes with
perfect branch prediction. Perfect branch prediction improves the mean perfor-
mance of the conservative and selective re-execution scheme by 5%, all-stores
policy by 9%, one-store policy by 15%, and the oracle policy by 17%. This
trend is in line with what we observed in Chapter 2. Perfect branch predic-
tion increases the number of load and store instructions in the instruction
window. The conservative and selective re-execution schemes predict all loads
as conflicting, thus delaying commit bit propagation to the consumers of the
loads until all prior stores resolve. The all-stores and the one-store predic-
tor are able to get a performance boost from load-store dependences that are

predicted correctly.

The one-store policy performs similarly to the oracle policy for bench-
marks that do not have a large number of load-store dependences. The conser-
vative all-stores policy performs better than the aggressive one-store policy for
art because of the higher number of flushes. m88ksim and mgrid suffer from

a larger number of flushes, ammp and hydro2d have loads that are incorrectly
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predicted dependent, and twolf and turb3d have a mix of both.

Table 4.7 shows the performance with perfect branch prediction with
the TRIPS simulator. Perfect branch prediction improves the performance of
the conservative policy by 3%, all-stores policy by 4.8%, first-store policy by
4.7%, and the oracle policy by 7%. This trend is similar to what is seen on the
GPA simulator. The improvements for each policy is lower because of the small
size of the EEMBC benchmarks, along with their loop based nature, which

makes them incur fewer branch mispredictions than the SPEC benchmarks.

DSRE actually shows a reduction in mean performance with perfect
branch prediction on the TRIPS prototype simulator. We analyzed the bench-
marks showing the largest reduction in performance. These benchmarks have
multiple matching stores to the same address. We found that with DSRE, the
larger instruction window from perfect prediction resulted in more contention
and traffic in these benchmarks, due to multiple stores waking up the same
matching load. This extra contention reduced the mean performance of DSRE

with perfect branch prediction.
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No flush Flush on load mis-speculation
Benchmark | cons | DSRE all-stores one-store oracle
(IPC) | (IPC) (IPC) (IPC) (IPC)
a2time01 | 0.705 0.768 0.798 0.846 2.447
aifftr01 || 0.561 0.607 0.700 0.715 2.499
aifirfO1 | 0.930 1.102 1.717 1.698 2.588
aiifftOl || 0.547 0.586 0.673 0.707 2.602
autcor(00 1.444 1.444 1.465 1.465 1.464
basefp01 0.872 0.912 1.110 1.118 1.262
bezier01 || 1.194 1.741 2.783 2.776 2.789
bitmnp01 || 0.740 0.861 1.008 1.043 1.975
cacheb01 || 0.614 0.707 0.951 0.952 2.048
canrdr01 || 1.270 1.390 1.652 1.732 1.852
conven00 || 0.483 0.483 0.510 0.481 0.483
fft00 | 1.035 1.329 2.713 2.658 2.660
idctrn01 || 0.662 0.748 1.583 1.619 2.862
iirflt01 | 0.490 0.525 0.841 0.883 1.969
ospf | 0.653 0.662 1.053 1.054 1.070
pntrch01 || 0.823 0.826 0.927 0.969 1.048
pktflow | 0.938 1.039 1.269 1.270 1.368
puwmodO1 | 0.711 0.809 0.928 0.919 2.268
routelookup || 0.719 0.719 0.719 0.719 0.719
rspeed01 || 0.699 0.805 0.888 0.890 2.172
tblook01 | 0.769 0.727 0.864 0.899 0.886
ttsprk01 | 0.681 0.656 0.804 0.810 0.862
viterb00 || 0.647 0.780 1.491 1.800 3.046
Mean | 0.730 | 0.793 | 1.001 1.018 | 1.457 |

Table 4.7: IPC of load/store recovery schemes on the TRIPS prototype simu-
lator with perfect branch prediction
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4.2.3 DSRE Performance withe Perfect L1 Data Cache

No flush Flush on load mis-speculation
Benchmark | cons | DSRE all-stores one-store oracle
(IPC) | (IPC) (IPC) (IPC) (IPC)
ammp 0.97 1.53 2.59 3.22 4.26
art 1.50 1.92 4.09 3.69 4.10
bzip2 2.09 2.35 3.72 3.88 3.90
compress 1.61 1.71 1.81 1.78 1.84
equake 1.04 1.36 2.50 2.51 2.58
m88ksim 0.88 1.11 0.93 1.24 2.32
mcf 0.94 1.11 1.15 1.11 1.17
mgrid 1.50 1.68 1.53 2.07 5.58
mpeg2encode 2.63 3.13 3.43 3.42 3.52
parser 1.34 1.36 1.39 1.39 1.40
twolf 0.93 1.12 1.30 1.37 2.22
hydro2d 0.95 1.35 1.46 2.62 4.11
tomcatv 3.08 4.61 7.80 7.70 7.80
turb3d 0.56 0.73 0.67 0.79 3.96
| Mean | 117 | 1.46 | 1.64 | 1.87 | 2.69

Table 4.8: IPC of load/store recovery schemes on the GPA simulator with
perfect L1 D-cache

In this section, we compare the performance of DSRE against the var-
ious load issue schemes with a perfect level one data cache. Having a perfect
L1 data cache increases performance by reducing the average memory latency

for loads and stores.

Table 4.8 shows the performance of the various load/store schemes with
perfect level one data cache. Perfect L1 D-cache improves the mean perfor-

mance of the conservative scheme by 20%, selective re-execution scheme by
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4.3%, all-stores policy by 15.5%, one-store policy by 16%, and the oracle pol-
icy by 17%. Perfect L1 D-cache results in larger performance improvement
than perfect branch prediction for the conservative, all-stores, and one-store

policies.

In the conservative policy, all loads are predicted conflicting and send
their reply after all prior stores have resolved. With perfect L1 D-cache, the
independent loads are able to send data to their consumers with a smaller
latency, as the request always hits in the data cache. Loads predicted con-
flicting by the all-stores policy have a similar advantage, and loads that were
predicted dependent incorrectly by the one-store predictor also benefit from
the lower latency to the memory system. Hence, these schemes benefit with
perfect L1 D-cache. With selective re-execution, loads access the cache when
they first arrive at the memory interface. Latency of cache misses are hidden
by the time it takes for previous stores to resolve, and send the commit bit for
the load. Hence, selective re-execution does not benefit greatly from perfect
L1 D-cache. However, this result does prove that selective re-execution can be

used as a mechanism for tolerating memory latencies.
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No flush Flush on load mis-speculation

Benchmark | cons | DSRE all-stores one-store oracle
(IPC) | (IPC) (IPC) (IPC) (IPC)
a2time01 | 0.703 0.937 0.791 0.842 2.422
aifftrO1 || 0.567 0.651 0.719 0.715 2.495
aifirf01 | 0.885 1.067 1.693 1.681 2.614
aiifft01 | 0.554 0.642 0.681 0.703 2.620
autcor00 || 1.169 1.175 1.171 1.171 1.172
basefp01 || 0.854 0.887 1.071 1.076 1.225
bezier(Q1 1.296 1.687 2.792 2.485 2.788
bitmnp01 || 0.679 0.773 0.922 0.945 1.716
cacheb01 || 0.589 0.698 0.881 1.014 1.597
canrdr01 || 1.205 1.356 1.401 1.434 1.486
conven00 | 0.535 0.538 0.538 0.538 0.538
fft00 | 1.052 1.408 2.734 2.735 2.736
idctrn01 || 0.653 0.772 1.549 1.522 2.729
iirflt01 | 0.490 0.637 0.836 0.867 1.951
ospf | 0.669 0.742 0.941 0.942 0.945
pntrch01 | 0.821 0.970 0.931 0.903 1.041
pktflow | 0.955 1.053 1.262 1.262 1.336
puwmodO1 || 0.704 0.763 0.925 0.915 2.194
routelookup | 0.573 0.573 0.573 0.573 0.573
rspeed01 || 0.698 0.875 0.888 0.891 2.142
tblook01 || 0.754 0.819 0.822 0.827 0.856
ttsprk01 | 0.638 0.700 0.744 0.749 0.783
viterb00 || 0.647 0.838 1.490 1.781 3.054

| Mean | 0.716 | 0823 |  0.959 0975 | 1.369 |

Table 4.9: IPC of load/store recovery schemes on the TRIPS prototype simu-
lator with perfect L1 D-cache

Table 4.9 shows the performance across the set of EEMBC benchmarks

for perfect L1 D-cache with the TRIPS simulator. Perfect L1 D-cache improves
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the mean performance of the conservative scheme by 1%, selective re-execution
scheme by 0.1%, all-stores policy by 0.4%, first-store policy by 0.3%, and the
oracle policy by 0.6%. Again, we see that the perfect L1 D-cache results in
larger performance improvements for the conservative, all-stores, first-store,
and the oracle policy. The difference is not as large as what is seen on the GPA
simulator because of the smaller memory footprint of the EEMBC benchmarks

that results in fewer cache misses.

4.2.4 DSRE Performance withe Perfect L2 Cache

No flush Flush on load mis-speculation
Benchmark | cons | DSRE all-stores one-store oracle
(IPC) | (IPC) (IPC) (IPC) (IPC)
ammp 0.95 1.53 2.52 2.67 4.14
art 1.46 1.94 4.09 3.68 4.09
bzip2 2.02 2.28 3.45 3.60 3.62
compress 1.42 1.55 1.58 1.56 1.60
equake 1.03 1.36 2.41 2.46 2.56
m88ksim 0.88 1.11 0.92 1.27 2.32
mcf 0.86 0.98 1.14 1.08 1.16
mgrid 1.50 1.69 1.53 1.90 5.57
mpeg2encode 2.63 3.13 3.43 3.42 3.52
parser 1.27 1.30 1.32 1.31 1.32
twolf | 0.88 1.11 1.24 1.32 2.09
hydro2d 0.94 1.35 1.43 2.71 4.11
tomcatv 3.08 4.53 7.81 7.70 7.81
turb3d 0.55 0.72 0.66 0.77 3.95
| Mean | 1.13 | 142 | 1.59 | 1.79 | 259

Table 4.10: IPC of load/store recovery schemes on the GPA simulator with
perfect L2 cache

99



In this section, we examine the effect of a perfect L2 cache on DSRE
and the various load issue schemes. Since the L2 cache is unified, simulating a
perfect L2 cache reduces both the average instruction and data fetch latencies

in the processor.

Table 4.10 shows the performance of the various load/store schemes
with perfect level two cache. Perfect L2 cache improves the mean performance
of the conservative scheme by 16.4%, selective re-execution scheme by 1.4%,
all-stores policy by 12%, one-store policy by 11%, and the oracle policy by
12.6%. The performance gains with perfect L2 cache are lower than the gains
with perfect L1 D-cache. However, the relative performance improvement
for the various load-store schemes is similar to perfect L1 D-cache, with the
conservative, all-stores, one-store, and oracle policies benefiting more from the

lower memory latency.

Table 4.11 shows the performance across the set of EEMBC bench-
marks for perfect L2 cache with the TRIPS simulator. Surprisingly, mean
performance with perfect L2 cache is better than performance with perfect L1
D-cache, for all the policies on the TRIPS prototype simulator. The higher
performance with perfect L2 cache can be explained by the lower instruction
fetch latency for these benchmarks with perfect L2 cache. The EEMBC bench-
marks have a larger I-cache miss rate than the D-cache miss rate. With perfect
L1 D-cache, the I-cache misses still have to go to the L2 cache or main mem-
ory to be serviced. Since the TRIPS processor has a unified L2 cache, with

perfect L2 cache, all the I-cache misses are serviced by the L2 cache. Hence,
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the performance is higher with perfect L2 cache on the TRIPS simulator.

In summary, this chapter explained implementation of selective re-
execution on EDGE architectures. We used load-store dependence prediction
as the driving speculation mechanism and evaluated its performance using
DSRE and pipeline flushing for mis-speculation recovery on the high-level
GPA simulator and low-level TRIPS prototype simulator. We found that
DSRE performs similar to the all-stores dependence prediction scheme on the
GPA simulator. The performance of DSRE is lower on the TRIPS simulator
when compared to the dependence prediction schemes. We found that that
there is still a 40% gap between the best dependence prediction policy and the
oracle policy. In the next chapter, we describe enhancements to DSRE that

attempt to close this gap.
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No flush Flush on load mis-speculation

Benchmark | cons | DSRE all-stores one-store oracle
(IPC) | (IPC) (IPC) (IPC) (IPC)
a2time01 | 0.704 0.938 0.795 0.844 2.434
aifftr01 || 0.560 0.651 0.715 0.710 2.479
aifirf01 | 0.886 1.070 1.703 1.692 2.639
aiifftOl || 0.547 0.641 0.676 0.698 2.602
autcor(00 1.238 1.239 1.238 1.238 1.239
basefp01 || 0.861 0.899 1.087 1.093 1.243
bezier(Q1 1.196 1.677 2.792 2.423 2.794
bitmnp01 || 0.680 0.775 0.923 0.947 1.723
cacheb01 || 0.582 0.702 0.866 1.000 1.555
canrdr01 || 1.212 1.367 1.414 1.448 1.500
conven00 | 0.536 0.539 0.540 0.539 0.539
fft00 | 1.053 1.409 2.732 2.731 2.733
idctrn01 || 0.655 0.774 1.535 1.544 2.764
iirflt01 | 0.492 0.640 0.853 0.912 1.987
ospf | 0.635 0.715 0.909 0.911 0.919
pntrch01 || 0.822 0.972 0.932 0.906 1.043
pktflow || 0.904 1.050 1.197 1.198 1.284
puwmodO1 || 0.706 0.765 0.925 0.917 2.212
routelookup || 0.573 0.573 0.573 0.573 0.573
rspeed01 || 0.700 0.879 0.892 0.894 2.164
tblook01 | 0.755 0.822 0.826 0.830 0.859
ttsprk01 | 0.638 0.701 0.746 0.751 0.785
viterb00 || 0.648 0.838 1.490 1.784 3.061

| Mean | 0.712 | 0825 |  0.959 0977 | 1371 |

Table 4.11: IPC of load/store recovery schemes on the TRIPS prototype sim-

ulator with perfect L2 cache
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Chapter 5

DSRE Acceleration

This chapter examines two policies, speculative commit slicing and
bottom-up commit traversal, to accelerate propagation of commit bits to im-
prove performance with DSRE. We first compare performance on the GPA
simulator, and validate it using the TRIPS prototype simulator. We do an
analysis of our results obtained using the TRIPS simulator to explain the per-
formance difference still remaining between DSRE with commit slicing and
oracle policy. We also study the performance of the enhanced DSRE scheme
with perfect branch prediction, perfect L1 D-cache, perfect L2 cache, and for
larger instruction window sizes to examine the effects of a larger useful in-

struction window and lower memory latency.

5.1 Accelerating Commit of Re-executed Blocks

Our results have shown that the commit traversal of the DFG is the
single largest impediment to achieving performance close to that of an ideal
oracle. Column 2 of Table 5.1 shows the performance of DSRE with ideal
commit performance (p-com) on the GPA simulator. In the p-com policy, every

load issues as soon as it reaches the memory interface, resulting in multiple
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Benchmark | p-com (IPC) | oracle (IPC)
ammp 3.96 3.96
art 3.73 3.73
bzip2 3.24 3.24
compress 1.66 1.66
equake 1.75 1.75
m88ksim 2.26 2.31
mcf 0.88 0.88
mgrid 4.15 4.23
mpeg2encode 3.51 3.01
parser 1.32 1.32
twolf 2.04 2.09
hydro2d 3.35 3.35
tomcatv 4.96 4.96
turb3d 3.28 3.85

| Mean | 2.27 | 2.30 |

Table 5.1: Perfect commit comparison on the GPA simulator

speculative waves when a store arrives. However, the commit bits in the policy
are infinitely fast, so that the commit traversal never inhibits performance.
The mean IPC for p-com is 2.27, which is within 4% of the upper bound,
demonstrating that the commit traversal is the remaining bottleneck. If the
commit traversal is sufficiently fast, the performance losses due to load/store
conflicts will be negligible. In this chapter, we describe two techniques for
accelerating the commit traversal: speculative commit slicing and bottom-up

commit traversal.
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5.1.1 Speculative Commit Slicing

Our analyses have shown that a significant portion of the commit
traversal’s lag behind the execution traversal of the DFG is attributable to
late-committing stores. As we saw in Section 4.2 of Chapter 4, the load-to-
store dependences in the EEMBC benchmarks, along with the nature of the
TRIPS architecture, results in delay in the resolution of stores in the instruc-
tion window. Only after all prior stores have received their commit bit can
loads forward their commit bits to their consumers (provided, of course that
the loads’ addresses have also received their commit bits). A single slow store
can thus block all subsequent loads from forwarding any commit bits until
quite late. Since loads typically reside at the head of dependence chains, a sin-
gle slow store may thus block any significant advance execution of the commit

wave.

To accelerate the commit traversal, we allow some loads to forward
their commit bits speculatively—although no modifications are made to ar-
chitectural state until safe commit is guaranteed. A load that is unlikely to
conflict can forward its commit bit, and if no violation eventually occurs, the
commit bit speculation improves performance. If a conflict does occur, the
pipeline needs to be flushed, since there is no way to recall the commit bit.
This strategy is safe because no architectural state is written until all com-
mit bits are received, at which point the processor can detect any violations.
Commit slicing thus begins to resemble the two-phase commit approach in

databases. In two-phase commit, individual transactions write to a log file

105



Program Order (older —> younger) ACTION

S c C |:| BASELINE: LD C sends the commit bit

only when all older stores are non—speculative

All stores are non—-speculative

(€

In the presence of older speculative

ST? ST? .. LDX |:| stores, if the dependence predictor predicts
independence for LD X, then forward
Older stores still speculative the commit bit for LD X speculatively

if address X is non—speculative.
@

dependence

In the presence of older speculative
stores, if dependence predictor predicts
ST? ST? .. LDX |:| LD X as dependent, then hold back

Older stores still speculative LD X until prior stores are non—speculative

©)

dependence If the commit bit for LD C was forwarded

speculatively and it is later determined that
ST? STC |:| the dependence predictor incorrecty predicted

Older stores still speculative independence, the pipeline is flushed.

4

Legend: ST/LD Non speculative LD or ST ? Speculative instruction

(commit bit recvd)

Figure 5.1: Speculative commit slicing

before updating the database on the disk. Writing to the log file improves
performance by ensuring that accesses to the database are not serialized. The
database application uses the log file to rollback in case of data corruption. In
commit slicing, individual loads send commit bits speculatively to break the
serial commit dependence. The processor uses pipeline flushing to rollback on

a commit mis-speculation.

This policy thus uses a hybrid of selective re-execution for the aggressive
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execution of loads and speculation with flushing for acceleration of commit
bits. To issue the speculative commit bits accurately, we re-employed the

dependence predictors evaluated earlier (all-stores, one-store, and first-store).

We show an example in Figure 5.1. If the load is predicted independent,
the load sends its commit bit as soon as it receives a commit bit from its
address, despite the presence of earlier unresolved or uncommitted stores. If
a conflict is later detected, the pipeline must be flushed to guarantee correct
execution. If the load is predicted to be dependent, then the load will send its

commit bit only after all prior stores receive their commit bit.

We measured the performance of speculative commit slicing using both
dependence prediction strategies, shown in Columns 4 and 5 of Table 5.2.
Using the simpler all-stores predictor to perform commit slicing provides a
30% speedup over using it to perform speculative load issue. It also provides
a 14% speedup over pure dependence prediction using the more complex one-
store predictor. Using the one-store predictor to do commit slicing, however,
provides a smaller 17% speedup over using it for load speculation. Commit
slicing with DSRE is faster than using dependence prediction for loads on
every benchmark we measured. Commit slicing provides a larger speedup for
the all-stores predictor, achieving close to the performance of the more complex
one-store predictor with commit slicing. This larger speedup is because the all-
stores predictor is more conservative, and hence predicts a larger fraction of the
loads as conflicting. This class of loads benefit greatly with DSRE, because

only commit bits need to be sent for these loads when they resolve. Thus,
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Flush on load mis- Flush on commit
speculation mis-speculation
Benchmark | all-stores | one-store | all-stores | one-store | oracle
(IPC) (IPC) (IPC) (IPC) (IPC)
ammp 241 3.11 3.27 3.84 3.96
art 3.72 3.50 3.72 3.72 3.73
bzip2 3.16 3.23 3.19 3.19 3.24
compress 1.56 1.56 1.65 1.64 1.66
equake 1.71 1.71 1.74 1.74 1.75
m88ksim 0.93 1.28 1.15 1.40 2.31
mcf 0.87 0.83 0.88 0.85 0.88
mgrid 1.31 1.56 3.52 3.36 4.23
mpeg2encode 3.43 3.32 3.49 3.46 3.51
parser 1.31 1.31 1.31 1.31 1.32
twolf 1.27 1.36 1.72 1.63 2.09
hydro2d 1.03 1.73 2.87 2.94 3.35
tomcatv 4.96 4.95 4.96 4.95 4.96
turb3d 0.62 0.74 0.91 1.00 3.85
Mean | 1.42 161 || 184 | 18 | 230 |

Table 5.2: TPC with commit slicing on the GPA simulator

DSRE coupled with a simple predictor can be used to achieve performance

comparable to that with a more complex predictor.

Performance for most benchmarks with commit slicing using the one-

store predictor approaches that using oracle.

Four benchmarks, m&88ksim,

mgrid, twolf, and turb3d still have considerable room for improvement. These

benchmarks incur a large number of flushes due to load-store mispredictions.

Commit slicing using the conservative all-stores predictor achieves better per-

formance for mgrid and twolf due to fewer flushes.
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Table 5.3 shows the performance with commit slicing on the TRIPS
simulator for the set of EEMBC benchmarks. Selective re-execution, with
commit slicing using the all-stores predictor, outperforms dependence predic-
tion using the all-stores predictor by 5.6%. Selective re-execution, with commit
slicing using the first-store predictor, outperforms dependence prediction us-
ing the first-store predictor by 4.2%. As explained in Chapter 4, the EEMBC
benchmarks, have a large number stores to the same address in the instruc-
tion window. The large number of stores to the same address results in the
first-store predictor becoming conservative and predicting a larger number of
loads as conflicting-all-stores. These loads benefit greatly from selective re-
execution, if they happen to get their speculative value from the most recent

matching store, before the load.

conven00, ospf, and tblook01 show poor performance across all the poli-
cies. These benchmarks have small average hyperblocks resulting in a large
block fetch and commit overhead. autocor00, canrdr01, fft00 and pktflow show
similar performance across the different load-store policies. These benchmarks
have few load-store dependences and the dependence predictor is able to pre-

dict the load-store dependences correctly.
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Flush on load mis- Flush on commit
speculation mis-speculation

Benchmark || all-stores | one-store | all-stores | one-store || oracle
(IPC) (IPC) (IPC) (IPC) (IPC)
a2time01 0.793 0.842 1.043 1.797 2.418
aifftr01 0.714 0.715 0.790 0.752 2.477
aifirf01 1.692 1.675 1.681 1.734 2.635
aiifft01 0.676 0.699 0.761 0.714 2.592
autcor00 1.208 1.208 1.208 1.208 1.210
basefp01 1.068 1.072 1.033 1.204 1.212
bezier(01 2.789 2.793 2.795 2.784 2.789
bitmnp01 0.920 0.965 0.978 0.896 1.714
cacheb01 0.861 0.992 0.880 1.002 1.535
canrdr01 1.400 1.430 1.433 1.423 1.483
conven(00 0.538 0.538 0.538 0.538 0.538
fft00 2.725 2.726 2.726 2.726 2.727
idctrn01 1.566 1.532 1.322 1.466 2.719
iirflt01 0.849 0.877 1.147 1.025 1.944
ospf 0.906 0.908 0.908 0.911 0.917
pntrch01 0.930 0.916 1.064 0.901 1.039
pktflow 1.187 1.188 1.209 1.272 1.272
puwmodO01 0.922 0.913 0.879 0.992 2.191
routelookup 0.573 0.573 0.573 0.573 0.573
rspeed01 0.887 0.889 0.997 0.906 2.129
tblook01 0.821 0.825 0.845 0.825 0.854
ttsprk01 0.743 0.748 0.753 0.746 0.782
viterb00 1.490 2.217 1.916 1.786 3.053
Mean | 0955 [ 0979 [ 1009 | 1.020 [ 1.361

Table 5.3: IPC with commit slicing on the TRIPS prototype simulator

pntrch01 and bezier have marginally lower performance with the oracle

policy when compared to commit slicing with the all-stores policy. The oracle
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policy in the TRIPS simulator uses a functional emulator to identify load-store
dependences in hyperblocks. The emulator does not identify these dependences
for blocks that are executed down the wrong control path. Hence, without
perfect branch prediction, the oracle policy can incur load violation flushes
in blocks that are mispredicted by the branch predictor. pntrch01 and bezier
have a number of load-violations in these mispredicted paths, resulting in lower

performance than commit slicing.

a2time01 shows a large improvement in performance with commit slic-
ing using the first-store predictor. a2time01 incurs fewer load violation flushes
with commit slicing using the first-store predictor. The first-store predictor we
used in these experiments uses a table of 3-bit saturating counters to make pre-
dictions. The details of the predictor are explained in Table 7.6 in Chapter 7.
The 3-bit predictor has more states that we can use for making a prediction
with commit slicing. However, it has a longer training time for loads that
conflict with multiple prior stores, and go to a different data tile during each
dynamic execution of the load. These loads incur a greater number of flushes
with dependence prediction using the first-store predictor when compared to

commit slicing using the first-store predictor.

Dependence prediction outperforms commit slicing for wviterb00, even
though it incurs a larger number of flushes. Flushes have a smaller effect on the
performance than commit bit propagation delay in viterb00. The blocks that
get flushed due to load violations are normally younger, speculative blocks.

Because the TRIPS processor uses a rolling flush model, load violations that
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happen early in younger blocks do not cause an appreciable drop in perfor-
mance. The load that caused the violation is handled correctly when the block

is re-mapped after the flush.

viterb00 operates on 16-bit words. The benchmark stores branch met-
rics using a pointer to an array of 16-bit words. These words are then loaded
and processed. The conflicting loads in this benchmark are found at the begin-
ning of the block. Also, these loads do not always conflict with earlier stores
for every dynamic execution. Dependence prediction, using the first-store pre-
dictor results in a large number of these loads being predicted independent.
When the loads conflict with an earlier store, we have a pipeline flush that gets
resolved quickly because the loads are at the beginning of the block. When
the loads are predicted independent correctly, we get a speedup by not having

to wait for all prior stores to resolve.

Commit slicing results in a large fraction of loads being predicted con-
flicting. These loads send their replies without the commit bit, and send their
commit bits only after all prior stores resolve. Even though commit slicing
prevents pipeline flushes when the loads conflict, it also results in unnecessary
delay for loads that are independent. This delay outweighs the performance

benefits of not flushing the pipeline and results in the poor performance.

There is still a 33% difference in performance between DSRE with com-
mit slicing and the oracle policy. This difference is most pronounced in aifftr01,
anifft01, bitmnp01, cacheb01, idctrn01, wrflt01, matriz01, and puwmod01. To

understand the reason for this performance difference, we looked at one of
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for(i_1=j_1;i 1 <NUM_POINTS;
i_1+=nl 1, passCount_1++){
realLow_1 = &realData_1[l_1];

/* Scale each stage to prevent overflow */
*realLow_1 >>= STAGE_SCALE_FACTOR ;

tRealData_1 = *realLow_1 * wReal_1 -
*imagLow_1 *wlmag_1 ;

}

Figure 5.2: Piece of source code from the inner loop of a#ifft01 to show store-
load-store dependence

these benchmarks, aifft01.

aiifft01 is part of the automotive/industrial suite in EEMBC and com-
putes the Inverse Fast Fourier Transform on complex input values stored in
real and imaginary arrays. The program is constructed in such a way that
in the steady state, there are a number of stores that depend on earlier loads
for their data. We saw an example of such behavior in Figure 4.14 in Chap-
ter 4. auifft01 also uses the RAMfilePtr for storing the output and hence
has the same store-load-store dependence seen in Figure 4.14. auifft01 also
has other variables that result in a store-load-store dependence. Figure 5.2
shows another example code from the main loop of auifft01 that results in a
store-load-store dependence. The program stores the address of an element
of the array, realData_1, in the variable realLow_1. The array element data is
then accessed by using the realLow_1 variable. The program uses this value to
compute the new value of another variable, tRealData_1, which is then stored

in memory.

Figure 5.3 shows part of the TIL code that corresponds to the C code
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.bbegin t_run_test$122
entera $t5, realData_1
slli $t6, $t3, 3
add $t7, $t6, $t5
entera $t8, realLow_1$$7464
sd ($t8), $t7 S[2]
entera $t33, realLow_1$$7464
Id $t34, ($t33) L[17]
Id $t35, ($t34) L[18]
entera $t36, imagLow_1$$7465
Id $t37, ($t36) L[19]
d $t38, ($t37) L[20]
entera $t39, wReal_1$$7452
Id $t40, ($t39) L[21]
mul $t41, $t35, $t40
entera $t42, wimag_1$$7453
d $t43, ($t42) L[22]
mul $t44, $t38, $t43
sub $t45, $t41, $t44
entera $t46, tRealData_1$$7454
sd ($t46), $t45 S[23]

Figure 5.3: Piece of TIL code from the inner loop of a#ifft01 to show store-
load-store dependence

in Figure 5.2. From Figure 5.3, we see that the load with LSID 17 needs the
value stored by store with LSID 2. This load, in turn, provides the value
required for the computation of tRealData_1. The value of tRealData_1 is
written to memory by the store with LSID 23. Thus, there is a store-load-
store dependence among these three instructions. If the load with LSID 17 is
made to wait on all prior stores to resolve before sending the commit bit, it will
result in extra delay in the propagation of the commit wave. The address of
the store with LSID 2 does not change across different iterations of the loop.

Hence, the load with LSID 17 will match with multiple prior stores in the

114



instruction window. The first-store predictor is not able to predict the exact
matching store and serializes the load. Similar store-load-store dependence is
found in the other benchmarks that show a large difference in performance

between commit slicing and oracle.

Thus, the reason for the poor performance of commit slicing on some
EEMBC benchmarks is twofold. First, these benchmarks have loads that con-
flict with multiple prior stores to the same address in the instruction window.
The first-store predictor is unable to predict the exact store the load conflicts
with, and serializes the conflicting load. These loads send their commit bits af-
ter all prior stores resolve. Second, these benchmarks have stores that depend
on these conflicting loads for their value. Since the conflicting loads can send
their commit bits only after all prior stores resolve, commit bit propagation to
the stores that depend on the loads is delayed. The delay in the propagation
of commit bits to the depending store in turn delays commit bit propagation
for serialized loads after the store. Hence, the twin effects of store-to-load and

load-to-store dependences results in poor performance in these benchmarks.

There are multiple ways to approach this problem. One approach is to
reduce the number of load-to-store dependences in the program. For example,
the load-to-store dependence is also exhibited by some static variables, like the
iteration counter, in asifft01. This dependence can be eliminated by aggressive
compiler optimizations that register allocate static variables. Load-to-store
dependences that are a result of the program structure, and hence cannot be

eliminated, will result in commit bit propagation delay.
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Flush on load Flush on commit
mis-speculation mis-speculation
Configuration || all- first- all- first- oracle

stores store stores store (cycles)

(cycles) | (cycles) || (cycles) | (cycles)
Non-optimized || 87.5m 84.5m 77.7Tm 85.3m 22.8m
Optimized || 18.7m 18.3m 15.5m 13.2m 10.2m

Table 5.4: Number of cycles (in millions) for program execution for non-

optimized and optimized auifft01

Flush on load mis- Flush on commit
speculation mis-speculation
Configuration all- first- all- first- oracle
stores store stores store (IPC)
(IPC) (IPC) (IPC) (IPC)
Non-optimized 0.68 0.70 0.76 0.71 2.60
Optimized 1.45 1.48 1.75 2.06 2.64

Table 5.5: IPC for non-optimized and optimized asifft01

We hand-optimized a:ifft01 and removed some of the redundant loads
and stores in the program. Table 5.4 and Table 5.5 compares the performance
of the various load-store recovery schemes for both the compiler-generated and
the hand-optimized binary. Table 5.4 shows the number of cycles taken by the
program for the different load-store dependence prediction schemes while Ta-
ble 5.5 shows the IPC for the various configurations. We see from Table 5.4
that eliminating redundant loads and stores results in fewer cycles for pro-

gram execution for all the load-store recovery schemes. Comparing the IPC
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of the different load-store dependence prediction schemes for the optimized
version of the benchmark, we see that there is still 44% difference in perfor-
mance between dependence prediction and oracle, due to some stores in the
instruction window that are to the same address. DSRE with commit slicing
improves performance over dependence prediction by 39%. In the optimized
version of the program, DSRE is able to tolerate the extra traffic generated
by multiple stores waking up the same load, and yields higher performance.
Hence, DSRE has the potential to improve performance significantly with an

optimizing compiler.

Bottom-up Commit Traversal, discussed in the next section, is another
way to reduce the commit propagation delay. Finally, we can reduce serial-
ization of loads by using more sophisticated commit bit prediction, since only
the loads that are serialized by the commit bit predictor encounter this delay.
A commit bit predictor, which tries to identify the exact matching store for a
load, will result in higher performance. Such a predictor will also result in per-
formance improvement with regular dependence prediction. Store sets [12] and
distance-based predictors [73] discussed in Chapter 2 are two such predictors
that have been proposed for conventional, superscalar processors. Modifying
these predictors to work in the distributed TRIPS environment can be part of

future work.

In summary, we saw lower performance gains with DSRE and commit
slicing on the TRIPS prototype simulator when compared to the GPA simula-

tor. The lower performance was due to both software (sub-optimal code and
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loop-based benchmarks) and hardware (poor dependence prediction and extra
ALU and network contention). We showed one example optimized code that
showed a large improvement in performance both for the baseline and with
DSRE. For programs with similar behavior, we expect performance gains on
the TRIPS simulator to increase and match the GPA simulator with better

compiler technology that yields optimized code.

5.1.2 Bottom-up Commit Traversal

If all operations—including loads—could execute in a single cycle, selec-
tive re-execution would provide no benefit over conservative load /store ordered
execution, because the commit DFG traversal would take the same time as the
execution traversal. DSRE improves performance because not all operations
require a single cycle, especially cache misses, so the commit traversal can
catch up to the execution traversal while long-latency operations on the criti-
cal path execute. However, since no execution actually occurs on the commit
wave, it may be possible for the commit wave to skip nodes in the graph, thus

completing more quickly.

Speculative commit slicing essentially removes some arcs from the com-
mit traversal graph speculatively, allowing more of the graph to be traversed
in parallel and speeding up the traversal. An alternate approach is to allow
commit bits to skip over nodes, going directly from the input to the output
of a multi-instruction dependence chain without traversing the intermediate

nodes. If the root of a dependence tree has only one speculative input, then
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Figure 5.4: Bottom-up commit traversal

the intermediate nodes in the tree can be bypassed when the last committed
operand arrives, by sending the commit bit directly to the leaves, provided no

execution is still in flight.

Bottom-Up Commit Traversal selectively allows a partial bottom-up
traversal to support forwarding of commit bits over multi-hop chains. If a
leaf node—in this case an output-producing instruction—of the DFG has only
one speculative parent (all other parents, if any, have sent their commit bits),

then the output node forwards its target(s) to the one speculative parent. The
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output node knows the parent’s reservation station address since it has already
received an operand from that parent, assuming the address was buffered.
When the parent generates a commit bit, it bypasses the intermediate node
and sends the commit bit directly to the output, as shown in Figure 5.4. Prior
to committing, however, if the parent has only one speculative parent, it too
can forward the output address to its parent (the grandparent), which can then
either do the same thing (forward up the chain if it has one speculative parent)
or send the commit bit to the output, bypassing two nodes. If an instruction
holding a bypass target re-fires instead of generating a null commit message,
then the bypass chain is discarded and the new operand is forwarded to the
children as in the base architecture. When the execution reaches the outputs,

they can begin the process of rebuilding the bypassing links anew.

Table 5.6 shows the performance of this bottom-up traversal scheme
when combined with speculative slicing. The bottom-up traversal scheme
performs marginally better than commit slicing on most benchmarks. The
bottom-up scheme will not provide any benefit for instructions that have mul-
tiple speculative inputs, since these instructions cannot propagate the bypass
information. Also, if the commit bit is sent by the parent before it has received
the bypass information from its children, the bypass message does not result
in significant speedup. The bottom-up scheme provides the most benefit when
the bypass message reaches the root node of a speculative chain, before the

root node sends it commit bit.

The bottom-up commit scheme has significant implementation com-
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Benchmark | Commit | Bottom- Oracle
slicing up (IPC)
(IPC) (IPC)
ammp 3.84 3.86 3.96
bzip2 3.19 3.19 3.24
compress 1.64 1.64 1.66
equake 1.74 1.73 1.75
m88ksim 1.40 1.45 2.31
mcf 0.85 0.85 0.88
mgrid 3.36 3.40 4.23
mpeg2encode 3.46 3.47 3.51
parser 1.31 1.31 1.32
twolf 1.63 1.62 2.09
hydro2d 2.94 2.95 3.35
tomcatv 4.95 4.94 4.96
turb3d 1.00 1.01 3.85
Mean || 1.81 183 || 223 |

Table 5.6: IPC with commit bypass on the GPA simulator

plexity. Bypass messages need to carry the version number of the result that
the bypass requesting node is expecting. Also, we assumed that a node can
send bypass messages to all the nodes that request a bypass message. In a
real implementation, a node will be able to send bypass messages to only one
or two children, thus limiting the performance gains due to the bottom-up

scheme.

m88ksim shows the most improvement in performance with the bottom-
up policy. This benchmark incurs fewer flushes with the bottom-up scheme.

Thus, the improvement in performance can be attributed to the indirect in-
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fluence of interaction between the bottom-up scheme and the dependence pre-
dictor training. In summary, the mean performance of bottom-up traversal
scheme is marginally better than speculative slicing with the one-store policy.
However, the bottom-up traversal scheme incurs significant hardware complex-
ity over the base DSRE scheme, and is not worth the marginal performance

improvement.

5.2 Optimal Maximum Version Number

To find the impact on performance for various maximum values of ver-
sion number with commit slicing, we ran experiments on the GPA simulator
varying the number of times ALUS are allowed to fire speculatively. Table 5.7
shows the performance for the various benchmarks when we vary the maximum
number of speculative firings. We used the one-store dependence predictor for
commit slicing. Loads that are predicted dependent by the predictor send
speculative replies when they arrive at the memory interface. Later arriving
stores that match the address of the loads, and are earlier in program order,
are allowed to wakeup these loads. The loads send their commit bits only after

all previous stores have resolved.

From Table 5.7 we see that for most benchmarks, there is no significant
difference in performance when we increase the maximum version number.
This list of benchmarks includes ammp, art, bzip2, compress, equake, mcf,
mpeg2encode, parser, and tomcatv. This result is similar to what we observed

in Chapter 4. For these benchmarks, the number of speculative firings does
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Maximum specula- 1 2 3 4 5 6
tive execution

ammp || 3.84 | 3.82 | 3.82 | 3.82 | 3.82 | 3.82
art || 3.85 | 3.85 | 3.85 | 3.85 | 3.85 | 3.85
bzip2 || 3.19 | 3.19 | 3.19 | 3.19 | 3.19 | 3.19
compress || 1.64 | 1.64 | 1.64 | 1.64 | 1.64 | 1.64
equake || 1.74 | 1.73 | 1.73 | 1.73 | 1.73 | 1.73
m88ksim || 1.40 | 1.37 | 1.37 | 1.38 | 1.36 | 1.32
mcf || 0.85 | 0.85 | 0.85 | 0.85 | 0.85 | 0.85
mgrid || 3.36 | 2.97 | 3.17 | 3.17 | 3.19 | 3.17
mpeg2encode || 3.46 | 3.47 | 3.48 | 3.47 | 3.47 | 3.47
parser | 1.31 | 1.31 | 1.31 | 1.31 | 1.31 | 1.31
twolf || 1.63 | 1.62 | 1.62 | 1.61 | 1.61 | 1.60
hydro2d || 2.94 | 2.80 | 2.70 | 2.61 | 2.38 | 2.26
tomcatv || 4.95 | 4.95 | 4.95 | 4.95 | 4.95 | 4.95
turb3d || 1.00 | 1.03 | 1.03 | 1.04 | 1.04 | 1.03

| Mean [ 1.88 [ 1.88 [ 1.87 [ 1.88 [ 1.86 | 1.85

Table 5.7: Commit slicing IPC variation with increasing maximum speculative
firing on the GPA simulator

not change significantly when we increase the maximum version number al-
lowed. In these benchmarks, the dependence predictor is able to predict a large
percentage of loads correctly. Also, as seen in Chapter 4, these benchmarks
do not have a large number of load-store dependences. ammp and compress
have a higher percentage of loads that depend on earlier stores. However, this
dependence is satisfied by the first matching store in these benchmarks, thus

resulting in fewer refirings.

m88ksim, mgrid, twolf, hydro2d, and twolf show a larger variation in

performance with maximum allowed version number. Performance of m88ksim,

123



mgrid, twolf, and hydro2d decreases as we increase the maximum allowed ver-
sion number. The number of times instructions that fire speculatively increases
in these benchmarks as we increase the maximum version number allowed.
These benchmarks have a higher percentage of loads that depend on earlier
stores. Also, a large number of loads in these benchmarks are incorrectly
predicted as conflicting, and multiple versions of these loads execute in these
benchmarks. These loads send multiple speculative values that result in extra

ALU and network contention.

The only benchmark that shows increase in performance with larger
version numbers is turb3d. In this benchmark, increasing the maximum al-
lowed version number decreases the number of load mispredictions, as the
predictor becomes more conservative and predicts a larger number of loads as
conflicting. These loads do result in more refirings. However, the performance
benefit of fewer flushes outweighs the reduction in performance due to the
extra contention. In summary, having ALUs fire speculatively no more than
once yields the best performance benefits with commit slicing on the GPA

simulator.

Table 5.8 shows the performance with commit slicing, using a the 3-
bit first-store predictor, across the set of EEMBC benchmarks on the TRIPS
simulator. From Table 5.8, we see there is less variation in performance on
the TRIPS simulator when we vary the maximum version number. Loads that
are predicted non-conflicting or conflicting-all-stores do not send speculative

replies. Hence, these loads are not affected by the variation in maximum ver-
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sion number. On the TRIPS simulator, performance drops when we increase

the number of maximum speculative execution allowed beyond three.

Maximum specula- 1 2 3 4 5 6
tive firing

a2timeO1 || 1.786 | 1.796 | 1.797 | 1.797 | 1.797 | 1.797
aifftr01 || 0.756 | 0.751 | 0.740 | 0.752 | 0.750 | 0.753
aifirfO1 || 1.740 | 1.735 | 1.732 | 1.734 | 1.734 | 1.734
aiifft01 || 0.698 | 0.722 | 0.707 | 0.716 | 0.717 | 0.716

autcor00 | 1.208 | 1.208 | 1.208 | 1.208 | 1.208 | 1.208

basefp01 || 1.202 | 1.204 | 1.204 | 1.204 | 1.204 | 1.204

bezier01 || 2.784 | 2.784 | 2.784 | 2.784 | 2.789 | 2.784

bitmnp01 || 0.886 | 0.889 | 0.889 | 0.896 | 0.892 | 0.890

cacheb01 || 1.006 | 1.002 | 1.002 | 1.002 | 1.002 | 1.002

canrdrO1 || 1.423 | 1.423 | 1.423 | 1.423 | 1.423 | 1.423

conven00 | 0.538 | 0.538 | 0.538 | 0.538 | 0.538 | 0.538

ftt00 || 2.726 | 2.726 | 2.726 | 2.726 | 2.726 | 2.726

idctrn01 || 1.455 | 1.462 | 1.467 | 1.466 | 1.464 | 1.460

iirflt01 || 0.995 | 1.019 | 1.002 | 1.025 | 1.019 | 1.017
ospf || 0.911 | 0.911 | 0.911 | 0.911 | 0.911 | 0.911

pntrch01 || 0.898 | 0.901 | 0.904 | 0.901 | 0.901 | 0.901

pktflow || 1.273 | 1.272 | 1.272 | 1.272 | 1.272 | 1.272
puwmod0O1 || 1.013 | 0.992 | 0.992 | 0.992 | 0.992 | 0.992
routelookup || 0.573 | 0.573 | 0.573 | 0.573 | 0.573 | 0.573

rspeed01 || 0.905 | 0.906 | 0.906 | 0.906 | 0.906 | 0.906

tblook01 || 0.825 | 0.825 | 0.825 | 0.825 | 0.825 | 0.825

ttsprkO1 || 0.749 | 0.746 | 0.746 | 0.746 | 0.746 | 0.746

viterb00 || 1.764 | 1.782 | 1.786 | 1.786 | 1.786 | 1.786

| Mean || 1.018 | 1.020 | 1.017 | 1.020 | 1.020 | 1.020 |

Table 5.8: Commit slicing IPC variation with increasing maximum speculative
firing on the TRIPS simulator
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5.3 Performance Studies with Commit Slicing

In this section, we look at the performance of selective re-execution,

with commit slicing, for perfect branch prediction, perfect L1 data cache, and

perfect L2 cache. We also examine the scalability of DSRE by increasing the

instruction window size from 1K to 4K instructions.

5.3.1 Performance with Perfect Branch Prediction

Flush on load mis- Flush on commit
speculation mis-speculation
Benchmark | all-stores | one-store | all-stores | one-store | oracle
(IPC) (IPC) (IPC) (IPC) (IPC)
ammp 2.41 3.22 3.01 4.11 4.23
art 3.89 3.15 3.89 3.87 3.89
bzip2 2.51 4.73 2.97 4.78 5.31
compress 2.36 2.39 2.46 2.45 2.42
equake 1.95 1.94 1.98 1.98 1.99
m88ksim 0.95 1.53 1.20 1.71 2.44
mcf 1.07 1.03 1.08 1.07 1.09
mgrid 1.46 1.55 3.46 3.50 4.31
mpeg2encode 3.93 3.93 4.02 4.02 4.05
parser 1.43 1.43 1.43 1.44 1.44
twolf 1.33 1.49 2.14 2.15 2.79
hydro2d 1.08 2.12 2.98 3.09 3.42
tomcatv 5.12 5.10 5.12 5.11 5.12
turb3d 0.66 0.81 0.96 1.12 4.20
Mean | 1.55 18 || 204 | 224 | 270 |

Table 5.9: IPC with commit acceleration on the GPA simulator with perfect
branch prediction
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Table 5.9 compares performance of commit slicing against dependence
prediction with perfect branch prediction on the GPA simulator. Perfect
branch prediction improves performance by 9% and 15% with dependence
prediction using the all-stores and one-store predictor. With commit slicing,
the performance improvements are 11% and 19% respectively, for all-stores
and one-store. The oracle policy shows a performance improvement of 17.4%.
Perfect prediction increases the number of loads and stores in the instruction
window, thus reducing the accuracy of the dependence predictor. Selective re-
execution with commit slicing provides a larger improvement in performance
than dependence prediction by improving performance of loads that are incor-

rectly predicted conflicting.

Table 5.10 compares the performance of commit slicing against de-
pendence prediction with perfect branch prediction on the TRIPS simulator.
Perfect branch prediction improves performance by 4.8% and 4.6% with de-
pendence prediction using the all-stores and first-store predictor. DSRE with
commit slicing shows a reduction in performance with perfect branch predic-
tion similar to what we saw in Chapter 4. Again, this reduction in performance
is due to multiple matching stores to the same address, which results in extra
network and ALU contention. The oracle policy shows a performance improve-
ment of 7%. We see from Table 5.10 that perfect branch prediction does not
result in any appreciable increase in performance due to the small size of the

EEMBC benchmarks.
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Flush on load mis- Flush on commit
speculation mis-speculation
Benchmark || all-stores | one-store | all-stores | one-store || oracle
(IPC) (IPC) (IPC) (IPC) (IPC)
a2time01 0.798 0.846 1.043 1.814 2.447
aifftr01 0.700 0.713 0.790 0.604 2.499
aifirf01 1.717 1.697 1.681 1.732 2.588
aiifft01 0.673 0.735 0.761 0.722 2.602
autcor00 1.465 1.464 1.208 1.464 1.464
basefp01 1.110 1.116 1.033 1.234 1.262
bezier(01 2.783 2.776 2.795 2.778 2.789
bitmnp01 1.008 1.061 0.978 0.975 1.975
cacheb01 0.951 0.952 0.880 1.192 2.048
canrdr01 1.652 1.725 1.433 1.680 1.852
conven00 0.510 0.481 0.538 0.481 0.483
fft00 2.713 2.659 2.726 2.659 2.660
idctrn01 1.583 1.573 1.322 1.365 2.862
iirfit01 0.841 0.863 1.147 1.053 1.969
ospf 1.053 1.054 0.908 0.529 1.070
pntrch01 0.927 0.967 1.064 0.904 1.048
pktflow 1.269 1.271 1.209 1.367 1.368
puwmodO01 0.928 0.919 0.879 1.073 2.268
routelookup 0.719 0.719 0.573 0.719 0.719
rspeed01 0.888 0.890 0.997 0.908 2.172
tblook01 0.864 0.899 0.845 0.868 0.886
ttsprk01 0.804 0.810 0.753 0.813 0.862
viterb00 1.491 2.226 1.916 1.791 3.046
| Mean | 1.001 1.024 | 1.009 1.013 | 1.457 |

Table 5.10: IPC with commit slicing on the TRIPS prototype simulator with

perfect branch prediction
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5.3.2 Performance with Perfect L1 Data Cache

Flush on load mis- Flush on commit
speculation mis-speculation

Benchmark || all-stores | one-store | all-stores | one-store || oracle
(IPC) (IPC) (IPC) (IPC) (IPC)
a2time01 0.798 0.846 1.043 1.814 2.447
ammp 2.59 3.22 3.45 4.03 4.26
art 4.09 3.69 4.09 4.08 4.10
bzip2 3.72 3.88 3.81 3.88 3.90
compress 1.81 1.78 1.91 1.83 1.84
equake 2.50 2.51 2.56 2.56 2.58
m&8ksim 0.93 1.24 1.15 1.40 2.32
mcf 1.15 1.11 1.17 1.15 1.17
mgrid 1.53 2.07 3.54 3.52 5.58
mpeg2encode 3.43 3.42 3.50 3.48 3.52
parser 1.39 1.39 1.39 1.39 1.40
twolf 1.30 1.37 1.75 1.69 2.22
hydro2d 1.46 2.62 3.08 3.27 4.11
tomcatv 7.80 7.70 7.80 7.79 7.80
turb3d 0.67 0.79 0.92 1.02 3.96
| Mean | 1.64 187 | 205 | 213 | 2.69

Table 5.11: IPC with commit acceleration on the GPA simulator with perfect
L1 D-cache

Table 5.11 compares performance of commit slicing against dependence
prediction with perfect L1 data cache on the GPA simulator. Perfect L1 data
cache improves performance by 15.5% and 16% with dependence prediction
using the all-stores and one-store predictor. With commit slicing, the perfor-
mance improvements are 11% and 13% respectively for all-stores and one-store.

The oracle policy shows a performance improvement of 17%. The lower im-
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provement in performance with selective re-execution and commit slicing is in

line with the results seen in Chapter 4.

Table 5.11 compares performance of commit slicing against dependence
prediction with perfect L1 data cache on the TRIPS simulator. The perfor-
mance improvements are not as large with perfect L1 D-cache on the TRIPS

simulator because of the small memory footprint of the EEMBC benchmarks.
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Flush on load mis- Flush on commit
speculation mis-speculation
Benchmark || all-stores | one-store | all-stores | one-store || oracle
(IPC) (IPC) (IPC) (IPC) (IPC)
a2time01 0.798 0.846 1.043 1.814 2.447
a2time01 0.791 0.842 1.043 1.798 2.422
aifftr01 0.719 0.720 0.791 0.756 2.495
aifirf01 1.693 1.676 1.683 1.736 2.614
aiifft01 0.681 0.717 0.763 0.721 2.620
autcor00 1.171 1.171 1.171 1.171 1.172
basefp01 1.071 1.075 1.032 1.213 1.225
bezier(01 2.792 2.439 2.797 2.795 2.788
bitmnp01 0.922 0.965 0.978 0.890 1.716
cacheb01 0.881 1.016 0.885 1.005 1.597
canrdr01 1.401 1.434 1.434 1.425 1.486
conven(00 0.538 0.538 0.539 0.538 0.538
fft00 2.734 2.734 2.734 2.734 2.736
idctrn01 1.549 1.525 1.314 1.469 2.729
iirflt01 0.836 0.849 1.147 1.022 1.951
ospf 0.941 0.942 0.935 0.940 0.945
pntrch01 0.931 0.913 1.064 0.903 1.041
pktflow 1.262 1.263 1.282 1.336 1.336
puwmodO01 0.925 0.915 0.879 0.996 2.194
routelookup 0.573 0.573 0.573 0.573 0.573
rspeed01 0.888 0.891 0.999 0.908 2.142
tblook01 0.822 0.827 0.846 0.835 0.856
ttsprk01 0.744 0.749 0.754 0.748 0.783
viterb00 1.490 2.213 2.204 1.798 3.054
| Mean | 0.959 0981 | 1.016 1.025 | 1.369 |

Table 5.12: IPC with commit slicing on the TRIPS prototype simulator with

L1 D-cache
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Flush on load mis- Flush on commit
speculation mis-speculation

Benchmark | all-stores | one-store | all-stores | one-store | oracle
(IPC) (IPC) (IPC) (IPC) (IPC)
a2time01 0.798 0.846 1.043 1.814 2.447
ammp 2.52 2.67 3.31 3.60 4.14
art 4.09 3.68 4.09 4.08 4.09
bzip2 3.45 3.60 3.55 3.61 3.62
compress 1.58 1.56 1.65 1.61 1.60
equake 2.41 2.46 2.53 2.53 2.56
m&8ksim 0.92 1.27 1.15 1.43 2.32
mcf 1.14 1.08 1.15 1.13 1.16
mgrid 1.53 1.90 3.54 3.49 5.57
mpeg2encode 3.43 3.42 3.50 3.48 3.52
parser 1.32 1.31 1.32 1.32 1.32
twolf 1.24 1.32 1.66 1.61 2.09
hydro2d 1.43 2.71 3.08 3.20 4.11
tomcatv 7.81 7.70 7.81 7.78 7.81
turb3d 0.66 0.77 0.92 1.03 3.95

| Mean | 1.59 179 [ 1.99 207 | 259 |

Table 5.13: IPC with commit acceleration on the GPA simulator with perfect

L2 cache

5.3.3 Performance with Perfect L2 cache

Table 5.13 compares performance of commit slicing against dependence
prediction with perfect L2 cache on the GPA simulator. Perfect L2 cache im-
proves performance by 12% and 11% with dependence prediction using the
all-stores and one-store predictor. With commit slicing, the performance im-
provements are 8.1% and 10.2% respectively for all-stores and one-store. The

oracle policy shows a performance improvement of 12.6%. The lower improve-
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ment in performance with selective re-execution and commit slicing is again

in line with the results seen in Chapter 4.

Table 5.14 compares performance of commit slicing against dependence
prediction with perfect L2 cache on the TRIPS simulator. The performance
trend is similar to what we saw with DSRE in Chapter 4. Performance im-
provements with perfect L2 cache are higher than perfect L1 D-cache, due to

the lower instruction cache miss latency.
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Flush on load mis- Flush on commit
speculation mis-speculation
Benchmark || all-stores | one-store | all-stores | one-store || oracle
(IPC) (IPC) (IPC) (IPC) (IPC)
a2time01 0.798 0.846 1.043 1.814 2.447
a2time01 0.795 0.844 1.045 1.805 2.434
aifftr01 0.715 0.715 0.790 0.745 2.479
aifirf01 1.703 1.687 1.693 1.744 2.639
aiifft01 0.676 0.712 0.761 0.716 2.602
autcor00 1.238 1.238 1.238 1.238 1.239
basefp01 1.087 1.091 1.049 1.231 1.243
bezier01 2.792 2.353 2.798 2.794 2.794
bitmnp01 0.923 0.969 0.980 0.896 1.723
cacheb01 0.866 1.000 0.886 1.010 1.555
canrdr01 1.414 1.447 1.447 1.438 1.500
conven(00 0.540 0.540 0.540 0.539 0.539
fft00 2.732 2.732 2.732 2.732 2.733
idctrn01 1.535 1.544 1.338 1.478 2.764
iirfit01 0.853 0.869 1.154 1.058 1.987
ospf 0.909 0.910 0.911 0.913 0.919
pntrch01 0.932 0.919 1.066 0.907 1.043
pktflow 1.197 1.197 1.220 1.285 1.284
puwmodO01 0.925 0.917 0.881 1.019 2.212
routelookup 0.573 0.573 0.573 0.573 0.573
rspeed01 0.892 0.894 1.002 0.911 2.164
tblook01 0.826 0.830 0.849 0.831 0.859
ttsprk01 0.746 0.751 0.755 0.750 0.785
viterb00 1.490 2.222 1.948 1.762 3.061
| Mean | 0.959 0981 | 1.015 1.027 | 1.371 |

Table 5.14: IPC with commit slicing on the TRIPS prototype simulator with
perfect L2 cache
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Figure 5.5: DSRE performance with larger instruction window

5.3.4 Performance with a Larger Instruction Window

The selective re-execution mechanism presented in this dissertation uses
local state present in the ALUs for recovery. Since the mechanism does not
use any centralized structures for recovery, it can be easily extended to future

machines with a larger instruction window.

Figure 5.5 shows the IPC for various load issue policies when we increase
the size of the instruction window in the processor from 1K to 4K instructions.
When the window size is doubled, the performance improves by a mere 2%
with a conservative load-issue policy, demonstrating the well-known result that
load speculation is necessary to exploit large-window ILP. The oracle policy
improves by 26%, showing the potential performance advantages of scaling the
window size. Conventional dependence prediction (with flushing) improves
by just over half of the ideal, increasing by 14% using the one-store policy.
The SRE implementations scale better with increasing window size; one-store
policy with DSRE results in a 25.5% improvement in performance, and all-
stores improves by 27%. DSRE with commit slicing thus scales similarly in

performance to the oracle as the window size is doubled. Beyond an instruction
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Figure 5.6: DSRE performance with larger instruction window and perfect
prediction

window of 2K instructions, performance saturates for all the load issue policies.

Figure 5.6 shows the mean performance of various load issue schemes
for various instruction window sizes with perfect branch prediction. Surpris-
ingly, oracle is the only policy that shows an increase in performance as the
window size is increased beyond 2K. For the oracle policy, the performance
increase is the highest when we go from 1K to 2K window and reduces after
that. The conservative policy shows no difference in performance when we
increase the window size. Commit slicing and dependence prediction show
an increase in performance when we go from a 1K instruction window to a
2K instruction window, and show a decrease in performance beyond 2K. We
analyzed the benchmarks to find the reason for this behavior and found that
the dependence predictor becomes increasingly conservative for larger instruc-
tion windows with more conflicting loads and stores. Hence, loads are held
back unnecessarily, reducing performance with dependence prediction. Selec-
tive re-execution, with commit slicing, results in these these loads generating

a large number of speculative executions, thus reducing performance. With
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instruction windows larger than 2K instructions, we will need to use better

dependence predictors with selective re-execution to improve performance.

In this chapter, we looked at two techniques—speculative commit slic-
ing and bottom-up commit traversal—to accelerate commit bit propagation
with load-store dependence prediction. Although we focused on load-store de-
pendence prediction in this chapter, recovery using DSRE is not limited to
load-store dependence prediction. DSRE is designed as a recovery mechanism
that can be used by any data speculation engine for low-cost recovery. In the
next chapter, we present a brief evaluation of another data speculation mech-
anism, last-value prediction, and show how multiple speculation engines can
work concurrently with DSRE. We also discuss other potential uses for DSRE

in the next chapter.
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Chapter 6

DSRE Applications

In this chapter, we present a brief evaluation of another data specula-
tion mechanism, last-value prediction, to show how DSRE can work concur-
rently with multiple data speculation engines. We also discuss how DSRE can
be extended to to save energy and provide better reliability in future proces-

SOrS.

6.1 DSRE and Last-Value Prediction

The last few sections have focused on using DSRE to improve the
performance for load-store dependence prediction. The selective re-execution
mechanism presented in this dissertation is intended to be independent of the
underlying data speculation mechanism, and can be theoretically used by mul-
tiple disparate speculation engines for recovery. In this section, we evaluate
the another data speculation mechanism, last value speculation, and show how

DSRE can be used for recovery with multiple speculation engines.
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6.1.1 Potential for Last-Value Prediction

Data value locality and reuse is a phenomenon which has recently gen-
erated considerable interest in the computer architecture community [4, 5,19,
37,39,42,55,69]. Data value reuse results when an instruction produces the
same result during different dynamic invocations. A high data value reuse will

result in greater performance improvement with data value speculation.

Value locality was first defined by Lipasti et al. and exploited to per-
form load value prediction [40]. Using simple predictors, the authors achieve
3% and 6% average improvement in performance on processors modeling the
PowerPC 620 and Alpha 21164. Value locality and reuse was subsequently ex-
tended in a number of directions. Yang and Gupta investigated value locality
of load instructions to eliminate redundancy [70]. The value locality of store
instructions has been studied in an effort to reduce multiprocessor data and
address bus traffic [37]. Also, researchers have proposed a number of predictors
in literature for predicting values of instructions [61, 68]. Researchers have also
examined compiler optimizations for increasing value reuse [6]. Other work in
value prediction has shown that considerable instruction fetch bandwidth is
needed to speculate on values effectively [19], which is not an issue in this con-
text because of the high instruction fetch bandwidth provided by the TRIPS

architecture.

To investigate the potential for data value reuse in SPEC CPU2000
programs, we modified the sim-alpha simulator to count reuse for each dynamic

instruction executed [14]. We used SimPoint simulations and simulated 100
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million instructions for each benchmark [62]. We associated 1, 2, and 3-bit
saturating counters with each static instruction. Other researchers have used
similar confidence estimators in earlier work to increase the accuracy of their

predictors [4,40, 55, 68].

We incremented the counter when an instruction’s result matched its
previous result and decremented the counter when it did not. Figure 6.1
shows the percentage of retired instructions that produced the same result
during successive dynamic invocations, for the highest value of the counter
associated with the instruction. For brevity, we show the results for only the

2-bit counter in this section.

From Figure 6.1 we see that on an average more than 36% of the instruc-
tions committed produced the same result in at least four successive dynamic
invocations. Thus, there is tremendous reuse in the SPEC CPU2000 suite,
which suggests that aggressive data value speculation techniques, along with

low cost recovery, have potential for performance improvement.
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To reduce data value mis-speculation, we associated a poison bit with
each static instruction, which is set for an instruction if we mis-speculate, for
the duration of the simulation. Other related work in value speculation has
examined throttling value speculation of instructions that have low confidence,
which has a goal similar to the saturating counter and poison bits that we
employ [8]. We throttle data value speculation for instructions whose poison
bit is set. We found that even with a poison bit, 26% of the instructions on

an average reuse their results.

6.1.2 Recovery with DSRE for Last-Value Prediction

To investigate the effectiveness of the decentralized last-value predic-
tion, we implemented a simple last-value predictor in the GPA simulator. The
last-value predictor is indexed using the instruction address and stores the last
value produced by the instruction. We associated a 2-bit counter with each
entry. We increment the counter every time an instruction produced the same
result and decrement it otherwise. We replace the value associated with an
instruction when the high bit of the counter is zero and the counter is reset on
a replacement. An ALU speculates on an instruction’s result when the high bit
of the counter associated with the instruction is 1. We also associated a poison
bit with each instruction that is set whenever an instruction mis-speculates.
Speculation is throttled for instructions whose poison bit is set. We simulated
a set of benchmarks from the SPEC CPU95 suite, the SPEC CPU2000 suite,

and the MediaBench suite. Decentralized last-value prediction was applied to
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Benchmark | Base IPC | Speedup - 2-bit | Speedup - 2-bit
Counter Counter and Poi-
son Bit
adpcm 1.3 7.7% 7.7%
art 4.3 -7.0% 4.6%
bzip2 3.6 5.6% 2.8%
dct 7.6 -1.3% 0.0%
m88ksim 1.7 -11.8% 0.0%
mcf 0.9 25.0% 0.0%
mpeg2encode 3.9 -10.3% 0.0%
parser 1.7 -6.2% 0.0%
twolf 1.7 5.9% 5.9%

Table 6.1: Last-value prediction performance on the GPA simulator

only integer instructions in the benchmarks.

Table 6.1 lists the performance of the last-value predictor across the
set of benchmarks. The first column shows the IPC of the benchmark on the
base case without value prediction. The second column shows the speedup
obtained when using only the 2-bit counter. We see from Table 6.1 that using
the only the 2-bit counter actually hurts the performance on some benchmarks.
However, some benchmarks like adpcm and mcf, show appreciable speedup
with the last-value predictor. We found that the low accuracy of the 2-bit
counter generates a large number of mis-speculated values in the GPA resulting

in ALUs firing multiple times to generate the right value.

The third column in Table 6.1 lists the speedup obtained with the 2-bit

counter and poison bit. We see from the table that using a poison bit never
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hurts performance. Also, some benchmarks like adpcm and twolf show signifi-
cant improvement in performance. We found that using the poison bit reduces
both the correct and the incorrect value predictions. However, the reduction
in the number of mispredictions is far greater than the reduction in the num-
ber of correct predictions, thus resulting in either increased performance or no

change in performance.

In this section, we evaluated a simple last-value predictor in this section.
DSRE was used to recover when the last-value predictor mis-speculated. We
also enabled commit slicing using the one-store predictor in these experiments.
Because DSRE has been designed to be independent of the data speculation
engine, both load-store dependence speculation and last-value prediction used
the same DSRE mechanism for recovery. Even though we did not see a sig-
nificant increase in performance using last-value prediction, this section does
demonstrate how various data speculation engines can concurrently use DSRE

for recovery from mis-speculations.

6.2 DSRE and Energy

Selective re-execution has the potential to save energy consumption in
microprocessors by re-executing only instructions that are part of the data flow
graph of a mis-speculating instruction. However, selective re-execution does
result in extra null commit messages in the processor. Also, the extra logic
required to support selective re-execution will consume static power in smaller

technologies, where leakage is an issue. In our studies, we used version numbers
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to throttle speculation to improve performance. Using mechanisms to monitor
energy usage, we can use version numbers to throttle speculation to conserve
energy. Any implementation of selective re-execution, in future technologies

with smaller feature sizes, should also consider energy to establish feasibility.

6.3 DSRE for Reliability

Reliability is emerging as an important issue in microprocessor design at
smaller feature sizes. A number of recent papers have examined the growing
important of dealing with soft errors that tend to increase with decreasing
feature size [22,23,38,63|. Soft errors are caused in processors by electrical
noise or external radiation. Transistors in smaller feature sizes are increasingly

susceptible to errors from cosmic rays.

Architects have responded to the soft error challenge by designing mi-
croarchitectures that are fault tolerant. Solutions primarily involve providing
temporal or spatial redundancy with low overhead. For example, DIVA is a
microarchitecture that uses spatial redundancy to provide reliability [2,10].
DIVA uses a slow, reliable substrate to validate the computation of a faster
unreliable substrate. Architects have also looked at multithreading techniques

to provide redundancy in processors [54, 56].

In an effort to achieve maximum performance at the minimum power
budget, researchers have also looked at mechanisms for operating with ex-
tremely low safety margins. For example, the Razor microarchitecture con-

tinuously varies the voltage to achieve low power consumption during exe-
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cution [17]. Razor uses a fault detection and recovery system to adjust the
optimal operating point. With power becoming a first-order design constraint,

we can expect such mechanisms in future processors.

Selective re-execution can be extended to provide a low-cost recovery
mechanism for errors in microprocessors. Logic that computes the probability
of an error can determine if a commit bit can be sent with the result. If the
probability of a fault is higher than a pre-determined threshold, the result can
be sent without the commit. The value can then be re-computed to ensure
that the operation executed without a fault. This, and other such mechanisms,

are promising topics for future research.
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Chapter 7

DSRE on the TRIPS Prototype Simulator

DSRE was initially implemented in a high-level research simulator that
modeled one particular instantiation of an EDGE architecture. The GPA
simulator used in the initial evaluation did not model some of the low-level
details found in an implementation. To validate the performance of DSRE on
a hardware implementation, we added support in the the TRIPS prototype
simulator for selective re-execution. In Chapter 4 and Chapter 5, we presented
results from both simulators. This chapter explains the changes that we made

to the various tiles in the TRIPS prototype simulator to support DSRE.

We first start by explaining the extra state required in the various tiles
to ensure functional correctness with DSRE. The various pipelines present
in the different tiles require extra state bits to ensure correct execution in
the presence of multiple versions of an operand. Our initial implementation
of DSRE demonstrated poor performance due to the ALU and network con-
tention of the extra messages, as well as the lag in commit bit propagation.
We then looked at hardware techniques to alleviate the bandwidth bottleneck
and speedup the commit wave. We found that some of the physical constraints

encountered in an actual implementation have a significant effect on DSRE,
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but using suitable techniques, we can overcome these limitations.

7.1 Supporting DSRE on the TRIPS Processor

This section describes the changes required to the basic DSRE mecha-
nism for implementation on the TRIPS prototype processor. We also describe

the changes in the TRIPS processor required to support DSRE.

7.1.1 DSRE with Multiple Producers

In the TRIPS prototype implementation of an EDGE ISA, multiple
instructions can target an instruction’s input operand. During runtime, pred-
ication guarantees that only one producer will fire and send its value to the
consuming instruction. When we introduce selective re-execution in this con-
text, it is possible to have a consumer receive inputs for an operand from
multiple producers. Figure 7.1 shows a code snippet that illustrates this be-
havior along with the data flow graph for the set of instructions in the code.
In this example, the tge instruction compares the values of R1 and R2 and
generates a true or false predicate that it sends to the predicated-move in-
structions. Only one of the mowv instruction will fire at runtime and send its

value to instruction #8.

In the basic selective re-execution mechanism, there was one producer
for each consumer. Hence, the producer had complete control over the value
of the version numbers reaching the consumer. However, with multiple pro-

ducers for a single destination, this one-to-one correspondence between the
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#1 R[0] read G[1] N[1] @ @

#2 R[1] read G[2] N[1]

#3 N[1] tge N[4,p] N[5,p] e
ge P P
#4 N[2] genu 0x1 N[4] P

#5 N[3] genu 0x2 N[5]

#6 N[4] mov_t W[0] \
#7 N[5] mov_f W[0]
#8 WIO1 write GI41

Figure 7.1: EDGE code with multiple sources

16 15 14 10 9 32 0
DT id RT inum ET inum Vnum

Figure 7.2: Version number with instruction identifier

producer and the consumer is no longer valid. For example in Figure 7.1, with
selective re-execution, the tge instruction may fire speculatively and generate
a false predicate. This predicate can in turn cause instruction #6 to fire and
generate an incorrect speculative value that is sent to instruction #8. When
the speculation resolves, the tge instruction might generate a true predicate
and cause instruction #5 to fire and send its result to #8. Thus instruction

#8 can get its input from both sources.

To identify the source of an operand, we extend the version number to
carry instruction identifiers as shown in Figure 7.2. The instruction identifier

is a 14-bit quantity that is used to differentiate replies from the ETs, RTs,
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and the DTs. We identify the ETs by using the instruction number of the
producer (0-127). We identify replies from the RTs by appending the register
read instruction numbers to the ALU instruction numbers. Since there are 32
read instructions in a block, RT identification requires 5 bits. Finally, the top
2-bits are used to identify one of the 4 DTs. DT identifiers are also useful to
identify speculative loads that go to different data tiles because of the address

interleaving.

Having multiple producers target a single consumer also means that
there is no total order among different versions of an operand. To identify null
commit messages, we compare the version number received with the commit
bit against the last version number received, and if they are identical, the
incoming message is treated as a null commit message. Having no total order
among different versions of an operand also means that instructions can fire
whenever they get a new version number, even if it turns out to be an invalid,

older message.

Another aspect of having multiple producers for one operand is that
the instruction result needs to be saved and sent with each message, even for
null commit messages. The instruction result is required because a consumer
might have received another (incorrect) value from a different producer in
between, and hence if it needs to fire again, it will not have the right operand.
The consumer needs to ensure that the last result generated was using the
speculative value that was sent by the producer of the commit bit. Thus,

null commit messages in the TRIPS simulator carry the last computed result,
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along with the version number of the last computed result.

7.1.2 Changes to the Operand Network

As mentioned in Chapter 3, messages sent on the operand network
(OPN) in the TRIPS processor consist of a control packet and a data packet.
We send the commit bit and the version number, along with the instruction
identifier, in the control packet. Thus, null commit messages are identified
by comparing the last version number and instruction identifier received for
an operand with the version number and instruction identifier in the control
packet. Sending the commit bit and version number with the control packet
helps us retire null commit messages, without having to wait for the data

packet.

To support DSRE, the control packet in the OPN was extended to carry
the commit bit and the version number of the operand. The commit bit is a
single bit and the version number is 17 bits. The data packet also carries the

commit bit and version number for each operand.

Handling predicate or-ing Handling predicates correctly also requires
changes to the basic DSRE mechanism. The TRIPS architecture handles pred-
icates just like other operands. There are essentially two types of predicates—
enabling and non-enabling. A predicated instruction executes only if it receives
an enabling predicate. With predicate or-ing, an instruction can receive mul-

tiple non-speculative, non-enabling predicates. However, it is guaranteed to
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; Is G[4] <= G[3] <= G[5] ?
#1 R[2] read G[2] N[28]

#2 R[3] read G[3] N[0,1] N[4,0]
#3 R[4] read G[4] N[0,0]

#4 RI[5] read G[5] N[4,1]

#5 NIO] tle N[4,P] N[16,P]
#6 N[4] tle_t N[12,P] N[16,P]
#7 N[12] movi_t 1 W3]

#8 N[16] movi_f -1 W[3]

#9 N[28] ret

#10 WI3I write GI3I

Figure 7.3: Predicate or-ing example

receive only one non-speculative, enabling predicate.

With DSRE, predicate or-ing can result in a predicate receiving multi-
ple commit bits. Hence predicates require two commit bit fields—one for the
true predicate and one for the false predicate. An instruction can receive the
enabling predicate commit bit only once, while it can receive the non-enabling
predicate commit bit many times. Figure 7.3 shows an example code that can

result in a predicate receiving multiple commit bits.

The code shown in Figure 7.3 does a 3-way comparison of the values
stored in registers G[3], G[4], and G[5]. Instruction N[0] compares values in
registers G[3] and G[4], and generates a true predicate only if G[4] <= GI[3].
Instruction N[0] generates a false predicate if G[4] > G[3]. The predicate
generated by NJ[0] are sent to instructions N[4] and N[16]. Instruction N[4] is

predicated on the result of instruction N[0], and executes only if N[0] produced
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a true predicate. Instruction N[4] produces a true predicate if G[3] <= G[5].
If N[4] executes, it will send its result to instructions N[12] and N[16]. From
this example, we see that instruction N[16] can receive predicate values from
both instructions N[0] and N[4]. N[0] and N[4] can both send true predicates
to N[16], which is a non-enabling predicate since N[16] is predicated on false.
Thus, with predicate or-ring, an instruction can receive multiple commit bits

for the non-enabling predicate.

Since an instruction can receive only one non-speculative enabling pred-
icate, we need a single version number field for predicates that stores the ver-
sion number of the enabling predicate. This version number helps us identify
null messages for predicates by looking only at the control packet. Hence, when
an instruction receives an enabling predicate, it stores the enabling predicate

version number in the predicate version number field.

7.1.3 Changes to the Global Tile

The Global Tile (GT) receives branch updates on the OPN. Branch
updates specify the address of the next block to fetch. The GT compares this

address with the predicted address to validate branch prediction.

With selective re-execution, the GT can receive multiple branch up-
dates for a block. The GT uses only the update that has the commit bit set
to validate the branch prediction. Using speculative branch updates to vali-
date branch prediction can result in higher performance due to earlier branch

updates. It can also result in poor performance if the update is incorrect and

152



results in an unnecessary pipeline flush. In this dissertation, we only use the

branch update that has the commit bit set.

The GT also responds to the mfpc (move from PC) instruction by
sending the value of the PC to the destination specified in the instruction.
With selective re-execution, the GT can get multiple mfpc requests. The GT
uses the commit bit of the mfpc request to determine the commit bit for the
reply. The GT sets the commit bit for the reply when it receives a mfpc request

with the commit bit set.

7.1.4 Changes to the Execution Tile

This section describes the changes we made to the execution tile to
support DSRE. As shown in Section 4.1.1, with DSRE an instruction has an
extra committed state associated with it. We added a number of state bits
for each instruction mapped on an ET to track its state through the various

pipeline stages. The rest of this section describes these changes in more detail.

The ETs required the most change to support re-execution. First, we
added commit bit and version number fields to all the reservation station
entries in the ET for each operand. This expansion requires a 1-bit commit
bit and a 17-bit version number for operand A, a 1-bit commit bit and a 17-bit
version number for operand B, and 2 bits for the true and false commit bits
and a 17-bit version number for the predicate. As mentioned in Section 7.1.1,
the 17-bit version number also contains a 14-bit instruction identifier. Hence,

the number of bits required for the version number is 15. A larger version
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number allows an instruction to fire more times speculatively. Second, we
used a separate register file to store the result for each instruction. Third, we
added a number of status bits to track the extra state for each instruction.

These include:

e Null commit bit: Each reservation station entry has a 1-bit null com-
mit message bit for operand A and a 1-bit null commit message bit for
operand B. When this bit is set, it means that the instruction has already
fired once with the value of the operand in the reservation station. An
instruction sends a null commit message if all its operands have their null
commit message bit set. The null commit message bit for an operand

can be set in two ways:

1. When a message arrives that has the commit bit set and has the
same version number as the last version of this operand. If the
instruction has executed with the previous value of this operand,

the null commit message bit is set for the operand.

2. When an instruction executes using the value of an operand that
has received its commit bit. Since the output null commit bit is
generated by a performing a logical AND of the commit bits of all
input operands, setting the null commit message bit for an operand
when the instruction executes ensures that the ET can send a null
commit message for this instruction, if the other operands for this

instruction receive null commit message messages.
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Null commit messages are identified by doing a logical AND of the null
commit message bits of all the operands of an instruction. When all
the operands of an instruction have their null commit message bit set,
the instruction can send a null commit message to its consumers. When
the ET receives a null commit message bit for an instruction, it checks
to see if the other operand(s) have received their commit bit. It marks
the instruction as not issued only if all the operands of the instruction
have received their commit bit to prevent redundant execution of the

instruction.

Executed bit: Each ET reservation station has an executed bit. The
executed bit is set when the instruction executes for the first time. An
instruction can send a null commit bit only if this bit is set for the

instruction.

Executing bit: This bit is set by the read stage of the pipeline when the
instruction is issued to an ALU. The bit is reset after the instruction
has finished executing. If the executing bit is set, the same instruction
cannot be issued again until the bit is reset. The ET also uses this bit
to determine if it can select an instruction to send a null commit bit. It
might happen that a long latency instruction, like a multiply instruction,
gets a null commit message while it is still executing. We want the
multiply instruction to send a null commit message to its consumers

only after it has finished executing. Resetting this bit prevents null
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commit messages from racing ahead of the instruction’s result to the
instruction’s consumers. One drawback of this approach is that it also

prevents concurrent execution of different versions of an instruction.

Issued-executed bit: Each ET reservation station entry has an issued-
erecuted bit. The ET resets this bit when an instruction is issued by
the select or by the read stage of the pipeline, and sets the bit when the
instruction finishes execution. This bit is required for correct identifi-
cation of null commit messages. In the ET pipeline, an instruction can
stay selected for multiple cycles before it executes, if the ET pipeline is
stalled. When an instruction is selected by the select stage, the ET sets
the issued bit for the instruction. A definitely selected instruction that
is not issued by the read stage stays in the pipeline until it is issued.
If such an instruction receives a null commit message, the instruction
can incorrectly send a null commit message before it has executed. The
1ssued-ezecuted bit is used to identify this case. The null message bit for
an operand is set only if the issued-executed bit is set or the executing

bit is set.

Num-fired counter: This counter is used for tracking the number of times
a particular instruction executed speculatively. This counter is useful
for throttling speculative execution of instructions. As we showed in
Chapter 4, best performance is achieved when an instruction is allowed to

execute no more than 4 times speculatively for the EEMBC benchmarks.
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The basic operation of the ET with re-execution is shown in Figure 7.4
and Figure 7.5. Figure 7.4 shows the various operand processing steps in the
ET. When an operand is received at the ET, it checks to see if a previous
version of the operand has been received. If there are no previous versions of
the operand, the ET marks the operand as ready. If a previous version of the
operand has been received by the ET, the ET compares the version numbers
of the operand. If the current version number of the operand is identical to
the previous version number, the operand is guaranteed to have its commit
bit set. The ET sets the null commit message bit for this operand, and resets
the issued bit for the instruction only if the other operands of the instruction
have their commit bit set. Resetting the ussued bit only if the other operands
of the instruction have their commit bit set ensures that the instruction does

not execute unnecessarily and send the same result as the last execution.

If the version number of the received operand is different from the last
version number, the ET checks the num-fired counter to determine the number
of times this instruction has fired speculatively. If the instruction has fired
fewer than the maximum number of times it is allowed to fire speculatively,
the issued bit for the instruction is reset to re-execute the instruction. If the
instruction has already executed the maximum number of times it is allowed
to execute speculatively, the issued bit for the instruction is reset only if the
instruction has received the commit bit for all its operands. Otherwise, the

message is ignored.

Figure 7.5 shows the various steps in the execution of an instruction

157



Operand received at ET

Different No
version

number? Null commit
message

Yes

Mark operand
Ready

i No
Yes Instruction No
fired max

times?

Set null commit
bit for operand

Mark instruction
asnot issued

Commit bit
received for
all operands?

Mark instruction
asnot issued

Set null commit
bit for operand

Mark instruction
asnot issued

I gnor e message

Figure 7.4: Operand processing with re-execution in the execution tile (ET)

with selective re-execution. Instructions that have all their operands ready are
selected for issue by the select stage. When the select stage selects a ready
instruction, it sets the issued bit for the instruction. The select stage also resets
the issued-executed bit. The instruction then proceeds to the read stage of the
pipeline. The read stage checks for functional unit availability, and issues the
instruction to the appropriate functional unit. The read stage also sets the
1ssued-executed and the executing bit for the instruction. The instruction then
proceeds to the execute stage of the pipeline where it computes its result. Once

the instruction has finished executing, the execute stage resets the executing bit
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Figure 7.5: Instruction execution with re-execution in the execution tile (ET)

and sets the executed bit for the instruction. The execute stage also increments

the num-fired counter for the instruction.

7.1.4.1 Handing Multiple Versions

With selective re-execution, the ET can receive multiple versions of an
operand. When the ET receives a new version of the operand, it resets the
1ssued bit for this instruction, so that it can be selected again for execution.
The select stage selects an instruction and it is issued by the read stage only

if the instruction’s executing bit is not set. Using the executing bit prevents
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null commit messages from racing ahead of the actual result to the consumers

of the instruction.

7.1.4.2 Identifying Null Commit Messages

The ET identifies null commit messages for operands by comparing
the version numbers received for the operand. When the ET receives a new
version of an operand, it compares the incoming version number with the last
version number for the operand. If the version numbers are the same and the
commit bit is set for the new version, then it is identified as a potential null
commit message. The ET has to ensure that the instruction executed using
the last value of the operand, before it can set the null commit message bit
for the operand. To determine if the instruction executed with the last value
of the operand, the ET checks the issued-executed and ezecuting bit of the
instruction. If either one of the bits is set, the ET sets the operand’s null

commit message bit.

The ET identifies output null commit message for an instruction by
examining the null message bits for the operands of the instruction. If all
the operands of an instruction have their null commit message bit set, then
a null commit message is sent for the instruction. The null commit message
essentially involves sending the last output of the instruction with the last
version number and the commit set. When a null commit message for an
operand is received, the ET needs to identify if it can send a null commit

message for the instruction, before resetting the instruction’s issued bit. To
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determine if a null commit message can be sent, the ET checks the null commit
message bits of the other operands of the instruction, when it receives the null
commit message for an operand. If this operand is the last arriving operand,
then the issued bit is reset so that the select or the read stage can process this
instruction and send a null commit message. Otherwise, the ET sets the null
commit message bit for the operand, but does not mark the instruction as not
issued. Not resetting the issued bit ensures that an instruction does not send

redundant speculative results to consumers.

7.1.4.3 Handling Predicates

Predicates require special handling in the ET. As shown in Figure 7.3,
with predicate or-ing an instruction can get both true and false predicates for
an instruction. Once an instruction has executed, we do not need to reset
its commit bit when it receives a new version of the predicate. Also, the ET
can send a null commit message for the instruction without looking at the
predicate version number, when it receives the commit bit for the enabling
predicate and the other operands for the instruction have their null commit
message bit set. However, this functionality requires looking at the data packet

of the predicate.

To identify null commit message bit for enabling predicates, the ET
stores the version number of the last enabling predicate received. If the ET
receives a commit bit with the same version number, it can determine that

only a null commit message needs to be sent for this instruction. With this
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optimization, the ET does not need to wait for the data packet to identify null

commit message bits for predicates.

7.1.5 Changes to the Register Tile

The register tile handles reads and writes to the architectural register
file. The RT processes the block input instructions in each block by sending
values from the register file or the write queues. Write instructions wake up

pending read instructions when they reach the RT.

Since a producer can send multiple versions of an operand with selective
re-execution, the RT assigns a version number to each read reply that it sends
on the OPN. To handle the case where multiple producers target the same
consumer, the version numbers also contain a register instruction number, to

uniquely identify the reply from the RT.

With re-execution, multiple versions for a write instruction can arrive
at the RT. Every version of a write instruction that arrives at the RT wakes
up any read instructions that are waiting on the write. Reads reply with
monotonically increasing version numbers. The RT sets the commit bit for
replies that are sent by reading the architectural register file. If the read
reply is satisfied by a data-speculative write instruction, the read reply is
also speculative and its commit bit is not set. When the write becomes non-

speculative, the read sends the commit bit to its consumers.

The RT identifies null commit messages by examining the version num-

ber of the write instructions. To support re-execution, the RT includes a ver-
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Figure 7.6: Write processing with re-execution in the register tile (RT)

sion number and a commit bit field with each write queue entry. The read
queue entries in the RT have two version number fields, a commit bit field,
and a null commit message bit field. The two version number fields are la-
beled in-version-number and out-version-number. The in-version-number field
stores the version number of the last write that woke up the read instruc-
tion. The out-version-number field stores the version number of the last reply

corresponding to this read.

When a new version of a write instruction is received at the RT, it
searches the read queue and wakes up all read instructions that depend on

this write. The write queue pipeline also compares the version number of the
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write instruction with the in-version-number of the read instruction. If the two
version numbers match, the write is a null commit message. The null commit
message bit for the read instruction is set on a match. When read instructions
have the corresponding null commit message bit set in the read queue, they
send a null commit message by sending the commit bit with the same version

number as the last reply.

With selective re-execution, a speculative write instruction may wake
up a corresponding read instruction that is subsequently nullified by a null
write instruction. When the RT receives a null write instruction, it resets
the issued field of read instructions that were satisfied by the previous version
of this write instruction. These reads are then processed by the read queue
pipeline, and get new values either from another write instruction or from the
architectural register file. Figure 7.6 shows the steps involved when a new

write arrives at the RT.

7.1.6 Changes to the Data Tile

The DT is responsible for preserving sequential memory semantics in
the TRIPS processor. The load-store queue in the DT tracks the dynamic
dependences among in-flight loads and stores. The DT forwards store value

from earlier stores to loads.

The dependence predictor in the DT predicts if a load is independent
of prior stores. When a load is predicted dependent on a store, it is pre-

vented from sending a reply until all prior stores have resolved. Loads that

164



are predicted independent incorrectly result in pipeline flushes. Loads that
are predicted dependent incorrectly lose an opportunity to send their replies

earlier, thus resulting in lower performance.

Withe DSRE, the DT can send speculative replies for loads that are
predicted dependent. The commit bit for the load is sent only when all prior
stores resolve. Stores that match with a later load can initiate re-firing of
the load. Thus, using selective re-execution, a load can send multiple replies
speculatively. The load-reissue pipeline in the DT is used to send commit bits

for loads when all prior stores have resolved.

Using the dependence predictor in the DT, we can implement com-
mit slicing by sending commit bits for loads that are predicted independent.
We evaluate commit slicing using the simple 1-bit predictor implemented in
the TRIPS prototype and the more complex first-store predictor in the next

section.

Load Wake Up Policy With the first-store predictor, matching stores are
allowed to wake up deferred loads. With selective re-execution, stores that
arrive at the DT can be data-speculative. Hence we can have two load wake
up policies. In the first policy, data-speculative stores are not allowed to wake
up loads by preventing the ETs from sending speculative stores to the DT.
Preventing speculative stores from reaching the DT reduces contention in the
network and the DT pipeline. However, it prevents the speculative wave from

running ahead, and can result in poor performance when the speculative store
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value is correct. The second policy allows speculative stores to reach the DT
and wake up matching loads. Allowing speculative stores to wake up loads
can result in better performance when the store address and the store value
of speculative and non-speculative versions are the same. However, if the
store value changes, the DT needs to re-fire loads that match with the store.
Worse, if the store address changes, we need to identify loads that were woken
up incorrectly by the last version of this store and re-fire them. The DT also
needs to wake up the loads that match the new address. Identifying both these
cases involves doing two content addressable memory (CAM) matches when
stores arrive at the DT, and is expensive in terms of timing and power. Also,
with speculative stores, the LSQ needs to be augmented to store the address
of the previous version of the store. The old address is used to identify loads
that might have received incorrect values. Hence, speculative stores also have

an area overhead associated with them.

Another case arises with speculative stores when the speculative ver-
sions of the same store go to different data tiles. When the non-speculative
version of the store eventually arrives at a data tile, its arrival is broadcast on
the Data Status Network (DSN) to all the other DTs. Any DT that received a
speculative version of this store has to perform a CAM match to determine if
any loads received incorrectly forwarded value from the store. All such loads
need to be reissued. Since every cycle, each DT gets a message from all the
other three DTs on the DSN, in the worst case this will involve 3 CAM matches

for stores received by other tiles. Hence, the DT will have to do CAM match
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using 5 addresses per cycle in the worst case. Due to the large area and power
requirements, we did not pursue this approach and speculative stores were not

allowed to reach the DT.

For every load in the LSQ, we added an executing bit to support re-
execution. The DT uses this bit to ensure that the null commit message are
not sent to the load’s consumer before the load data. Null commit messages are
sent by the reissue pipeline. It might happen that the reissue logic determines
that it is safe to send the commit bit for a load, because all prior stores have
resolved, while the main load-store pipeline is still processing the load. In this
case, the reissue logic can potentially send the commit bit before the load value
to the load’s consumer. This bit is set when the load enters the DT pipeline,
and is reset when the load reply is sent. A null commit message cannot be

sent for a load when its executing bit is set.

7.2 DSRE Performance

To evaluate the performance of DSRE on an actual EDGE implemen-
tation, the TRIPS prototype simulator was modified to support re-execution.
As described in the last section, we modified the different tiles in the simu-
lator to implement basic selective re-execution. The details of the simulated

processor are shown in Table 7.1.
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Feature

Details

ALUs

16 ALUs connected by a routed operand network.
The ALUS have both integer and floating point (FP)
units.

Instruction latency

1-cycle for basic integer ops like add and shift. 3-
cycle, pipelined integer multiply. 24-cycle, non-
pipelined integer divide. 4-cycle, pipelined FP add.
4-cycle, pipelined FP multiply. 2-cycle, pipelined FP
convert and compare. FP divide not supported in
hardware.

Branch Predictor

Next block predictor similar to the Alpha 21264 tour-
nament predictor with local, global, and choice pre-
dictors.

Instruction cache

64 KB, 16 KB per bank, 2-way set associative, 64
byte line size.

Data Cache

32 KB, 8 KB per bank, 2-way set associative, 64 byte
line size.

L2 cache

2 MB, 2-way set associative, 64 byte line size.

Table 7.1:

Simulated TRIPS processor configuration

The initial implementation of DSRE on TRIPS involved adding support

for sending multiple speculative versions for the same operand, and sending a

commit bit when the operand became non-speculative. Null commit messages

in this implementation were treated like regular messages in the ET and acted

like single-cycle ALU operations. Thus, null commit messages went through

the various pipeline stages before being processed by the ET router. The LSQ

in the DT was augmented to store the reply for a load, and this stored load

value was sent with the null commit message. We compared the performance

of this scheme against an oracle policy that does perfect load-store prediction,
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an aggressive policy that treats all loads as independent, a conservative policy
that treats all loads as dependent, and a policy with the 1-bit dependence
predictor that is implemented in the TRIPS prototype processor. Table 7.2

shows the performance of the EEMBC suite for these configurations.
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Benchmark | cons aggr | all-stores | dsre | oracle

(IPC) | (IPC) (IPC) (IPC) | (TPC)

a2time01 | 0.687 | 0.755 0.776 0.705 | 2.362
aifftrO1 || 0.554 | 0.592 0.711 0.544 | 2.432
aifirf01 | 0.870 | 0.871 1.657 0.894 | 2.590
aiifft0l | 0.542 | 0.567 0.672 0.535 | 2.539

autcor00 | 1.185 1.166 1.132 1.409 1.166
basefp01 || 0.817 0.849 1.028 0.810 1.164
bezier01 | 1.202 2.089 2.500 1.262 2.499

bitmnp01 || 0.644 0.887 0.875 0.635 1.665
cacheb01 || 0.574 0.668 0.867 0.614 1.532
canrdrO1 | 1.143 1.123 1.325 1.221 1.393
conven00 || 0.534 0.523 0.537 0.485 0.537
ftt00 | 1.057 2.601 2.633 1.052 2.630
idctrn01 || 0.644 1.217 1.431 0.653 2.632
iirflt01 || 0.489 0.477 0.826 0.499 1.910
ospf | 0.597 0.810 0.881 0.590 0.857
pntrch01 | 0.802 0.720 0.868 0.717 1.008
pktflow || 0.864 0.980 1.209 0.865 1.221
puwmodO1 || 0.686 0.583 0.901 0.656 2.178
routelookup || 0.554 0.554 0.554 0.702 0.554
rspeed01 || 0.679 0.599 0.881 0.669 2.111
tblook01 || 0.678 0.673 0.736 0.609 0.763
ttsprkO1 | 0.617 0.675 0.720 0.587 0.758
viterb00 || 0.627 2.370 1.394 0.589 2.749

| Mean | 0.692 | 0.782 | 0.925 0.691 | 1.310 |

Table 7.2: Comparison of initial DSRE implementation on the TRIPS proto-
type simulator

From Table 7.2, we see that our initial implementation DSRE performs
similarly to the conservative policy. The aggressive policy performs 13% better

than the conservative policy. Rolling flushes in the TRIPS processor reduce
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the cost of flushes contributing to the higher performance for the aggressive

policy.

The 1-bit dependence predictor yields an average 18.2% improvement
over the aggressive approach. The predictor has 1024 1-bit entries, and an
entry is set for a load that mis-speculates and causes a dependence violation.
All bits in the predictor are cleared unconditionally after committing 10,000
blocks. Because of the simple nature of the predictor, it is not good for catching

complex dependence patterns in benchmarks.

The 4th column in Figure 7.2 shows the performance of our basic se-
lective re-execution scheme. The simple re-execution scheme performs sim-
ilarly to the conservative policy because only multi-cycle operations benefit
from DSRE. The aggressive and 1-bit predictor schemes outperform the basic
DSRE scheme.

To study the performance of DSRE with commit slicing, we evaluated
the performance of DSRE with the 1-bit predictor, and the more complex 2-bit
first-store predictor. Table 7.3 shows the performance, with commit slicing, for
the two predictor configurations. Commit slicing with the all-stores predictor
performs worse than the dependence prediction using the all-stores predictor,

for the initial implementation of selective re-execution.
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Commit slicing

Benchmark | DSRE (IPC) || all-stores (IPC) | first-store (IPC)

a2time01 0.705 0.779 1.416
aifftr01 0.544 0.673 0.552
aifirf01 0.894 1.572 1.637
aiifft01 0.535 0.639 0.627
autcor(00 1.409 1.422 1.422
basefp01 0.810 0.991 1.184
bezier01 1.262 2.487 2.494
bitmnp01 0.635 0.871 0.890
cacheb01 0.614 0.883 1.165
canrdr01 1.221 1.600 1.573
conven(0 0.485 0.510 0.483
fft00 1.052 2.621 2.577
idctrn01 0.653 1.243 1.041
iirflt01 0.499 1.016 0.973
ospf 0.590 0.961 0.847
pntrch01 0.717 0.742 0.867
pktflow 0.865 1.115 1.313
puwmod01 0.656 0.761 0.980
routelookup 0.702 0.702 0.702
rspeed01 0.669 0.818 0.883
tblook01 0.609 0.737 0.770
ttsprk01 0.587 0.755 0.776
viterb00 0.589 1.330 1.433

Mean || 0.691 [ 0.927 0.971 |

Table 7.3: Comparison of DSRE with and without commit slicing

We found two reasons for the lower performance of selective re-execution.
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hence ended up taking resources within the tiles, like the ALU bandwidth.



Second, the the extra traffic generated by DSRE resulted in more contention
on the OPN. We looked at a number of enhancements to the various tile to
increase the performance with selective re-execution. The following section
explains the cause for poor DSRE performance, along with the techniques we

evaluated, to improve performance.

7.3 Performance Enhancements to DSRE on TRIPS

In the simple implementation of selective re-execution, the pipelines in
the ET and DT treat null commit messages just like regular messages. Hence,
in the ET for example, the messages go through the select, read, execute, and
writeback stages of the pipeline. Thus, using null commit messages does not
yield any significant performance advantage. Since the messages are treated
like single-cycle ALU operations, only multi-cycle operations like multiply tend
to benefit from this naive implementation. In this section, we discuss various

modifications to the DSRE implementation to increase its performance.

7.3.1 Accelerating Commit Messages

An important property of null commit messages is that they do not
need to use the ALU for computing the result. Since null commit messages
are sent on a correct speculation, as long as instructions store the result of
their last computation, they can send a null commit message using the stored

result.
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Arbiter

OPN router

OPN out

Figure 7.7: Modified execution tile pipeline

When instructions arrive at the ET, we can identify null commit mes-
sages by examining the version number in the control packet. Instructions that
need to send null commit messages can be retired without having to go through

the regular ET pipeline, with little extra logic in the select and read pipeline
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stages. With the extra logic, the read stage can send null commit messages for
instructions whose last operand is bypassed, and the select stage can handle
null commit messages for definitely selected instructions. We added buffers in
the select and read stages of the pipeline to store the null commit messages
from these stages. These instructions arbitrate for the OPN router with the
execute stage of the pipeline to send their replies. The modified ET pipeline
is shown in Figure 7.7. The shaded blocks in Figure 7.7 represent structures
that we added to the ET to improve DSRE performance. The ability to send
null commit messages from the read and select stages reduces ALU contention,

and decreases the latency to process null commit messages.

In our simple selective re-execution implementation, the DT sent null
commit messages using the main load-store pipeline. The reissue logic in the
DT identifies null commit messages after all prior stores have resolved for a
load, and these null commit messages pass through the reissue pipeline before
reaching the load-store pipeline. Since the LSQ stores the last reply for every
load, some extra logic in the reissue pipeline can send null commit messages
to the load’s consumer from the reissue pipeline. Specifically, we need to allow
the reissue stage of the pipeline to write null commit messages to the output
buffer in the DT. The ability to send null commit messages from the reissue
pipeline reduces contention in the main load-store pipeline and decreases the

latency to process null commit messages in the DT.

Table 7.4 shows the performance of DSRE, with commit slicing using

the 2-bit first-store predictor, for the augmented ET and DT pipelines. The

175



first column in Table 7.4 shows the performance of DSRE without these en-
hancements. The second column in Table 7.4 shows the performance of DSRE
with accelerated commit messages. From Table 7.4, we see that modifying
the ET and DT pipelines to accelerate commit messages results in a 2.4% im-
provement in performance over our initial implementation. We next analyzed

the OPN bandwidth to understand its impact on DSRE performance.

7.3.2 OPN Bandwidth

Selective re-execution always results in extra messages on the OPN;,
both when the speculation is correct and when it is incorrect. When the
speculation is correct, we need to send null commit messages to validate the
speculation. When the speculation is incorrect, we need to send the correct
value of the operand to the consumers. Thus, extra OPN bandwidth is required

to efficiently support selective re-execution.

To evaluate the impact of bandwidth on performance, we ran experi-
ments with infinite OPN bandwidth. We simulated infinite OPN bandwidth
by ensuring that packets faced no contention in the network. The tiles can
still process only one local packet every cycle. Hence, packets get queued at
the input and output buffers in each tile. These buffers were made infinitely
large to avoid contention. Infinite OPN bandwidth does not increase the local

bypass path in the ET, which is still limited to one.

Column 3 in Table 7.4 lists the performance of DSRE with infinite

OPN bandwidth. Comparing column 3 and column 4 in Table 7.4, we see that
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there is a 10% improvement in performance with infinite bandwidth, clearly
indicating that limited bandwidth on the OPN does limit performance with

selective re-execution.

Benchmark | DSRE | ET-DT Perfect Multiple
(IPC) NULL OPN OPN

(IPC) (IPC) (IPC)

a2timeO1 | 1.416 1.470 1.929 1.807
aifftr01 | 0.552 0.574 0.636 0.587
aifirf01 || 1.637 1.648 1.766 1.678
aiifft01 || 0.627 0.664 0.754 0.677
autcor00 || 1.422 1.422 1.466 1.465
basefp01 | 1.184 1.188 1.248 1.234
bezier01 | 2.494 2.494 2.787 2.790
bitmnp01 || 0.890 0.908 1.020 0.958
cacheb01 || 1.165 1.166 1.252 1.195
canrdr01 || 1.573 1.626 1.724 1.680
conven00 | 0.483 0.483 0.481 0.481
ftt00 | 2.577 2.577 2.695 2.658
idctrnO1 || 1.041 1.105 1.439 1.135
iirflt01 || 0.973 1.003 1.057 1.005
pntrch01 | 0.867 0.867 0.954 0.900
pktflow | 1.313 1.316 1.404 1.367
puwmodO1 || 0.980 0.984 1.068 1.010
routelookup || 0.702 0.702 0.759 0.719
rspeed01 || 0.883 0.894 0.957 0.907
tblook01 | 0.770 0.773 0.919 0.867
ttsprk01 | 0.776 0.778 0.861 0.811
viterb00 | 1.433 1.588 1.878 1.716

| Mean | 0.977 | 0996 | 1.094 1.034 |

Table 7.4: Performance (IPC) of DSRE with enhancements
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Since unlimited bandwidth is not feasible in a real implementation,
we implemented a second operand network to double the bandwidth. The
tiles were allowed to send operands on either one of the two OPNs, labeled
OPN1 and OPN2. Doubling the OPN bandwidth requires twice as many wires
between tiles for carrying the operands. It also requires two routers in each
tile for routing packets on the two OPNs. We also need logic at the output
of each tile to decide which OPN to use for a particular packet. We used a
simple arbitration policy that checked OPN1 first to see if we could send a
packet. If OPN1 was busy, we checked OPN2. The local bypass in the ET was
also doubled to accommodate two instructions that targeted their parent node.
Finally, the bypass paths in the ETs were doubled to accommodate two OPN
bypasses and two local bypasses. Note that even with two local bypasses,
ALUs are allowed to retire only one instruction every cycle. However, the
ET retires null commit messages from the select and read stages, and these

messages utilize the extra bandwidth.

Column 5 in Table 7.4 lists the performance of DSRE when we double
the OPN bandwidth. Comparing column 3 and column 5 in Table 7.4, we
see that doubling the OPN bandwidth does not yield the same performance
improvement as infinite bandwidth, and results in a smaller 4% improvement

in performance.
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7.3.3 Dependence Predictor Policy

The final performance improvement technique we evaluated involved
varying the first-store dependence predictor. The 2-bit dependence predictor
we used in our evaluation uses three states for dependence prediction. With
selective re-execution, we can use all four states of the predictor to implement
different load reply policies. Table 7.5 shows two different load reply policies
with a 2-bit dependence predictor. We used a simple algorithm for training the
predictor that incremented the counter when a load is incorrectly predicted
conflicting and decremented the counter when the load is incorrectly predicted

conflicting. The results shown in the last section use Policy 2 in Table 7.5.

Since we can have five different load reply policies with selective re-
execution, we implemented a 3-bit first-store predictor to choose the appro-
priate load reply for a load, depending on the state of the predictor counter
corresponding to the load. We also evaluated the 3-bit first-store store with
dependence prediction. Table 7.6 shows the load reply policy for dependence
prediction and commit slicing with the 3-bit predictor. We used the same
training algorithm as the 2-bit predictor, where the counter for a load is in-
cremented when the load is incorrectly predicted conflicting, and decremented
when the load is incorrectly predicted conflicting. The number of entries in

the predictor table was 1024.
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Prediction

Counter Value

Policy 1

Policy 2

00 || No conflict: Com- | No conflict: Same as
mit bit is sent along | policy 1.
with load reply.

Pipeline flush on a
mis-speculation.

01 || Might conflict: | Might conflict:
Load reply sent with- | Same as policy 1.
out commit bit when
load arrives at the
DT. Commit bit sent
when all prior store
resolve.

10 || First store without || First store with
commit: Load reply | commit: Load reply
sent without commit || sent with commit
bit on first matching || bit on first matching
store. Commit bit sent || store. Pipeline flush
when all prior store re- | on a mis-speculation.
solve.

11 | A1l stores: Load re- | All stores: Same as
ply and commit bit | policy 1.

sent after all
stores resolve.

prior

Table 7.5: Load reply policies with a 2-bit predictor
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Prediction

Counter] Dependence Prediction Commit slicing
Value
000, No Conflict: Load reply sent | No conflict: Commit bit
001 before prior stores resolve. is sent along with load re-
ply. Pipeline flush on a mis-
speculation.
010, First store: Load reply sent | Might conflict: Load reply
011 on first matching store. sent without commit bit when
load arrives at the DT. Com-
mit bit sent when all prior
store resolve.
100 First store: Load reply sent | First store with commit:
on first matching store. Load reply sent with com-
mit bit on first matching
store. Pipeline flush on a mis-
speculation.
101 First store: Load reply sent | First store without com-
on first matching store. mit: Load reply sent without
commit bit on first matching
store. Commit bit sent when
all prior stores resolve.
110 All stores: Load reply sent | First store without com-
after all prior stores resolve. mit: Load reply sent without
commit bit on first matching
store. Commit bit sent when
all prior stores resolve.
111 All stores: Load reply sent | All stores: Load reply and

after all prior stores resolve.

commit bit sent after all prior
stores resolve.

Table 7.6: Load reply policies with a 3-bit predictor
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Benchmark | cons aggr first- DSRE with | oracle
(IPC) | (IPC) store commit (IPC)
(IPC) slicing
(IPC)

a2time0l | 0.702 | 0.767 0.842 1.797 2.418
aifftr01 | 0.560 | 0.600 0.715 0.752 2.477
aifirf01 | 0.884 | 0.890 1.675 1.734 2.635
aiifft01 | 0.547 | 0.576 0.699 0.714 2.592
autcor00 || 1.208 1.210 1.208 1.208 1.210
basefp01 | 0.845 | 0.886 1.072 1.204 1.212
bezierO1 || 1.195 | 2.137 2.793 2.784 2.789
bitmnp01 | 0.678 | 0.922 0.965 0.896 1.714
cacheb01 || 0.579 | 0.689 0.992 1.002 1.535
canrdr01 1.197 1.189 1.430 1.423 1.483
conven00 || 0.535 | 0.526 0.538 0.538 0.538
fft00 | 1.052 | 2.696 2.726 2.726 2.727
idctrn01 | 0.652 1.249 1.532 1.466 2.719
iirflt01 | 0.489 | 0.480 0.877 1.025 1.944
ospf | 0.633 | 0.864 0.908 0.911 0.917
pntrch01 | 0.820 | 0.740 0.916 0.901 1.039
pktflow | 0.896 1.026 1.188 1.272 1.272
puwmodO1 || 0.703 | 0.609 0.913 0.992 2.191
routelookup || 0.573 0.573 0.573 0.573 0.573
rspeed01 | 0.697 | 0.633 0.889 0.906 2.129
tblook01 || 0.751 | 0.744 0.825 0.825 0.854
ttsprkO1 | 0.636 | 0.696 0.748 0.746 0.782
viterb00 || 0.647 | 2.642 2.217 1.786 3.053

| Mean | 0.709 | 0.810 | 0.979 1020 | 1.361 |

Table 7.7: Comparison of load/store recovery schemes with a 3-bit predictor

Table 7.7 compares the performance of our best selective re-execution

scheme against the conservative load issue scheme, aggressive load issue scheme,
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dependence prediction using a 3-bit first-store predictor, and an oracle pol-
icy. All the configurations use two OPN channels for extra bandwidth. From
Table 7.7, we see that DSRE with commit slicing using the 3-bit first-store
predictor improves performance over the conservative scheme by 43.9%, ag-
gressive scheme by 25.9%, and the dependence prediction by 4.2%. Oracle
still outperforms DSRE by 33.4%. As discussed in Chapter 5, this gap can be
bridged using better compiler technology, better predictor training algorithms

for, and more sophisticated predictors for commit slicing.

7.3.4 Performance Summary

The performance improvement over dependence prediction of our best
selective re-execution implementation on the prototype simulator is lower than
the performance improvement we saw with our high-level GPA simulator im-
plementation. The reasons for this are four fold. First, the TRIPS prototype
simulator more accurately models the contention in the ALUs and the net-
work than the GPA simulator. Since contention primarily affects the perfor-
mance of selective re-execution, the performance improvements are lower in
the TRIPS prototype simulator. Second, the TRIPS compiler is still being
optimized for performance, and hence the code generated is sub-optimal, as
is reflected in the poor IPC numbers for the benchmarks even with an oracle
policy. For example, in the binaries we used, the compiler is unable to reg-
ister allocate static variables or optimize structures, resulting in benchmarks

having a larger number of load-store dependences. We saw an example of the
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performance improvement with selective re-execution with optimized code in
Section 5.1.1. Selective re-execution will produce larger performance bene-
fits with better code that exposes more instruction level parallelism. Third,
the distributed nature of the LSQ, coupled with the various pipeline stages,
results in a larger propagation delay for null commit messages. Finally, our
compiler and simulator infrastructure are not completely mature and allowed
us to evaluate only the loop-based EEMBC benchmarks. A number of these
benchmarks have similar behavior, and behavior does not vary within the in-
ner loop of each benchmark. The performance of the benchmarks is influenced
in large part by their loop-based nature. For example, the loop-based nature
of these benchmarks results in a large number of stores in-flight to the same
pointer address. In the steady state, loads that have multiple matching prior
stores are serialized because the dependence predictor is unable to identify
the last matching store. The performance will likely be different with larger

benchmarks that have different load-store patterns.

7.4 Logic, Timing, and Area Overhead with DSRE

In this section, we discuss the hardware complexity of selective re-
execution in a real implementation. The basic selective re-execution mecha-
nism described in Chapter 4 requires only a commit bit and version number
for each operand. However, as we discussed in this chapter, in a prototype
implementation, we need more state to deal with the various pipelines, and

bypass paths present in the processor. The bandwidth constraints in a real
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implementation also increase the resources required for selective re-execution.

The logic for handling commit bits and version numbers can be easily
implemented in each tile. We need a 17-bit comparator to compare version
numbers to identify null commit messages. We need an adder in the ET and
DT to increment version numbers for successive replies. We need counters in
the ET and the DT to count the number of times an instruction has fired
speculatively. This functionality can be simplified if we allow instructions to
fire speculatively only once, and track it by using a single bit that is set when

the instruction is executed.

The GT requires very little extra logic to implement selective re-execution.
The GT ignores speculative branch update messages and reuses the version

number and commit bit of the mfpc (move from PC) instructions.

The read and write queues in the RT require extra state for tracking
version number of incoming writes and outgoing reads. Waking up dependent
reads when writes arrive at the RT does not result in extra complexity, as
this functionality is already part of the RT implementation. When a null
write arrives at the RT, it needs to reset the read instructions that incorrectly
received forwarded values from the previous version of the write. This resetting
can be accomplished by simply resetting the issued bit of the read, and hence

does not involve any significant increase in complexity.

The load-store queue in the DT requires extra state bits to support re-

execution. Each entry in the LSQ needs fields for storing the incoming version
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number and commit bit of loads and stores. It also needs a field to track the
version number and commit bit of load replies. The LSQ also needs a register
file for holding the results of loads, and an executing bit and null commit
message bit for identifying when it is safe to send null commit messages. The
only other significant piece of logic required is in the reissue stage of the
pipeline for retiring null commit messages. As explained in Section 7.1.6, to
reduce complexity of the implementation, we do not allow speculative stores

to reach the DT and wake up loads.

The control and data paths of the OPN have to be expanded to accom-
modate the version number and the commit bit for each operand. We believe
that extra OPN bandwidth can be provided without a significant increase in
area. The OPN occupies 4% of the processor area in the prototype RTL.
Providing a second OPN will increase the area to slightly less than 8% of the

Processor area.

The main complexity from selective re-execution arises in the ET.
The ET needs to store version number and commit bit information for each
operand. It also needs to store the last computed result of an instruction. The
ET requires some state bits to identify null commit messages, and to track an
instruction through various stages of the ET pipeline. We also need buffers
in the read and select stages of the pipeline for storing retired null commit

messages.

The main logic complexity in the ET arises from processing multiple

inputs at the ET. Doubling the OPN bandwidth and the local bypass requires
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that the ET process two inputs on the OPN and two inputs on the local
bypass every cycle. Once we add the instruction chosen by the select stage,
the arbiter in the read stage of the pipeline has to choose from five different
inputs for processing the next cycle by the execute stage. The multiplexor in
the execute stage has to be changed from 3:1 multiplexor to a 5:1 multiplexor.

These changes are shown in Figure 7.8.

GDN
OPN2In OPN1In
Dispatch/
Decode Remote requests
Definite select
Read
Select (arbiter)
Select null Read null
commit message commit message
buffer Execute buffer
(5: L mux)
Writeback Local bypasst
L ocal bypass2
ALU output
buffer

Output router

OPN1 Out OPNZ2 Out

Figure 7.8: Changes to the execution tile required to support the extra band-
width for re-execution
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In summary, implementing selective re-execution requires extra logic in
all the major tiles in the TRIPS processor. Even though the mechanism itself
uses simple state bits, the various pipelines and bypass paths in the TRIPS
processor required extra state for tracking the various states of an instruction.
The area overhead associated with selective re-execution is mainly due to the
higher bandwidth required to support the extra messages with DSRE. The
extra bandwidth was provided by doubling the number of physical channels
on the OPN, and augmenting the input and output routers in the various tiles
to support the two OPN channels. We found that the complexity of the extra
logic required is minimal in most tiles, and the execution tiles required the

most hardware support for selective re-execution.

This chapter showed how DSRE can be implemented on a prototype
TRIPS processor. We used the TRIPS prototype simulator for implementing
and evaluating DSRE. The TRIPS prototype simulator has been validated
against the TRIPS prototype RTL, and models all the low-level details of the
implementation. We identified the changes required to the basic DSRE mech-
anism described in Chapter 4 to accommodate the TRIPS prototype processor
implementation of its EDGE ISA. We also identified the extra state that is
required in each tile of the processor for functional correctness with DSRE.
The initial implementation DSRE resulted in poor performance, and we sug-
gested and evaluated techniques to improve the performance. We also did an
analysis of the logic, timing, and area overhead with DSRE. We found that

the performance improvements with DSRE are lower on the TRIPS prototype

188



simulator when compared to the GPA simulator. We identified the reasons
for the lower performance and suggested solutions that can bridge this perfor-
mance gap. The next chapter summarizes this work and discusses its broader

implications.
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Chapter 8

Conclusions

With pipeline flushes becoming expensive in wide-issue, deeply pipelined
machines, mechanisms for low-cost recovery from mis-speculations will become
increasingly important in future microprocessors. Selective re-execution is one
such mechanism for low-cost recovery from data mis-speculations. Although
modern superscalar processors implement selective re-execution in a limited
fashion, its complexity in a conventional implementation makes it unsuitable

as a general mechanism for recovery from data mis-speculations.

In this dissertation, we have designed and evaluated a selective re-
execution mechanism for a new class of instruction set architectures, Explicit
Data Graph Execution (EDGE) architectures. EDGE architectures are a
dataflow-like architecture, in which the instructions specify their outputs ex-
plicitly, and do not specify their inputs. Instructions in this architecture exe-
cute when they receive all their inputs. The explicit specification of consumers
in the instruction set obviates the need for dynamic reconstruction of the data
dependences in the processor, thus significantly reducing the complexity of
designing a selective re-execution mechanism for EDGE architectures. The

mechanism we propose is distributed, and uses simple state bits for recovery.
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We used an EDGE-based TRIPS processor as the hardware substrate
for evaluating the proposed mechanism. Since EDGE architectures have a
block atomic execution model, blocks of instructions are fetched and com-
mitted atomically. Instructions in a block stay mapped on the reservation
station until the block is ready for commit. Hence, the processor can initiate

re-execution of instructions by re-injecting the mis-speculating input.

We used load-store dependence speculation as the driving speculation
mechanism for evaluating the performance of the proposed DSRE mechanism.
Load-store dependence speculation involves predicting the dynamic depen-
dences between in-flight loads and stores. As shown in Chapter 2, aggressive
issue of loads is important for high performance in future, large instruction

window machines to exploit high instruction-level parallelism.

We used two software implementations of the TRIPS processor to un-
derstand and evaluate the proposed DSRE mechanism. Our initial evaluation
involved a high-level, Trimaran-based, GPA simulator that loosely modeled
the TRIPS architecture without some of the resource constraints encountered
in a real implementation. We formulated basic mechanisms for ensuring cor-
rectness of the mechanism using the high-level simulator. These mechanisms
involved associating a commit bit with each operand to indicate when the
operand became non-speculative with respect to data speculation, and a ver-

sion number to identify the correct non-speculative version of the operand.

We compared the performance of our basic mechanism against differ-

ent load issue policies. Our results showed that dependence prediction, using
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pipeline flushing as a recovery mechanism, outperformed the configuration
that used re-execution for recovery. We identified the lag in the propaga-
tion of the commit messages as the reason for the poor performance of the
selective re-execution mechanism, and evaluated two mechanism for acceler-
ating the commit wave. These mechanisms resulted in selective re-execution

outperforming the best dependence predictor.

After initial evaluation on the high-level GPA simulator, we validated
the mechanism on the more accurate TRIPS simulator that faithfully models
all the details of the TRIPS prototype processor. We found bandwidth and
ALU contention to be significant bottlenecks to performance with selective
re-execution. We proposed and evaluated mechanisms to alleviate these con-
straints. The commit bit propagation delay was exacerbated in the TRIPS
prototype processor due to the distributed nature of the LSQ. Our results
showed that selective re-execution does provide performance benefits in fu-
ture, large instruction window machines, but it needs to be carefully tuned to

account for the limitations imposed by an actual implementation.
Should designers consider DSRE?

DSRE on the TRIPS prototype simulator resulted in a mere 4% mean perfor-
mance improvement across the set of EEMBC benchmarks. In the light of this,
we are forced to ask whether the extra complexity with DSRE is worth the per-
formance improvement. We identified four reasons for the lower performance

of DSRE on the TRIPS prototype simulator:
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1. More accurate network and ALU contention modeling.

2. Extra logic required to handle the complexity associated with a proto-

type implementation.
3. Sub-optimal code that exposed low instruction level parallelism.

4. Sub-optimal code that generated a large number of redundant loads and

stores.

We hand-optimized one benchmark, a#ifft01, by removing some redun-
dant loads and stores, which resulted in a 39% improvement in performance
over dependence prediction with selective re-execution. The low performance
of the non-optimized code with DSRE was primarily due to the fourth reason.
The performance improvement with the hand-optimized code demonstrated
that the DSRE mechanism is able to tolerate the extra ALU and network
contention, and provide speedup despite the added overhead. Although we
hand-optimized only one benchmark in this dissertation, we expect DSRE will
provide substantial improvement in performance with load-store dependence
speculation on optimized benchmarks with similar characteristics. Whether
future TRIPS workloads will have these characteristics remains to be seen and

is an open question.

8.1 Dissertation Summary

This research has demonstrated one way to implement distributed, se-

lective re-execution for Explicit Data Graph Execution architectures. Using
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one particular implementation of an EDGE architecture, the TRIPS proces-
sor, we evaluated the performance benefits of the mechanism, on a high-level
simulator, and a low-level simulator that models a prototype implementa-
tion in great detail. The basic mechanism requires simple, distributed, local
state machines, and hence is scalable to future, communication-dominated
technologies. DSRE mechanisms will become increasingly important for high
performance in large instruction window machines of the future. Mechanisms
such as the one presented in this dissertation will provide future, distributed

microarchitectures with low-overhead recovery from value mispredictions.

The evaluation on a high-level GPA simulator showed that the pro-
cessing of the commit tokens, not ALU or network contention, caused the
most performance losses in the DSRE mechanism. We evaluated one tech-
nique (speculative commit slicing) that achieved 82% of the performance of
an oracle predictor, and proposed and evaluated a bottom-up commit graph
pre-traversal for hiding parts of the commit graph traversal. The bottom-up
commit graph pre-traversal approach did not result in performance improve-

ments large enough to justify its additional hardware complexity.

When evaluated on the TRIPS prototype simulator that accurately
models the bandwidth constraints of a prototype processor implementation,
ALU and network contention significantly constrained the performance of the
DSRE mechanism. We proposed and evaluated mechanisms for overcom-
ing these constraints. These involved adding a second network for carrying

operands, and adding extra logic in the execution and data tile pipelines to
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expedite commit messages.

We proposed a dependence predictor that works in the distributed,
TRIPS environment. We used the dependence predictor for load-store depen-
dence speculation without re-execution, and also used it to drive the commit
slicing mechanism with re-execution. Our results showed that the 17% per-
formance improvement we see with re-execution on the high-level simulator
reduces to 4.2% on TRIPS prototype simulator, because of the implementa-

tion constraints.

The selective re-execution mechanism that we propose has a cost asso-
ciated with it, both when the speculation is correct and when it is incorrect.
When the speculation is correct, we need to send null commit messages that
result in extra network and ALU contention. The commit bit propagation
delay is another cost associated with correct speculation. The cost associated
with incorrect speculation is the extra ALU and network contention generated
by the speculative values. Traditional mis-speculation recovery with pipeline
flushing has no cost associated with correct speculation, but has a higher cost
associated with incorrect speculation due to pipeline flushes. Our results have
shown that to achieve high performance, we need to use both recovery mech-
anisms. Confidence estimators can be used to choose between the recovery
mechanism to use for each speculation. High confidence predictions can use
traditional mis-speculation recovery, while low confidence predictions can use
a DSRE based recovery. We used two types of dependence predictors as confi-

dence estimators for load-store dependence prediction. Such mechanisms will
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become increasingly important in future, large instruction window processors

with multiple predictors.

Although we focused mainly on load/store dependence speculation,
DSRE mechanisms can easily handle other types of value speculation, includ-
ing value prediction, predicate prediction, and even “physical speculation,”
executing instructions on ultra-fast or ultra-low-energy ALU that may oc-
casionally produce a wrong answer but has physical benefits in the common
case [17]. We did a brief evaluation of last-value prediction to show that DSRE
can work with multiple speculation engines concurrently. The following sec-

tions discuss some future directions for this research.

8.2 Looking Ahead

The selective re-execution mechanism proposed in this work was evalu-
ated in the context of load-store dependence prediction. However, the nature
of the mechanism makes it amenable for use with with other types of data spec-
ulation like last-value prediction, stride prediction, and coherence speculation

among others.

8.2.1 Closing the Performance Gap

Even with all the proposed enhancements, the oracle policy outperforms
selective re-execution with commit slicing by 33.4% on the TRIPS prototype
simulator. We found delay in commit propagation to be the reason for this

difference in performance. A number of factors contributed to this delay.
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The benchmarks that have the largest performance gap have store-load-
store dependences. Compiler optimizations in the future will likely remove
some load-to-store dependences by register allocating these variables. How-
ever, to achieve performance close to oracle, we will need better commit slicing
predictors that can identify the exact matching store for a load. The first-store
predictor that we use for commit slicing is unable to identify the exact match-
ing store, when there are multiple stores in flight to the same address. Loads
that conflict with multiple prior stores are forced to send their commit after
all prior stores resolve, resulting in unnecessary delay in the commit bit prop-
agation. Dependence prediction will become increasingly difficult in future,
large instruction window machines with a large number of loads and stores in
flight. The difficulty in predicting load-store dependences, coupled with higher
pipeline flush costs, will result in a growing difference in performance between
an oracle policy and pure dependence prediction. Using more sophisticated
predictors that work in a distributed environment for dependence prediction,
will only be able to bridge part of this performance gap. Techniques like se-
lective re-execution, coupled with more sophisticated dependence prediction,

will be required to achieve performance close to oracle.

The compiler and simulation infrastructure for the TRIPS prototype
is still under development, and is not mature enough to run large programs
like the SPEC CPU2000 suite. We used a set of EEMBC benchmarks for
our evaluation in this dissertation, which consist of small kernels that are re-

peatedly executed within a main loop. Hence, particular characteristics of
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these programs are amplified due to the repeated execution. For example,
the RAMfilePtr variable used in a number of EEMBC programs results in a
large number of load-to-store and store-to-load dependences. This dependence
slows down the propagation of the commit bit. Another example is the pres-
ence of a large number of stores to the same address that are part of different
loop iterations. We hand-optimized one benchmark, a#ifft01, and showed how
DSRE can yield large performance improvement on optimized binaries even
on the detailed TRIPS implementation. The low variation in the benchmark
behavior over the simulated region results in poor performance in these bench-
marks. Benchmarks that are more varied in their behavior will show better

performance with DSRE.

Finally, the TRIPS compiler that we used to compile the EEMBC
benchmarks is still being optimized to produce higher performing binaries.
For example, the compiler currently does not have support to register allocate
static variables that results in a large number of load-store dependences. The
hyperblock generator in the compiler is also being optimized to produce larger
hyperblocks. Performance with DSRE will improve with an optimized TRIPS

compiler.

8.2.2 Speculative Dataflow Machines?

Branch mispredictions still cause enormous performance losses in high-
end processors, and branch predictors are improving with only diminishing

returns. While some other architectural proposals advocate moving to a “more
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pure” dataflow model [67] that has little control, they merely shift the control
dependences to data dependences that must be executed conservatively, both

in registers and memory, placing a tight asymptote on achievable parallelism.

DSRE mechanisms can enable a different solution in emerging EDGE
architectures—the compiler grows enormous hyperblocks to control-flow graph
merge points, which encompass any control flow splits and merges. Within
these large, predicated blocks, a predicated producer of a value may choose
to execute speculatively and inject its operands to the rest of the graph. If
the actual needed operand should have been generated on a different path,
the correct operand can be re-injected and handled gracefully by the DSRE
mechanism. The execution of predicates can thus be removed from the critical
path by speculating the values of certain predicates, with a low-overhead,

DSRE-supported recovery guaranteed if the predicate was mispredicted.

The EDGE architecture model with huge hyperblocks, little explicit
control flow, and a fine-grained dataflow ISA, starts to resemble in many
aspects past dataflow machines like Monsoon [51], but with one important
distinction: the dynamic changing of dataflow arcs can be supported by for-
warding values into the DFG speculatively and aggressively, with the DSRE
mechanism providing a clean recovery if wrong. Monsoon also had multiple
functional units connected by a dynamic network, with each functional unit
having a token-store for receiving tokens. This token-store was made explicit
in the data flow model to simplify resource management. However, dataflow

arcs in Monsoon were fixed, as it did not have support for speculation. EDGE
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architectures enable conventional, imperative languages, and data speculation,
coupled with distributed selective re-execution, may eventually make dataflow
architectures truly competitive by also allowing them to achieve high perfor-
mance on irregular codes while supporting traditional programming models

and languages.
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