Copyright
by
Hrishikesh Sathyavasu Murukkathampoondi
2004

The Dissertation Committee for Hrishikesh Sathyavasu Murukkathampoondi
certifies that this is the approved version of the following dissertation:

Design of Wide-Issue High-Frequency Processors in
Wire Delay Dominated Technologies

Committee:

Douglas C. Burger, Supervisor

Craig M. Chase, Supervisor

Lizy K. John

Norman P. Jouppi

Stephen W. Keckler

Yale N. Patt

Design of Wide-Issue High-Frequency Processors in
Wire Delay Dominated Technologies

by

Hrishikesh Sathyavasu Murukkathampoondi, B.E., M.S.

DISSERTATION
Presented to the Faculty of the Graduate School of
The University of Texas at Austin
in Partial Fulfillment
of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN
August 2004

Dedicated to my parents.

Acknowledgments

Several people supported and encouraged me over the course of my time
in graduate school and this work would not have been possible without their
assistance. I would like to thank my advisor, Dr. Doug Burger, who played
a prominent role in educating me and training me to be a good researcher. I
am grateful to Dr. Craig Chase, my co-advisor, for his support and guidance.
I have benefited greatly from my interactions with Dr. Stephen Keckler. I
thank him for sharing his time and knowledge. Thanks to Dr. Lizy John for

her support and advice during my first years in graduate school.

Raj Desikan wrote the original processor simulation tool that I used
for my research. I would like to thank him for answering my numerous ques-
tions. I also thank Vikas Agarwal and Heather Hanson for their help in my
understanding of technology related issues. My fellow research students at the
Computer Architecture and Technology Laboratory have been important to
my development. I gratefully acknowledge them for sharing their knowledge

and friendship.

Kartik Agaram, Changkyu Kim, Ramadass Nagarajan, Karthikeyan
Sankaralingam, Lakshminarasimhan Sethumadhavan, and Premkishore Shiv-
akumar have been my house mates, travel companions, and close friends over

the last five years. Graduate school would not have been so much fun without

the company of this interesting bunch.

Finally, I would like to thank my parents for providing me with the
education that allowed me to reach this far. This work would not have been

possible without their constant encouragement and unwavering support.

vi

Design of Wide-Issue High-Frequency Processors in
Wire Delay Dominated Technologies

Publication No.

Hrishikesh Sathyavasu Murukkathampoondi, Ph.D.
The University of Texas at Austin, 2004

Supervisors: Douglas C. Burger
Craig M. Chase

Processor designers have increased performance by improving two pa-
rameters — clock frequency and the number of instructions processed per
cycle (IPC). Increases in processor pipeline depth has been one factor that has
contributed to clock frequency improvements. This research shows that im-
provements to clock frequency from increasing processor pipeline depths are
reaching a point of diminishing returns. It may be possible to continue in-
creasing pipeline depths at the cost of significant increases in design effort and
complexity. However, such effort would better spent if directed at increasing

IPC.

To increase IPC processors will have to issue more instructions every

cycle. Also, the capacity and the number of ports of on-chip structures must

vii

be increased to support wider issue widths. However, large multi-ported struc-
tures will have long access latencies that will not scale with technology. Such
structures cannot be clocked at aggressive frequencies. A natural solution to
the problem of increasing circuit complexity is to partition the architecture
into clusters. While clustering reduces the complexity of on-chip structures it
introduces other bottlenecks and inefficiencies. These bottlenecks reduce the
IPC of a clustered machine compared to an un-clustered machine. The goal of
this research is to improve the IPC of a clustered processor to be closer to that
of the un-clustered machine. For this purpose we propose new architectural

techniques that mitigate the effect of the bottlenecks in clustered processors.

This research proposes a new mechanism, called consumer requested
forwarding (CRF) that replaces transfer instructions with hardware signals. In
the CRF method, consumer instructions that require values from remote clus-
ters explicitly request the value to be forwarded. This technique significantly
reduces the transfer instruction bottleneck. We also propose and evaluate three
dynamic instruction steering mechanisms—memory instruction steering, crit-
ical operand steering and issue-balance steering. Our studies show that the
memory instruction steering policy provides significant IPC improvements over

the baseline mechanisms that we evaluated.

viil

Table of Contents

Acknowledgments

Abstract

List of Tables

List of Figures

Chapter 1. Introduction

1.1
1.2

1.3
14
1.5
1.6

Pipeline Scaling Trends
Process Technology Trends
1.2.1 Wire Delay Scaling
1.2.2 Implications For Processor Design
Clustered Processors
Thesis Statement,
Dissertation Contributions
Organization Lo

Chapter 2. Processor Pipeline Scaling

2.1
2.2
2.3

24
2.5

2.6

Estimating Overhead
Pipeline Scaling Methodology
Optimal Pipeline Depth
2.3.1 Sensitivity of ¢iogic t0 Poverhead - - - - - - - o oo o .
2.3.2 Related Work
Effect of Pipeliningon IPC
A Segmented Instruction Window Design
2.5.1 Pipelining Instruction Wakeup
2.5.2 Pipelining Instruction Select
2.5.3 Related Work
Summaryo e e

1X

vil

xii

xviii

© © 00 O U = N =

—_
—_

Chapter 3. Wide Issue Processors

3.1 Instruction Level Parallelism in Programs
3.1.1 Experimental Methodology
3.1.2 Results

3.2 Partitioned Architectures
3.2.1 Very Long Instruction Word Processors
3.2.2 Multithreaded Architectures
3.2.3 Other Partitioned Architectures
3.2.4 Clustered Superscalar Processors
3.25 Discussion

3.3 Baseline Clustered Architecture

34 Summary

Chapter 4. Bottlenecks in Clustered Architectures

4.1 Quantifying the Effect of Bottlenecks
4.2 Quantifying the Effect of Individual Bottlenecks
4.2.1 Transfer Instructions
4.2.2 Inter-cluster Communication Delay
4.2.3 Cluster Resource Limitations
4.3 Summary

Chapter 5. Reducing Transfer Instructions

5.1 Register Caching
5.2 Inter-cluster Operand Forwarding
5.2.1 Consumer-requested Forwarding
5.2.1.1 Dual-wakeup

5.2.1.2 Pro-active Operand Fetch

5.2.2 Hot-register Based Forwarding

5.3 Related Work L.
54 Summary L.

43
44
44
48
a0
50
o1
o1
52
95
96
61

63
63
69
69
74
81
87

Chapter 6. Instruction Steering
6.1 Memory Instruction Steering
6.1.1 Ideal Memory Instruction Steering

126

6.1.2 Memory Instruction Steering with Last-cluster Prediction 130

6.2 Critical Operand Steering
6.3 Issue-width Balance Steering

6.4 Related Work
6.5 Summary

Chapter 7. Conclusions
7.1 Dissertation Summary
7.2 Discussion e

Appendices
Appendix A. Pipeline Scaling Simulation Results

Appendix B. Clustered Processor Simulation Results
B.1 The Baseline Clustered Processor
B.2 Register Caching
B.3 Consumer-requested Forwarding
B.4 Hot-register Based Forwarding
B.5 Memory Instruction Steering
B.6 Critical Operand Steering
B.7 Issue-width Balance Steering

Bibliography
Index

Vita

x1

137

151
153
156

159

160

162
162
178
180
188
190
193
194

196

210

212

21
2.2
2.3

24

3.1

4.1

4.2

4.3

4.4

4.5

List of Tables

Overheads due to latch, clock skew and jitter.
SPEC 2000 benchmarks used in all simulation experiments. . .

Access latencies (clock cycles) of microarchitectural structures
at 100nm technology (drawn gate length). The last row shows
the latency of on-chip structures on the Alpha 21264 processor
(180mm). .+« v v v

Execution latencies (clock cycles) of integer and floating-point
operations at 100nm technology (drawn gate length). The func-
tional units are fully pipelined and new instructions can be as-
signed to them every cycle. The last row shows the execution
latency on the Alpha 21264 processor (180nm).

The number of dynamic instructions (in billions) skipped for
the SPEC 2000 benchmarks before simulating 100 million in-
structions. Lo oo

Average reduction in the IPC of clustered processors compared
to monolithic processors with equivalent resources. Both the
clustered processor and the monolithic machine configurations
simulated perfect branch prediction and perfect memory disam-
biguation. L.

Transfer instructions as a fraction of the total number of in-
structions executed by the baseline clustered processor.

Average improvement in the IPC of clustered processors when
the transfer instruction overhead is removed. Both the clustered
processor and the monolithic machine configurations simulated
perfect branch prediction and perfect memory disambiguation.

Remote operand accesses as a fraction of the total number of
operands read during execution by the baseline clustered pro-
CESSOT. . & v v v i i e e e e e e e e e

Average improvement in the IPC of clustered processors when
inter-cluster communication latency is removed. For these ex-
periments, all configurations simulated perfect branch predic-
tion and perfect memory disambiguation.

xi1

18

21

22

45

67

72

74

78

80

4.6

4.7

4.8

4.9

4.10

5.1

5.2

9.3

6.1

6.2

6.3

Al

Workload imbalance in a 16-wide, 4-cluster machine using de-
pendence steering. Lo

The number of issue-limited instructions (ILI) and structure ca-
pacity stalls (SCS) per 100 instructions. These statistics were
collected for configurations with Alpha 21264-like branch pre-
diction and memory dependence prediction.

Average improvement in the IPC of clustered processors when
cluster resource limitations are removed. For these experiments,
all configurations simulated perfect branch prediction and per-
fect memory disambiguation.o oL

Average improvement in the IPC of a 16-wide 4-cluster proces-
sor when clustering bottlenecks are removed. Both the clustered
processor and the monolithic machine configurations used Al-
pha 21264-like branch prediction and memory dependence pre-
diction..

Average improvement in the IPC of a 16-wide 4-cluster proces-
sor when clustering bottlenecks are removed. For these exper-
iments, all configurations simulated perfect branch prediction
and perfect memory disambiguation.

The number of source operands that are re-used as a fraction
of the total number of source operands.

Average improvement the IPC of clustered processor with IFB
tables compared to a baseline machine for increasing values of
detect-to-set delay. All configurations were simulated with per-
fect branch prediction. oL,

Average improvement the IPC of clustered processor with IFB
tables compared to a baseline machine for increasing values of
detect-to-set delay. All configurations were simulated with per-
fect branch prediction.

Remote cache accesses as a fraction of the total number of mem-
ory instructions executed by the baseline clustered processor. .

Workload imbalance in a 16-wide, 4-cluster machine using mem-
ory steering overlayed on dependence steering.

Remote cache accesses as a fraction of the total number of mem-
ory instructions executed by the baseline clustered processor
using memory steering (Mem) and with the baseline steering
policies (Base).

The TPCs of SPEC 2000 benchmarks at pipeline depths corre-
sponding to ¢ysgic between 2 and 8 FO4

xiii

83

84

86

88

89

93

106

110

125

129

133

A2

B.1

B.2

B.3

B.4

B.5

B.6

B.7

B.8

B.9

The TPCs of SPEC 2000 benchmarks at pipeline depths corre-
sponding to ¢jogic between 9 and 16 FO4

The TPCs of a monolithic and a 16-wide 4-cluster processor.
These configurations simulated perfect branch prediction and
perfect memory disambiguation.

The IPCs of a monolithic and a 16-wide 4-cluster processor.
These configurations simulated Alpha 21264-like branch pre-
diction and memory dependence prediction.

The IPCs of a monolithic and a 8-wide 4-cluster processor.
These configurations simulated perfect branch prediction and
perfect memory disambiguation.

The TPCs of a monolithic and a 32-wide 4-cluster processor.
These configurations simulated perfect branch prediction and
perfect memory disambiguation.

The IPC of an 16-wide 4-cluster processor with no transfer in-
structions. These configurations simulated perfect branch pre-
diction and perfect memory disambiguation.

The IPC of an 16-wide 4-cluster processor with no transfer
instructions. These configurations simulated Alpha 21264-like
branch prediction and memory dependence prediction.

The TPC of an 8-wide 4-cluster processor with no transfer in-
structions. These configurations simulated perfect branch pre-
diction and perfect memory disambiguation.

The TPC of an 32-wide 4-cluster processor with no transfer in-
structions. These configurations simulated perfect branch pre-
diction and perfect memory disambiguation.

The IPC of an 16-wide 4-cluster processor without the inter-
cluster communication bottleneck. These configurations sim-
ulated perfect branch prediction and perfect memory disam-
biguation.o oL

B.10 The IPC of an 16-wide 4-cluster processor without the inter-

cluster communication bottleneck. These configurations simu-
lated Alpha 21264-like branch prediction and memory depen-
dence prediction. oL

B.11 The IPC of an 8-wide 4-cluster processor without the inter-

cluster communication bottleneck. These configurations sim-
ulated perfect branch prediction and perfect memory disam-
biguation.o oL

Xiv

161

162

163

164

165

166

167

168

169

170

171

B.12 The TPC of an 32-wide 4-cluster processor without the inter-
cluster communication bottleneck. These configurations sim-
ulated perfect branch prediction and perfect memory disam-
biguation.o oL

B.13 The IPC of an 16-wide 4-cluster processor without the cluster
resource limitation bottleneck. These configurations simulated
perfect branch prediction and perfect memory disambiguation.

B.14 The IPC of an 16-wide 4-cluster processor without the cluster
resource limitation bottleneck. These configurations simulated
Alpha 21264-like branch prediction and memory dependence
prediction.o Lo L

B.15 The TIPC of an 8-wide 4-cluster processor without the cluster
resource limitation bottleneck. These configurations simulated
perfect branch prediction and perfect memory disambiguation.

B.16 The IPC of an 32-wide 4-cluster processor without the cluster
resource limitation bottleneck. These configurations simulated
perfect branch prediction and perfect memory disambiguation.

B.17 The IPC of an 16-wide 4-cluster processor with register caching.
These configurations simulated perfect branch prediction and
perfect memory disambiguation.

B.18 The IPC of an 16-wide 4-cluster processor with register caching.
These configurations simulated Alpha 21264-like branch predic-
tion and memory dependence prediction.

B.19 The IPC of an 16-wide 4-cluster processor with consumer re-
quested forwarding for different detect-to-set latencies. These
simulations used the dual-wakeup policy to avoid deadlocks and
used mod3 steering. These configurations simulated perfect
branch prediction and perfect memory disambiguation.

B.20 The IPC of an 16-wide 4-cluster processor with consumer re-
quested forwarding for different detect-to-set latencies. These
simulations used the dual-wakeup policy to avoid deadlocks and
used load-slice steering. These configurations simulated perfect
branch prediction and perfect memory disambiguation.

B.21 The TIPC of an 16-wide 4-cluster processor with consumer re-
quested forwarding for different detect-to-set latencies. These
simulations used the dual-wakeup policy to avoid deadlocks and
used dependence steering. These configurations simulated per-
fect branch prediction and perfect memory disambiguation. . .

B.22 The IPC of an 16-wide 4-cluster processor with consumer re-
quested forwarding. These simulations used the dual-wakeup
policy to avoid deadlocks and assumed a 1-cycle detect-to-set la-
tency. These configurations simulated Alpha 21264-like branch
prediction and memory dependence prediction.

XV

173

174

175

176

177

178

179

180

181

182

B.23 The TIPC of an 16-wide 4-cluster processor with consumer re-
quested forwarding for different detect-to-set latencies. These
simulations used the pro-active operand fetch policy to avoid
deadlocks and used mod3 steering. These configurations sim-
ulated perfect branch prediction and perfect memory disam-
biguation. oL 184

B.24 The IPC of an 16-wide 4-cluster processor with consumer re-
quested forwarding for different detect-to-set latencies. These
simulations used the pro-active operand fetch policy to avoid
deadlocks and used load-slice steering. These configurations
simulated perfect branch prediction and perfect memory dis-
ambiguation.o Lo 185

B.25 The IPC of an 16-wide 4-cluster processor with consumer re-
quested forwarding for different detect-to-set latencies. These
simulations used the pro-active operand fetch policy to avoid
deadlocks and used dependence steering. These configurations
simulated perfect branch prediction and perfect memory disam-
biguation.o 186

B.26 The IPC of an 16-wide 4-cluster processor with consumer re-
quested forwarding. These simulations used pro-active operand
fetch to avoid deadlocks and assumed a 1-cycle detect-to-set la-
tency. These configurations simulated Alpha 21264-like branch
prediction and memory dependence prediction. 187

B.27 The IPC of an 16-wide 4-cluster processor with hot-register
based forwarding. These simulations used pro-active operand
fetch to avoid deadlocks. These configurations simulated per-
fect branch prediction and perfect memory disambiguation. . 188

B.28 The IPC of an 16-wide 4-cluster processor with hot-register
based forwarding. These simulations used pro-active operand
fetch to avoid deadlocks. These configurations simulated Alpha
21264-like branch prediction and memory dependence prediction.189

B.29 The IPC of an 16-wide 4-cluster processor with ideal memory-
steering. These configurations simulated perfect branch predic-
tion and perfect memory disambiguation. Also, the configu-
rations in these experiments used the CRF method to remove
transfer instructions. 190

B.30 The IPC of an 16-wide 4-cluster processor with memory-steering
using the last-cluster prediction method. These configurations
simulated perfect branch prediction and perfect memory disam-
biguation. Also, the configurations in these experiments used
the CRF method to remove transfer instructions. 191

paal

B.31 The IPC of an 16-wide 4-cluster processor with memory-steering
using the last-cluster prediction method. These configurations
simulated Alpha 21264-like branch prediction and memory de-
pendence prediction. Also, the configurations in these experi-
ments used the CRF method to remove transfer instructions. .

B.32 The IPC of an 16-wide 4-cluster processor with critical-operand
steering. These configurations used Alpha 21264-like branch
prediction and memory dependence prediction. Also, the con-
figurations in these experiments used the CRF method to re-
move transfer instructions. 0oL

B.33 The IPC of an 16-wide 4-cluster processor with issue-balance
steering. These configurations simulated perfect branch predic-
tion and perfect memory disambiguation. Also, the configu-
rations in these experiments used the CRF method to remove
transfer instructions. oL,

B.34 The IPC of an 16-wide 4-cluster processor with issue-balance
steering. These configurations used Alpha 21264-like branch
prediction and memory dependence prediction. Also, the con-
figurations in these experiments used the CRF method to re-
move transfer instructions.,

Xvii

192

193

194

1.1

21
2.2

2.3

24

2.5

2.6

2.7

2.8
2.9

2.10

211

3.1

List of Figures

A simple processor pipeline with critical loops.

Circuit diagram of a basic pulse latch.

Timing diagram of a basic pulse latch. The shaded area indi-
cates that the signalisvalid.

Simulation setup to find latch overhead. The clock and data
signals are buffered by a series of six inverters and the output
drives a similar latch with its transmission gate turned on.

The harmonic mean of the performance of integer and floating
point benchmarks without latch overhead, clock skew and jitter.

The harmonic mean of the performance of integer and floating
point benchmarks, executing on an out-of-order pipeline, ac-
counting for latch overhead, clock skew and jitter. For integer
benchmarks best performance is obtained with 6 FO4 of use-
ful logic per stage (@rogic). For floating-point benchmarks the
optimal @jgic is 5 FO4.o

The harmonic mean of the performance of integer benchmarks,

executing on an out-of-order pipeline for various values of @yyernead-

IPC sensitivity to critical loops in the data path. The x-axis of
this graph shows the number of cycles the loop was extended
over its length in the Alpha 21264 pipeline. The y-axis shows
relative IPC.

A high-level representation of the instruction window.

A segmented instruction window wherein the tags are broad-
cast to one stage of the instruction window at a time. We also

assume that instructions can be selected from the entire window.

IPC sensitivity to instruction window pipeline depth, assuming
all entries in the window can be considered for selection.

A 32-entry instruction window partitioned into four stages with
a selection logic fan-in of 16 instructions.

The TPC of SPEC 2000 benchmarks at different issue widths for a
processor with a 2048 entry issue window.

xVviil

15

16

16

23

24

26

29
31

33

35

37

46

3.2

3.3
3.4

4.1

4.2

4.3

4.4

4.5

4.6

The TPC of SPEC benchmarks at different issue window capacities
for a 64-wide processor

Pipeline diagram of the baseline processor

The issue, register read and execute stages of a clustered super-
scalar processor

The TPC of a 16-wide 4-cluster processor normalized by the
IPC of a monolithic processor. Both the clustered processor
and the monolithic machine configurations simulated perfect
branch prediction and perfect memory disambiguation.

The IPC of a 16-wide clustered processor configuration, with
and without the transfer instruction bottleneck, normalized by
the TPC of the ideal monolithic machine. Both the clustered
processor and the monolithic machine configurations simulated
perfect branch prediction and perfect memory disambiguation.

The IPC of a 16-wide clustered processor configuration, with
and without the transfer instruction bottleneck, normalized by
the IPC of the ideal monolithic machine. Both the clustered
processor and the monolithic machine configurations used Al-
pha 21264-like branch prediction and memory dependence pre-
diction..

The IPC of a 16-wide clustered processor configuration, with
and without the inter-cluster communication bottleneck, nor-
malized by the IPC of the ideal monolithic machine. Both the
clustered processor and the monolithic machine configurations
simulated perfect branch prediction and perfect memory disam-
biguation.o

The IPC of a 16-wide clustered processor configuration, with
and without the inter-cluster communication bottleneck, nor-
malized by the IPC of the ideal monolithic machine. Both the
clustered processor and the monolithic machine configurations
used Alpha 21264-like branch prediction and memory depen-
dence prediction. Lo

The IPC of a 16-wide clustered processor configuration, with
and without the cluster resource limitation bottleneck, normal-
ized by the IPC of the ideal monolithic machine. Both the
clustered processor and the monolithic machine configurations
simulated perfect branch prediction and perfect memory disam-
biguation. Lo

Xix

47
a7

60

65

71

73

7

79

82

4.7

5.1

5.2

5.3

5.4

3.5
5.6
5.7

5.8

5.9

The TPC of a 16-wide clustered processor configuration, with
and without the cluster resource limitation bottleneck, normal-
ized by the IPC of the ideal monolithic machine. Both the
clustered processor and the monolithic machine configurations
used Alpha 21264-like branch prediction and memory depen-
dence prediction. L

Example of a stream of instructions with an inter-cluster de-
pendence. Instructions 1 and 2 are assigned to cluster 0 while
instructions 3 and 4 are assigned to cluster 1.

The TPC of a 16-wide 4-cluster processor, with and without
register caching, normalized by the IPC of the ideal monolithic
machine. Both the clustered processor and the monolithic ma-
chine configurations simulated perfect branch prediction and
perfect memory disambiguation.

The TPC of a 16-wide 4-cluster processor, with and without
register caching, normalized by the IPC of the ideal monolithic
machine. Both the clustered processor and the monolithic ma-
chine configurations simulated Alpha 21264-like branch predic-
tion and memory dependence prediction.

Example of a stream of instructions with inter-cluster depen-
dence. Instructions I1 and I2 are assigned to cluster 0. Instruc-
tion I3 is assigned to cluster 1 and 14 to cluster 2.

The inter-cluster forwarding bit table.
Clustered processor pipeline with inter-cluster forwarding bits.

Pipeline timing for a clustered processor with consumer re-
quested forwarding.

The IPC of a 16-wide clustered processor configuration, with
and without the IFB mechanism, normalized by the IPC of
the ideal monolithic machine. The configurations with the IFB
mechanism used the dual-wakeup policy to avoid deadlocks.
Both the clustered processor and the monolithic machine config-
urations simulated perfect branch prediction and perfect mem-
ory disambiguation.o o000

The IPC of a 16-wide clustered processor configuration, with
and without the IFB mechanism, normalized by the IPC of
the ideal monolithic machine. The configurations with the IFB
mechanism used the dual-wakeup policy to avoid deadlocks.
Both the clustered processor and the monolithic machine config-
urations used Alpha 21264-like branch prediction and memory
dependence prediction.

XX

85

92

94

96

97
98
99

101

104

107

5.10

5.11
5.12

5.13

6.1

6.2

6.3

6.4

The TPC of a 16-wide clustered processor configuration, with
and without the IFB mechanism, normalized by the IPC of
the ideal monolithic machine. The configurations with the IFB
mechanism used the pro-active operand fetch policy to avoid
deadlocks. Both the clustered processor and the monolithic
machine configurations simulated perfect branch prediction and
perfect memory disambiguation.

109

Clustered processor pipeline with hot-register based forwarding. 112

The IPC of a 16-wide clustered processor configuration, with
and without the hot-register mechanism, normalized by the IPC
of the ideal monolithic machine. Both the clustered processor
and the monolithic machine configurations simulated perfect
branch prediction and perfect memory disambiguation.

The IPC of a 16-wide clustered processor configuration, with
and without the hot-register mechanism, normalized by the IPC
of the ideal monolithic machine. Both the clustered processor
and the monolithic machine configurations used Alpha 21264-
like branch prediction and memory dependence prediction.

The IPC of a 16-wide clustered processor configuration, with
and without ideal memory steering, normalized by the IPC of
the ideal monolithic machine. Both the clustered processor and
the monolithic machine configurations simulated perfect branch
prediction and perfect memory disambiguation. Also, the con-
figurations in these experiments used the CRF method to re-
move transfer instructions.

An example data dependence graph. The nodes represent in-
structions and the edges represent dependence. The shaded
node represents a memory instruction.

The TPC of a 16-wide clustered processor configuration, with
and without last-cluster memory steering, normalized by the
IPC of the ideal monolithic machine. Both the clustered proces-
sor and the monolithic machine configurations simulated perfect
branch prediction and perfect memory disambiguation. Also,
the configurations in these experiments used the CRF method
to remove transfer instructions.o

The IPC of a 16-wide clustered processor configuration, with
and without last-cluster memory steering, normalized by the
IPC of the ideal monolithic machine. Both the clustered pro-
cessor and the monolithic machine configurations used Alpha
21264-like branch prediction and memory dependence predic-
tion. Also, the configurations in these experiments used the
CRF method to remove transfer instructions.

xx1

113

115

126

128

131

6.5
6.6
6.7

6.8

6.9

7.1

7.2

Memory instruction steering with a cluster-stride predictor. . .
Critical-operand prediction table.

The IPC of a 16-wide 4-cluster processor using critical-operand
steering. All configurations used Alpha 21264-like branch pre-
diction and memory dependence prediction. Also, the configu-
rations in these experiments used the CRF method to remove
transfer instructions. oL,

The TPC of a 16-wide 4-cluster processor using issue-balance
steering. All configurations simulated perfect branch prediction
and memory disambiguation. Also, the configurations in these

The IPC of a 16-wide 4-cluster processor using issue-balance
steering. All configurations used Alpha 21264-like branch pre-
diction and memory dependence prediction. Also, the configu-
rations in these experiments used the CRF method to remove
transfer instructions. oL,

The IPCs of a 16-wide clustered processor, a 16-wide monolithic
processor, and an Alpha 21264-like configuration. All these
simulations used a tournament style predictor like in the Alpha-
21264. . . . e

The IPCs of a 16-wide clustered processor, a 16-wide monolithic
processor, and an Alpha 21264-like configuration. All these
simulations used a perfect branch prediction.

Xx11

136
138

140

142

143

156

Chapter 1

Introduction

Designers have improved microprocessor performance by increasing the
number of instructions that are concurrently executed and by increasing clock
frequency. Several novel architectural ideas have been developed to improve
the instructions per cycle (IPC) that can be processed by the computer.
These include branch prediction, data caching, out-of-order issue and exe-
cution etc. Improvements in clock frequency have been achieved by develop-
ing better semiconductor process technology, faster logic circuits, and aggres-
sively pipelining the architecture. For example, over the past twelve years
process technology has been scaled from 1000nm to 130nm. Similarly proces-

sor pipeline depths have been increased from 5 stage to 30 stages.

However, recent studies indicate that it will become increasingly diffi-
cult to improve processor performance in the future. Both components of per-
formance improvement—clock frequency and IPC—face emerging technology-
driven challenges. Recent studies on processor pipeline scaling show that clock
frequency improvements from increasing pipeline depths are reaching a point
of diminishing return. In the future, designers will have to rely on IPC to a

greater extent than before to improve performance.

In order to sustain greater IPC, processors will have to issue more
instructions every cycle. Also, microarchitectural structures, such as register
files and issue windows, must increase in capacity to be able to uncover greater
parallelism in the program. But, technology scaling projections indicate that
the latency of large structures with multiple ports will not scale as well as
transistor switching speeds. This poor scaling of processor structure latencies
will adversely affect IPC. In this dissertation we highlight the challenges facing

processor design and propose architectural solutions to address them.

1.1 Pipeline Scaling Trends

Increasing processor pipeline depth is one technique that designers use
to improve clock frequency and processor performance. Processor pipelines
have grown from a single stage (Intel 8086) to 30 stages (Intel Pentium IV).
While increasing pipeline depth does increase clock frequency it reduces the

IPC that the processor can sustain.

For example, consider the simple pipeline shown in Figure 1.1. The grey
boxes in the diagram represent pipelining overhead while the clear boxes repre-
sent useful work. The operating frequency of this pipeline can be increased by
decreasing the amount of useful work done every stage and increasing pipeline
depth. As illustrated in Figure 1.1, by halving the amount of useful logic
per stage we can double the depth of this pipeline (pipeline (b)). Note that,
because of latch overhead, doubling the pipeline depth does not double clock

frequency. In fact, the new pipeline has added additional latches and increased

Branch mis—prediction

Issue-wakeup

‘ Fetch ‘ ‘Rename Issue Execute Commit

ALU-ALU forwarding
Pipeline (a)

‘ #etch ‘ ‘ Rénarhe ‘ I‘ssué E*ecdte ‘ C$mﬁ1it ‘

Pipeline (b)

Figure 1.1: A simple processor pipeline with critical loops.

the end to end latency of the pipeline.

If there were no data or control dependences in the instruction stream
both these pipelines can commit one instruction every cycle. However, control
and data dependences in the instruction stream expose critical loops in the
pipeline that reduce overall TPC. Figure 1.1 illustrates some of the critical
loops in the pipeline. These loops include: issue-wakeup loop, ALU to ALU
forwarding, data-cache access and the branch mis-prediction loop. Increasing
pipeline depth increases the latency of critical loops due to the additional
clocking overhead that is added to the loop. For example, in pipeline (a),
when a branch instruction is encountered the address of the next instruction
is predicted and instructions are fetched down the speculative path. When the
branch instruction reaches the commit stage of the pipeline the prediction is
verified. If a mis-prediction is detected the pipeline is flushed and the program

counter is set to the correct instruction address. After a mis-prediction no

instructions are committed for several cycles. This branch penalty, for many
processors, is equal to the total pipeline depth. Increasing pipeline depth, to
increase clock frequency, also increases the latency of critical loops. The deeper
pipeline (b) takes more cycles to resolve branch prediction and therefore suffers

a larger mis-prediction penalty.

Similar to the branch prediction loop, increasing pipeline depth also
increases latency of other critical loops. This increase in critical loop latency,
in turn, reduces IPC. There is a tradeoff between increasing pipeline depth
(and therefore clock frequency) and IPC. To obtain maximum performance
processor designers must balance pipeline depth and IPC. We studied this
tradeoff between pipeline depth and IPC. Chapter 2 presents our study in
detail. We found that there is an optimal depth beyond which increasing

pipeline depths any further will reduce overall performance.

1.2 Process Technology Trends

Process technology has continually fueled processor performance im-
provements. Every successive technology generation allows greater number of
transistors to be packed on chip. Designers utilize the additional transistors in
novel ways to improve the number of instructions per cycle (IPC) by building
processor enhancements such as more sophisticated branch predictors, on-chip
caches, better instruction scheduling mechanisms, structures to support out-
of-order execution etc. Reducing feature sizes increases transistor switching

speeds and so reduces gate delays. However, projections by the Semiconduc-

tor Industry Association show that technology scaling will cause an increase
in wire delay relative to transistor delays [59]. This implies that in the future,
even though designers will have a greater number of transistors, the fraction

of the chip that can be accessed in a single cycle will decrease.

1.2.1 Wire Delay Scaling

The delay to propagate signals across a wire is determined by three
parameters: wire resistance, capacitance and inductance. An increase in wire
resistance or capacitance will result in an increase in signal propagation delay.

The resistance of the wire is determined by the equation
R=pxl/A (1.1)

where R is the resistance of the wire, p is the resistivity of the material, [is
the length of the wire, and A is its cross sectional area. As process technology
shrinks the thickness and width of wires is reduced thereby reducing its cross
sectional area. This change contributes to an increase in the resistance of the
wire. On the other hand, smaller process technology also reduces the length

of the wire which in turn reduces wire resistance.

The explanation for wire capacitance is more complicated due to the
interaction of multiple conductors close to the wire (i.e. neighboring wires).
The overall capacitance of a wire is usually modeled by four parallel-plate

capacitors for the top, bottom, and either sides of the wire. The capacitance

of a parallel plate capacitor is determined by the equation
C=exAld (1.2)

where C' is capacitance, € is the permittivity of the material, A is the cross
sectional area of the plates, and d is the distance between the plates. As process
technology shrinks the wire surface area shrinks (i.e. the area of the plates)
contributing to a reduction in the overall capacitance of the wire. However,
smaller process technologies also reduce the the spacing between adjacent wires
(i.e. distance between the plates) and this change contributes to an increase

in overall wire capacitance.

As discussed above, reducing feature sizes results in multiple effects,
some that reduce wire resistance and capacitance and some that increase it.
The discussion of wire delay presented in this section is a simple, first-order
explanation of the factors that contribute to wire resistance and capacitance.
Ho et al. present a more detailed discussion of wire delay scaling with tech-
nology [34]. Their study shows that on-chip wires that scale in length (i.e.
shorten as technology scales) have delays that track gate delays. However,
the delays of wires that do not scale in length (i.e. global wires) scale poorly

relative to transistors.

1.2.2 TImplications For Processor Design

Agarwal et al. studied the effect of increasing wire delays on on-chip

structure latencies and processor performance [2,3]. They show that because

of increasing wire delays, the latency of memory-oriented microarchitectural
structures such as caches and register files increases as technology shrinks.
To access such structures in single cycle will require either the capacity of the

structures to be decreased or for clock frequencies to be scaled less aggressively.

They quantified the performance effect of scaling a superscalar pro-
cessor from a 250nm technology to a 35nm technology. In this study they
determined the access latencies of on-chip structures at different technology
points using a modified version of CACTI [39]. Using a processor simulator,
they evaluated the performance of an Alpha 21264-like superscalar processor at
different technologies. Their study shows that as technology shrinks the IPC
of the processor reduces due to increased structure latencies. Even though
overall processor performance improves when it is scaled from 250nm to 35nm
this improvement is lower than the increase in clock frequency over the same
period. This result implies that even with the increased transistor budget the
performance of a monolithic superscalar processor will scale at a rate lower

than the clock frequency.

This study shows that the performance of large monolithic processor
cores will not scale with technology. Furthermore, future designs that seek to
exploit greater instruction level parallelism by issuing more instructions every
cycle will require larger on-chip structures with more ports. Such structures
cannot operate at high frequencies if designed as monolithic units. Future
microarchitectures must be partitioned in order to reduce the access latency

of critical structures. Such partitioning will result in a design wherein part of

a structure can be accessed in a single cycle while other parts will require mul-
tiple cycles. Though partitioning will enable structures to be clocked at high
frequencies it introduces new bottlenecks that still restrict IPC. This disserta-

tion proposes techniques to reduce the bottlenecks in clustered processors.

1.3 Clustered Processors

In clustered superscalar processors on-chip structures such as the in-
struction issue window, the register file, the data-cache etc are physically par-
titioned. These partitions, along with functional units, are organized into
groups called clusters. Several papers have previously suggested partitioning
superscalar processors into clusters [5,14,22,50]. Partitioning a monolithic
design into clusters introduces new bottlenecks in the design that degrade the
IPC of the clustered processor compared to the monolithic machine. Three fac-
tors degrade the IPC of clustered processors compared to a monolithic design.
First is the communication delay to access remote operand values and remote
memory values. The second factor is poor utilization of processor resources.
In clustered processors on-chip resources such as physical registers, functional
units, and issue windows are partitioned among clusters and this partitioning
reduces overall efficiency. For example, instruction scheduling methods may
steer many instructions to one cluster (and fewer instructions to other clusters)
resulting in under-utilization of processor resources. The third factor that de-
grades the IPC of clustered machines is the extra transfer instructions used for

inter-cluster communication. These instructions are dynamically generated by

the hardware to transfer operand values between clusters. These instructions

do not perform useful computation but they still consume processor resources.

1.4 Thesis Statement

Bottlenecks in clustered processors reduce its IPC compared to that
of a monolithic machine. This dissertation proposes techniques to reduce the
effects of these bottlenecks and enable a clustered processor to approach the

IPC of a monolithic machine.

1.5 Dissertation Contributions

In this dissertation we first explore the scalability of superscalar pro-
cessor pipelines and show that increasing pipeline depth beyond a point will
degrade performance. This performance degradation is because of the increase
in latency of certain sections in the pipeline termed critical loops. We propose
a method to pipeline the issue-wakeup critical loop that will allow the loop
to operate in multiple cycles and yet not cause a significant degradation in
IPC. This technique, along with methods that address other critical loops,
may allow us to increase pipeline depths a little further. But in the longer
term designers need to exploit more parallelism in programs to obtain greater
performance. Processors will have to issue more instructions every cycle to
achieve this goal. Such processors will have to be designed as clusters to re-
duce the design complexity of individual structures and to enable a high clock

frequency.

We examine the bottlenecks in clustered superscalar processors and pro-
pose techniques to reduce their effect. We propose two techniques to remove
the transfer instruction bottleneck, each of which replace transfer instructions
with hardware signals. In the first method, called consumer requested forward-
ing (CRF), inter-cluster dependences are detected when consumer instructions
reach the steer stage of the pipeline. Such consumer instructions set a bit in the
producer instruction’s cluster to forward the value to the consumer. The sec-
ond method used to perform inter-cluster communication is called hot-register
based forwarding. This mechanism tracks the registers that are used by each
cluster and uses this information to predict where instruction outputs should
be forwarded. We found that these techniques of orchestrating inter-cluster

communication can almost eliminate all transfer instructions.

We also propose three dynamic instruction steering policies—issue-
balance steering, memory steering, and critical-operand steering—to reduce
the effect of the inter-cluster communication and cluster resource utilization
bottlenecks. The issue-balance steering policy attempts to steer dependent
instructions to the same cluster to reduce inter-cluster communication. How-
ever, if such an assignment will result in a cluster having more ready instruc-
tions than it can issue, instructions are re-assigned to another cluster to avoid
stalls due to limited cluster issue-bandwidth. Thus, it attempts to find a bal-
ance between inter-cluster communication and processor resource utilization.
The critical-operand steering policy attempts to reduce the effect of the inter-

cluster communication latency. This policy identifies which of the two source

10

operands for an instruction is more critical and steers the instruction to the
cluster that has fast access to that source operand. Memory-steering works in
conjunction with the baseline policies and attempts to reduce the latency of
load and store instructions by steering them to clusters with fast access to the
data address being accessed. The issue-balance and critical-operand steering
policies perform better than two of the three baseline steering mechanisms that
we consider. The memory-steering mechanism shows an improvement over all

three baseline steering policies.

1.6 Organization

In this chapter we provided a overview of this dissertation work. Chap-
ter 2 examines processor pipeline scaling and shows that performance im-
provements from pipeline scaling are approaching diminishing returns. The
results of this study imply that future processor designs must rely on extract-
ing greater parallelism from the program to increase performance. To improve
IPC processor issue widths must increase. Chapter 3 evaluates the SPEC 2000
benchmarks to show that they have considerable instruction level parallelism
(ILP) and to determine the on-chip resources required to obtain this ILP.
This section also describes our baseline clustered processor in detail. Chap-
ter 4 evaluates the performance of the baseline processor and quantifies the
improvement over the baseline if each bottleneck were individually removed.
This study shows us the maximum benefit that can be achieved by removing

the clustering bottlenecks. In Chapter 5 we propose and evaluate architectural

11

techniques to remove the transfer instruction bottleneck. The techniques that
we propose eliminate almost all transfer instructions. We propose dynamic
instruction steering mechanisms in Chapter 6. These steering policies attempt
to reduce inter-cluster communication latency and the bottlenecks from poor
processor resource utilization. Finally, Chapter 7 presents our concluding re-

marks.

12

Chapter 2

Processor Pipeline Scaling

Improvements in microprocessor performance have been sustained by
increases in both instruction per cycle (IPC) and clock frequency. Increases in
clock frequency have come from technology scaling, improvements in circuit
design, and deeper pipelining of designs. In this chapter, we examine how
much further reducing the amount of logic per pipeline stage can improve

performance.

Reducing the logic per stage, and as a consequence increasing pipeline
depth, is a technique to increase clock frequency and therefore overall perfor-
mance. However, there are certain critical sections in a superscalar processor
pipeline that must evaluate in the fewest possible cycles to achieve good perfor-
mance. These sections are termed critical loops [15] and they include—issue
wake-up loop, ALU to ALU forwarding, data-cache access and the branch
mis-prediction loop. Increasing pipeline depth increases the latency of critical
loops due to the additional clocking overhead that is added to the loop. This

increase in critical loop latency, in turn, reduces IPC.

There is a tradeoff between increasing pipeline depth (and therefore

clock frequency) and IPC. To obtain maximum performance processor de-

13

signers must balance pipeline depth and IPC. In this chapter we explore this
tradeoff by scaling the pipeline depth of an Alpha 21264 processor. The re-
mainder of this chapter is organized in the following manner. To determine
the ideal clock frequency we first quantify latch overhead and present a de-
tailed description of this methodology in Section 2.1. Section 2.2 describes the
methodology to find the ideal clock frequency, which entails experiments with
varied pipeline depths. We present the results of this study in Section 2.3 and
discuss its implications. We examine individual critical loops in the pipeline

in Section 2.4 and propose a new instruction window design in Section 2.5.

2.1 Estimating Overhead

The clock period of the processor is approximated by the following

equation
¢ = ¢logic + ¢latch + ¢skew + ¢jitter (21)

where ¢ is the clock period, ¢iogc is useful work performed by logic circuits,
Glaten 18 latch overhead, @gpey 1s clock skew overhead and @iy, is clock jitter
overhead. In this section, we describe our methodology for estimating the

overhead components, and the resulting values.

A pipelined machine requires data and control signals at each stage to
be saved at the end of every cycle. In the subsequent clock cycle this stored
information is used by the following stage. Therefore, a portion of each clock
period, called latch overhead, is required by latches to sample and hold val-

ues. Latches may be either edge triggered or level sensitive. Edge-triggered

14

Figure 2.1: Circuit diagram of a basic pulse latch.

latches reduce the possibility of race through, enabling simple pipeline de-
signs, but typically incur higher latch overheads. Conversely, level-sensitive
latches allow for design optimizations such as “slack-passing” and “time bor-
rowing” [15], techniques that allow a slow stage in the pipeline to meet cycle
time requirements by borrowing unused time from a neighboring, faster stage.
In this paper we model a level-sensitive pulse latch, since it has low overhead
and power consumption [32]. We use SPICE circuit simulations to quantify

the latch overhead.

Figure 2.1 shows the circuit for a pulse latch consisting of a transmission
gate followed by an inverter and a feed-back path. Data values are sampled
and held by the latch as follows. During the period that the clock pulse is
high, the transmission gate of the latch is on, and the output of the latch (Q)
takes the same value as the input (D). When the clock signal changes to low,

the transmission gate is turned off. However, the transistors along one of the

15

CLK

Figure 2.2: Timing diagram of a basic pulse latch. The shaded area indicates
that the signal is valid.

Figure 2.3: Simulation setup to find latch overhead. The clock and data signals

are buffered by a series of six inverters and the output drives a similar latch
with its transmission gate turned on.

Clk

- .
o

Gnd

two feedback paths turn on, completing the feedback loop. The inverter and

the feedback loop retain the sampled data value until the following clock cycle.

The operation of a latch is governed by three parameters—setup time
(Tsu), hold time (T}), and propagation delay (Ty,), as shown in Figure 2.2. To
determine latch overhead, we measured its parameters using the test circuit
shown in Figure 2.3. The test circuit consists of a pulse latch with its output

driving another similar pulse latch whose transmission gate is turned on. On-

16

chip data and clock signals may travel through a number of gates before they
terminate at a latch. To simulate the same effect, we buffer the clock and
data inputs to the latch by a series of six inverters. The clock signal has a
50% duty cycle while the data signal is a simple step function. We simulated
transistors at 100nm technology and performed experiments similar to those
by Stojanovié et al. [67], using the same P-transistor to N-transistor ratios. In
our experiments, we moved the data signal progressively closer to the falling
edge of the clock signal. Eventually when D changes very close to the falling
edge of the Clk signal the latch fails to hold the correct value of D. Latch
overhead is the smallest of the D-Q delays before this point of failure [67]. We
estimated latch overhead to be 36ps (1 FO4) at 100nm technology. Since this
delay is determined by the switching speed of transistors, which is expected
to scale linearly with technology, its value in FO4 will remain constant at all
technologies. Note that the transistor feature sizes we refer to are the drawn

gate length as opposed to the effective gate length.

In addition to latch overhead, clock skew and jitter also add to the
total overhead of a clock period. A recent study by Kurd et al. [43] showed
that, by partitioning the chip into multiple clock domains, clock skew can be
reduced to less than 20ps and jitter to 35ps. They performed their studies at
180nm, which translates into 0.3 FO4 due to skew and 0.5 FO4 due to jitter.
Many components of clock skew and jitter are dependent on the speed of
the components, and those that are dependent on the transistor components

should scale with technology. However, other terms, such as delay due to

17

‘ Symbol ‘ Definition ‘ Overhead ‘
Olatch Latch Overhead | 1.0 FO4
Oskew Skew Overhead | 0.3 FO4
Gjitter | Jitter Overhead | 0.5 FO4

¢overhead Total 1.8 FO4

Table 2.1: Overheads due to latch, clock skew and jitter.

process variation, may scale differently, hence affecting the overall scalability.
For simplicity we assume that clock skew and jitter will scale linearly with
technology and therefore their values in FO4 will remain constant. Table 2.1
shows the values of the different overheads that we use to determine the overall
clock period. The total overhead (@operhead), the sum of latch, clock skew and

jitter overhead is equal to 1.8 FO4.

2.2 Pipeline Scaling Methodology

To study the effect of deeper pipelining on performance, we varied the
pipeline depth of a modern superscalar architecture similar to the Alpha 21264.
This section describes our simulation framework and the methodology we used

to perform this study.

We used a simulator developed by Desikan et al. that models both
the low-level features of the Alpha 21264 processor [20] and the execution
core in detail. This simulator has been validated to be within an accuracy of
21% of a Compaq DS-10L workstation. For our experiments, the base latency

and capacities of on-chip structures matched those of the Alpha 21264, and

18

‘ Integer ‘ Floating Point ‘
164.gzip 171.swim
175.vpr 172.mgrid
176.gcc 173.applu
181.mcf 177.mesa

197.parser 178.galgel
252.eon 179.art
253.perlbmk 183.equake
256.bzip2 188.ammp
189.1ucas

Table 2.2: SPEC 2000 benchmarks used in all simulation experiments.

the level-2 cache was configured to be 2MB. The capacities of the integer and
floating-point register files were increased to 512 each, so that the performance
of deep pipelines was not unduly constrained due to unavailability of registers.
We modified the execution core of the simulator to permit the addition of more
stages to different parts of the pipeline. The modifications allowed us to vary
the pipeline depth of different parts of the processor pipeline, including the

execution stage, the register read stage, the issue stage, and the commit stage.

Table 2.2 lists the benchmarks that we simulated for our experiments,
which include integer and floating-point benchmarks taken from the SPEC
2000 suite. All experiments skip the first 500 million instructions of each

benchmark and simulate the next 500 million instructions.

We use Cacti to model on-chip microarchitectural structures and to
estimate their access times [39]. All major microarchitectural structures—data

cache, register file, branch predictor, register rename table and instruction

19

issue window—were modeled at 100nm technology and their capacities and
configurations were chosen to match the corresponding structures in the Alpha
21264. We use the latencies of the structures obtained from Cacti to compute

their access penalties (in cycles) at different clock frequencies.

2.3 Optimal Pipeline Depth

We find the clock frequency that will provide maximum performance
by simulating processor pipelines clocked at different frequencies. The clock
period of the processor is determined by the following equation: ¢ = @ogic +
Ooverhead- 1The overhead term is held constant at 1.8 FO4, as discussed in
Section 2.1. We vary the clock frequency (1/¢) by varying ¢jeg. from 2 FO4
to 16 FO4. The number of pipeline stages (clock cycles) required to access
an on-chip structure, at each clock frequency, is determined by dividing the
access time of the structure by the corresponding ¢jogi.. For example, if the
access time of the level-1 cache at 100nm technology is 0.28ns (8 FO4), for
a pipeline where ¢,4ic equals 2 FO4 (0.07ns), the cache can be accessed in 4

cycles.

Though we use a 100nm technology in this study, the access latencies
at other technologies in terms of the FO4 metric will remain largely unchanged
at each corresponding clock frequency, since delays measured in this metric are
technology independent. Table 2.3 shows the access latencies of structures at
each ¢o4ic. These access latencies were determined by dividing the structure

latencies (in pico seconds) obtained from the cacti model by the corresponding

20

Branch | Rename | Issue | Register
Progic (FO4) DL1 | Predictor | Table | Window | File
2 16 10 9 9 6
3 11 7 6 6 4
4 9 5 5 5 3
5 7 4 4 4 3
6 6 4 3 3 2
7 6 3 3 3 2
8 5 3 3 3 2
9 5 3 2 2 2
10 4 2 2 2 2
11 4 2 2 2 1
12 4 2 2 2 1
13 4 2 2 2 1
14 4 2 2 2 1
15 3 2 2 2 1
16 3 2 2 2 1
Alpha 21264 (17.4) | 3 1 1 1 1

Table 2.3: Access latencies (clock cycles) of microarchitectural structures at
100nm technology (drawn gate length). The last row shows the latency of

on-chip structures on the Alpha 21264 processor (180nm).

clock period. Table 2.4 shows the latencies for various integer and floating-
point operations at different clocks. To compute these latencies we determined
Piogic for the Alpha 21264 processor (800MHz, 180nm) by attributing 10% of its
clock period to latch overhead (approximately 1.8 FO4). Using this ¢joq and
the functional unit execution times of the Alpha 21264 (in cycles) we computed
the execution latencies at various clock frequencies. In all our simulations, we

assumed that results produced by the functional units can be fully bypassed

to any stage between Issue and Execute.

21

Integer Floating Point
Progic (FO4) Add | Mult | Add | Div | Sqrt | Mult
2 9 [61 | 35 [105] 157 [35
3 6 | 41 | 24 | 70 | 105 | 24
4 5 | 31 | 18 | 53 | 79 | 18
5 4 | 25 | 14 | 42 | 63 | 14
6 3 | 21 | 12 | 35 | 53 | 12
7 3 | 18 | 10 | 30 | 45 | 10
8 3| 16 | 9 | 27|40 | 9
9 2 | 14 | 8 | 24| 35 | 8
10 2 | 13 | 7 | 21| 32| 7
11 2 | 12 | 7 | 19|29 | 7
12 2 | 11 | 6 | 18| 27 | 6
13 2 | 10 | 6 | 17| 25 | 6
14 2 9 5 [15| 23 | 5
15 2 9 5 [14|21 | 5
16 2 8 5 | 14|20 | 5
Alpha 21264 (17.4) | 1 7 4 [12] 18] 4

Table 2.4: Execution latencies (clock cycles) of integer and floating-point op-
erations at 100nm technology (drawn gate length). The functional units are
fully pipelined and new instructions can be assigned to them every cycle. The
last row shows the execution latency on the Alpha 21264 processor (180nm).

The access latencies of the structures increase as ¢@oqic is decreased.
In certain cases the access latency remains unchanged despite a change in
Grogic- For example, the access latency of the register file is 0.39ns at 100nm
technology. If ¢y,gic were 10 FO4 the access latency of the register file would
be approximately 1.1 cycles. Conversely, if ¢;oqic Was reduced to 6 FO4, the

access latency would be 1.8 clock cycles. In both cases the access latency is

rounded to 2 cycles.

22

—e— Integer
—a— FP

Performance (BIPS)

0 T T
0 5 10 15
Useful logic per stage (FO4)

Figure 2.4: The harmonic mean of the performance of integer and floating
point benchmarks without latch overhead, clock skew and jitter.

By varying the processor pipeline as described above, we determine
how deeply a high-performance design can be pipelined before overheads, due
to latch, clock skew and jitter, and reduction in IPC, due to increased on-
chip structure access latencies, begin to reduce performance. We consider a
processor configuration similar to the Alpha 21264: 4-wide integer issue and
2-wide floating-point issue. We used a modified version of the simulator de-
veloped by Desikan et al. [20]. Figure 2.4 shows the harmonic mean of the
performance of SPEC 2000 benchmarks if there were no overheads associ-
ated with pipelining (@opernead = 0) and performance was inhibited only by
control and data dependences in the benchmark. The x-axis in Figure 2.4
represents @j,gic and the y-axis shows performance in billions of instructions
per second (BIPS). Performance was computed as a product of IPC and clock
frequency—equal to (1/¢io4ic). The integer benchmarks show a greater overall
performance compared to the floating point benchmarks. One reason for the

difference in performance is that some floating point benchmarks have high

23

2.04

™ -m e Integer
— -m— - All benchmarks

—e— FP

Performance (BIPS)
P
o
1

0.0 T T
0 5 10 15
Useful logic per stage (FO4)

Figure 2.5: The harmonic mean of the performance of integer and floating
point benchmarks, executing on an out-of-order pipeline, accounting for latch
overhead, clock skew and jitter. For integer benchmarks best performance
is obtained with 6 FO4 of useful logic per stage (¢iogic). For floating-point
benchmarks the optimal ¢;,4i. is 5 FOA4.

data cache miss rates which lower their performance. A second reason is that
the integer pipeline is wider (4-wide) than the floating point pipeline (2-wide).
For both sets of benchmarks, if there was no clock overhead, performance con-
tinually increases with increasing pipeline depth. However, doubling the clock
frequency does not double performance. For example, when ¢4 is reduced
from 8 to 4 FO4, the ideal improvement in performance is 100%. Between the
same two clock points the integer benchmarks show a performance improve-
ment of 29% and the floating-point benchmarks show an improvement of 34%.
As ¢yq4ic is further decreased the improvement in performance deviates further

from the ideal value.

Figure 2.5 shows a plot of the performance of SPEC 2000 benchmarks
With @operneaa set to 1.8 FO4. Unlike in Figure 2.4, in this graph the clock

frequency is determined by 1/(@iogic + Poverhead). For example, at the point in

24

the graph where ¢4 is equal to 8 FO4, the clock frequency is 1/(9.8 FO4).
Initially, as ¢jogic is decreased, performance improves due to the increase in
clock frequency. Beyond a certain point, the TPC reduction due to critical
loops and the clock overhead from additional latches outweigh the gains from
clock frequency. Figure 2.5 shows this optimal ¢4, for integer benchmarks
is 6 FO4 and for floating-point benchmarks the optimal ¢;4ic is 5 FO4. The
dashed curve plots the harmonic mean of both sets of benchmarks and shows

the optimal @ogic to be 6 FO4.

As mentioned earlier, the access latencies of on-chip structures and ex-
ecution unit latencies are rounded up to the closest whole number. Therefore,
across some of the clock frequency points, shown in Figure 2.5, access and
execution latencies remain unchanged. At these points the pipeline is unbal-
anced. The slope discontinuities in the performance curve are due to such

pipeline imbalances.

Critical loops affect the floating-point benchmarks to a lesser extent
than the integer benchmarks and therefore their optimal pipeline depth is
greater. For example, floating-point programs have fewer branch mispredic-
tions as compared to integer programs and so increasing the misprediction
penalty affects them to a lesser extent. Furthermore, we observed that critical
loops affect integer benchmarks in a similar fashion and therefore all these pro-
grams had the same optimal ¢;o4;. Floating-point benchmarks, on the other

hand, have optimal ¢;,4;. points ranging between 4-7 FO4.

25

—e— 0FO4

BIPS

5 ﬁm

0 T T
0 5 10 15

Clock Period (FO4)

Figure 2.6: The harmonic mean of the performance of integer benchmarks,
executing on an out-of-order pipeline for various values of @ypernead-

2.3.1 Sensitivity of ¢jogic tO Povernead

Previous sections assumed that components of @ypernead, Such as skew
and jitter, would scale with technology and therefore overhead would remain
constant. In this section, we examine performance sensitivity t0 @overhead-
Figure 2.6 shows a plot of the performance of integer SPEC 2000 benchmarks
against @eqic for different values of @operneaq- In general, if the pipeline depth
were held constant (i.e. constant @), reducing the value of opernead yields
better performance. However, since the overhead is a greater fraction of their
clock period, deeper pipelines benefit more from reducing @opernead than do
shallow pipelines. Interestingly, the optimal value of ¢y, is fairly insensitive
t0 Poverhead- In section 2.1 we estimated @operneaa to be 1.8 FO4. Figure 2.6
shows that for ¢oyerneaqd values between 1 and 5 FO4 maximum performance is

still obtained at a ¢joq4ic 0f 6 FO4.

26

2.3.2 Related Work

Previously, Kunkel and Smith examined the tradeoff between pipeline
depth and IPC for a CRAY 1-S supercomputer [42] to determine the number
of levels of logic per pipeline stage that provides maximum performance. They
assumed the use of Earle latches between stages of the pipeline, which were
representative of high-performance latches of that time. They concluded that,
in the absence of latch and skew overheads, absolute performance increases as
the pipeline is made deeper. But when the overhead is taken into account,
performance increases up to a point beyond which increases in pipeline depth
reduce performance. They found that four to eight gate levels per pipeline
stage yields optimal performance. This result roughly translates to a delay of
about 6 FO4 to 11 FO4 in CMOS technology [35]. Out results show that the
optimal clock period is between 6 FO4 to 8 FO4. It is interesting to note that
despite changes in technology the optimal clock period for processors remains

more or less unchanged.

Dubey and Flynn discussed optimal pipelining in an analytical frame-
work [21]. They showed that the optimal pipeline depth decreases with increas-
ing clock overhead. Hartstein and Puzak studied pipeline scalability using an
analytical model and with simulations [30]. They developed an analytical
model of the processor pipeline whose input parameters include—clock over-
head, the total logic delay of the processor, and the degree of superscalar
processing. Their analysis shows that there is an optimal point beyond which

increasing pipeline depth will decrease performance. They observed that that

27

modern workloads, written in C+-+ and Java, have deeper optimal pipeline
depths than SPEC workloads. In addition, they also observed that for work-
loads that have a lot of parallelism (ILP), increasing the issue width of the
processor will result in shorter optimal pipeline depths. Sprangle and Carmean
studied pipeline depths in the context of a Pentium 4 processor [64]. Their
study shows that the pipeline depth of the processor could be doubled before

the benefits from clock frequency are overcome by the degradation in IPC.

In our study, we did not consider the effect of power on pipeline scaling.
Other research suggests that if processor power is taken into account the op-
timal @j,gic is about 18 FO4 [31,65]. Both these studies focus on the pipeline
depth that will maximize a power-performance metric (BIPS?/Watt). How-
ever, depending on target performance requirements and the ability of the
processor packaging to cool the chip, designers may be willing to tradeoff
additional power for performance even if it means straying from the opti-
mal power/performance point. Furthermore, several research efforts that are

focused at reducing on-chip power may alter these power-performance trade-

offs [29, 40,49, 54, 74, 7).

2.4 Effect of Pipelining on IPC

Thus far we have examined scaling of the entire processor pipeline.
Increasing overall pipeline depth of a processor decreases IPC because of de-
pendencies within critical loops in the pipeline [9]. These critical loops include

issuing an instruction and waking its dependent instructions (issue wake up),

28

—e— |oad-use
—=&— branch mis-pred
—— issue-wakeup
—a— bpred-latency
—>— ALU execution

1.0

0.5

Relative |PC

0.0 T T
0 5 10 15

Number of cyclesover Alpha 21264 loop

Figure 2.7: TPC sensitivity to critical loops in the data path. The x-axis of
this graph shows the number of cycles the loop was extended over its length
in the Alpha 21264 pipeline. The y-axis shows relative IPC.

issuing a load instruction and obtaining the correct value (DL1 access time),
the latency to predict a branch instruction, predicting a branch and resolv-
ing the correct execution path, and the latency to forward operands between
ALUs. For high performance it is important that these loops execute in the
fewest cycles possible. When the processor pipeline depth is increased, the
lengths of these critical loops are also increased, causing a decrease in IPC.
In this section we quantify the performance effects of each of the above criti-
cal loops and in Section 2.5 we propose a technique to design the instruction

window so that in most cases the issue-delay loop is 1 cycle.

To examine the impact of the length of critical loops on IPC, we scaled
the length of each loop independently, keeping the access latencies of other
structures to be the same as those of the Alpha 21264. Figure 2.7 shows
the TPC sensitivity of the integer benchmarks to the branch misprediction

penalty, the DL1 access time (load-use), the issue wake-up loop, the ALU

29

to ALU forwarding loop (ALU execution), and the latency to predict branch
instructions (bpred-latency). The x-axis of this graph shows the number of
cycles the loop was extended over its length in the Alpha 21264 pipeline. The
y-axis shows IPC relative to the baseline Alpha 21264 processor. IPC is most
sensitive to the issue wake-up loop and the ALU execution loop, followed by
the bpred-latency loop, the load-use and the branch misprediction penalty.
The issue wake-up loop is most sensitive because it affects every instruction

that is dependent on another instruction for its input values.

The IPC degradation due to each individual loop is a function of how
frequently the loop is encountered and the penalty (in cycles) of the loop.
Increasing the latency of some of the loops, such as the issue wake-up loop,
also increases the branch-misprediction penalty. Furthermore, the branch mis-
prediction penalty is paid only on a mis-predicted branch and good branch
predictors ensure that this penalty is paid infrequently. Therefore, IPC is less
sensitive to branch mis-prediction loop than the other loops. The floating-
point benchmarks showed similar trends with regard to their sensitivity to
critical loops. However, overall they were less sensitive to all critical loops

than integer benchmarks.

The results from Figure 2.7 show that IPC is most sensitive to the
latency of the issue wake-up loop and the forwarding. Since these loops affect
the ability of the processor to execute dependent instructions back to back it
is important that their latency is as low as possible. In the next section we

propose a method to reduce the penalty of the issue wake-up loop.

30

rdyL| opd tagL opd tagR| rdyR

Figure 2.8: A high-level representation of the instruction window.

2.5 A Segmented Instruction Window Design

In modern superscalar pipelines, the instruction issue window is a criti-
cal component, and a naive strategy that prevents dependent instructions from
being issued back to back would unduly limit performance. In this section we
propose a method to pipeline the instruction issue window to enable clocking

it at high frequencies.

To issue new instructions every cycle, the instructions in the instruction
issue window are examined to determine which ones can be issued (wake up).
The instruction selection logic then decides which of the woken instructions
can be selected for issue. Stark et al. showed that pipelining the instruction
window, but sacrificing the ability to execute dependent instructions in con-
secutive cycles, can degrade performance by up to 27% compared to an ideal

machine [66].

Figure 2.8 shows a high-level representation of an instruction window.

31

Every cycle that a result is produced, the tag associated with the result (des-
tination tag) is broadcast to all entries in the instruction window. Each in-
struction entry in the window compares the destination tag with the tags of
its source operands (source tags). If the tags match, the corresponding source
operand for the matching instruction entry is marked as ready. A separate
logic block (not shown in the figure) selects instructions to issue from the pool
of ready instructions. At every cycle, instructions in any location in the win-
dow can be woken up and selected for issue. In the following cycle, empty slots
in the window, from instructions issued in the previous cycle, are reclaimed
and up to four new instructions can be written into the window. In this sec-
tion, we first describe and evaluate a method to pipeline instruction wake up

and then evaluate a technique to pipeline instruction selection logic.

2.5.1 Pipelining Instruction Wakeup

Palacharla et al. [50] argued that three components constitute the delay
to wake up instructions: the delay to broadcast the tags, the delay to perform
tag comparisons, and the delay to OR the individual match lines to produce
the ready signal. Their studies show that the delay to broadcast the tags
will be a significant component of the overall delay as technology shrinks.
To reduce the tag broadcast latency, we propose organizing the instruction
window into stages, as shown in Figure 2.9. The instruction window is a
collapsing window that reclaims slots after an instructions have been issued.

Each stage consists of a fixed number of instruction entries and consecutive

32

rdyL| opd tagL opd tagR |rdyR

|: Latch j

rdyL| opd tagL opd tagR | rdyR

Tag pipeline
—
2
S

rdyL|

Figure 2.9: A segmented instruction window wherein the tags are broadcast to
one stage of the instruction window at a time. We also assume that instructions
can be selected from the entire window.

stages are separated by latches. A set of destination tags are broadcast to only
one stage during a cycle. The latches between stages hold these tags so that
they can be broadcast to the next stage in the following cycle. For example, if
an issue window capable of holding 32 instructions is divided into two stages
of 16 entries each, a set of tags are broadcast to the first stage in the first
cycle. In the second cycle the same set of tags are broadcast to the next stage,
while a new set of tags are broadcast to the first 16 entries. At every cycle,
the entire instruction window can potentially be woken up by a different set of
destination tags at each stage. Since each tag is broadcast across only a small

part of the window every cycle, this instruction window can be clocked at high

33

frequencies. However, the tags of results produced in a cycle can wake up
instructions only in the first stage of the window during that cycle. Therefore,
dependent instructions can be issued back to back only if they are in the first

stage of the window.

We evaluated the effect of pipelining the instruction window on IPC
by varying the pipeline depth of a 32-entry instruction window from 1 to 10
stages. Figure 2.10 shows the results from our experiments when the number
of stages of the window is varied from 1 to 10. Note that the x-axis on this
graph is the pipeline depth of the wake-up logic. The plot shows that IPC of
integer and vector benchmarks remain unchanged until the window is pipelined
to a depth of 4 stages. The overall decrease in IPC of the integer benchmarks
when the pipeline depth of the window is increased from 1 to 10 stages is 22%.
The floating-point benchmarks show a decrease of 8% for the same increase
in pipeline depth. Note that this decrease is small compared to that of naive
pipelining, which prevents dependent instructions from issuing consecutively.
We also evaluated a 128-entry instruction window and found that IPC is not

reduced until the window is segmented into six stages. For a 6-stage window

the IPC drops by 3%.

There are two reasons why pipelining instruction wake up results in a
just a small degradation in IPC. About 90% of all instructions selected for issue
are selected from Stage 1. Since dependent instructions and their producers
are separated by only a few dynamic instructions, in most cases the dependent

instruction is also in Stage 1 when the producer is issued. Therefore, most

34

—e— Floating point
—=&— Integer

0.5

Relative |PC

0.0 T T T T 1
0 2 4 6 8 10

Instruction window pipeline depth

Figure 2.10: TPC sensitivity to instruction window pipeline depth, assuming
all entries in the window can be considered for selection.

dependent instructions are woken up in the same cycle that their producers
are issued. The second reason for such a small IPC degradation is that we
used a an Alpha 21264-like compacting instruction window. The compacting
feature of the instruction window also aids in moving dependent instructions

physically closer to their producers.

2.5.2 Pipelining Instruction Select

In addition to wake-up logic, the selection logic contributes to the la-
tency of the instruction issue pipeline stage. In a conventional processor, the
select logic examines the entire instruction window to select instructions for
issue. We propose to decrease the latency of the selection logic by reducing its
fan-in. As with the instruction wake-up, the instruction window is partitioned
into stages as shown in Figure 2.11. The selection logic is partitioned into two
operations: preselection and selection. A preselection logic block is associated

with all stages of the instruction window (S2-S4) except the first one. Each of

35

these logic blocks examines all instructions in its stage and picks one or more
instructions to be considered for selection. A selection logic block (S1) selects
instructions for issue from among all ready instructions in the first section
and the instructions selected by S2-S4. Each logic block in this partitioned
selection scheme examines fewer instructions compared to the selection logic

in conventional processors and can therefore operate with a lower latency.

Several configurations of instruction window and selection logic are pos-
sible depending on the instruction window capacity, pipeline depth, and se-
lection fan-in. Pipelining instruction wake up into four stages reduces IPC
marginally (Section 2.5.1). Therefore, for this study we evaluate the 4-stage
implementation shown in Figure 2.11. This instruction window consists of
32-entries partitioned into four stages and is configured so that the fan-in of
S1 is 16. Since each stage in the window contains 8 instructions and all the
instructions in Stage 1 are considered for selection by S1, up to 8 instructions
may be pre-selected. Older instructions in the instruction window are consid-
ered to be more critical than younger ones. Therefore the preselection blocks
are organized so that the stages that contain the older instructions have a
greater share of the pre-selected instructions. The logic blocks S2, S3, and S4
pre-select instructions from the second, third, and fourth stage of the window
respectively. Each select logic block can select from any instruction within its
stage that is ready. However, S2 can pre-select a maximum of five instructions,
S3 a maximum of 2 and S4 can pre-select only one instruction. The selection

process works in the following manner. At every clock cycle, preselection logic

36

New Instructions

1 Instruction
Stage 4 S4| |~
Y

‘ Tag Latch‘ ‘ Tag Latch‘

‘ Stage 3

Tag Latch

Tag Latch

SUOIINAISU| PAJIRIAs

-
]

‘ Stage 2

5 Instructions

Tag Latch

Tag Latch

‘ Stage 1

Destination Tags

8 Instructions

Figure 2.11: A 32-entry instruction window partitioned into four stages with
a selection logic fan-in of 16 instructions.

blocks S2-S4 pick from ready instructions in their stage. The instructions pre-
selected by these blocks are stored in latches L1-L7 at the end of the cycle. In
the second cycle the select logic block S1 selects 4 instructions from among all

the ready instructions in Stage 1 and those in L1-L7 to be issued to functional

units.

With an instruction window and selection logic as described above, the
IPC of integer benchmarks was reduced by only 4% compared to a proces-
sor with a single cycle, 32-entry, non-pipelined instruction window and select
fan-in of 32. The IPC of floating-point benchmarks was reduced by only 1%.
The rather small impact of pipelining the instruction window on IPC is not
surprising. The floating-point benchmarks have fewer dependences in their

instruction streams than integer codes, and therefore remain unaffected by

37

the increased wake up penalties. For the integer benchmarks, most of the
dependent instructions are fairly close to the instructions that produce their
source values. Also, the instruction window adjusts its contents at the be-
ginning of every cycle so that the older instructions collect to one end of the
window. This feature causes dependent instructions to eventually collect at
the “bottom” of the window and thus enables them to be woken up with less
delay. We evaluated the latency of a 32-entry monolithic issue window and a
32-entry, 4-stage window using an extended version of CACTI [3]. At 90nm
technology, the 4-stage window can be clocked at 21% higher frequency com-
pared to the monolithic window. This segmented window design is capable
of operating at greater frequencies than conventional designs at the cost of

minimal degradation in IPC.

2.5.3 Related Work

Raasch et al. proposed a technique to partition the instruction window
into segments [55]. Their methods employs a dependence-based mechanism to
promote instructions from segment to segment and finally to an issue buffer.

Instructions are issued to functional units only from the issue buffer.

Lebeck et al. observed that instructions that are waiting for the com-
pletion of long latency operations will occupy the issue window for a long
period of time [44]. Such instructions cannot be selected for execution until
the long latency operation completes. They proposed moving the entire chain

of instructions that are dependent on a long latency operation to a buffer called

38

the waiting instruction buffer (WIB). Every cycle, instructions are selected for
execution from a 32-entry issue window. The instructions in the WIB are not
considered for execution. Once the long latency operation is complete the cor-
responding dependent instructions from the WIB are reinserted into the issue

window.

The partitioned instruction window designs proposed by Raash et al.
and Lebeck et al. are selective about which instructions they consider for
issue to functional units. Unlike the segmented issue window that we propose,
they do not consider all instructions for issue. So, the above techniques are
better suited for designing large issue windows. However, they have greater
design complexity compared to the segmented instruction window. Therefore
the segmented issue window may be clocked at higher frequencies compared

to the other two designs.

Stark et al. [66] proposed a technique to pipeline instruction wake up
and select logic. In their technique, instructions are woken up “speculatively”
when their grandparents are issued. The rationale behind this technique is that
if an instruction’s grandparents’ tags are broadcast during the current cycle
its parents will probably be issued the same cycle. While speculatively woken
instructions can be selected, they cannot be issued until their parents have been
issued. Although this technique reduces the IPC of the processor compared to
a conventional 1-cycle instruction window, it enables the instruction window

to function at a higher clock frequency.

Brown et al. proposed a method to move selection logic off the critical

39

path [12]. In this method, wake-up and select are partitioned into two sepa-
rate stages. In the first stage (wake-up) instructions in the window are woken
up by producer tags, similar to a regular instruction window. All instructions
that wake up speculate they will be selected for issue in the following cycle
and assert their “available” signals. In the next cycle, the result tags of these
instructions are broadcast to the window, as though all of them have been is-
sued. However, the selection logic selects only a limited number of instructions
from those that asserted their “available” signal. Instructions that do not get
selected (collision victims) and any dependents that are woken up before they
can be issued (pileup victims) are detected and re-scheduled. The authors
show that this technique has an TPC within 3% of a machine with single-cycle

scheduling logic.

The techniques proposed by Stark et al. and Brown et al. can be used in
conjunction with the segmented issue window that we propose. However, both
these methods make instruction scheduling decisions speculatively and have
complex mechanisms to recover from mis-speculation. These mis-speculations
will also result in additional power consumption. The segmented issue window
does not schedule instructions speculatively and so it does not require complex

recovery logic.

2.6 Summary

In this chapter, we measured the effects of varying clock frequency on

the performance of a Alpha 21264 pipeline. We determined the amount of

40

useful logic per stage (@jogic) that will provide the best performance is approx-
imately 6 FO4 inverter delays for integer benchmarks. If ¢;o4; is reduced below
6 FO4 the improvement in clock frequency cannot compensate for the decrease
in IPC. Conversely, if ¢j,gi. is increased to more than 6 FO4 the improvement
in IPC is not enough to counteract the loss in performance resulting from a
lower clock frequency. The clock period (diogic + Povernead) at the optimal point
is 7.8 FO4 for integer benchmarks, corresponding to a frequency of 3.6GHz
at 100nm technology. This optimal clock frequency can be achieved only if
on-chip microarchitectural structures can be pipelined to operate at high fre-
quencies. We identified the instruction issue window as a critical structure,
which will be difficult to scale to those frequencies. We propose a segmented
instruction window design that will allow it to be pipelined to four stages

without significant decrease in IPC.

In studying the scalability of processor pipelines we made several opti-
mistic assumptions. For example, all functional units and on-chip structures
are fully pipelined and can accept new requests every cycle. We assumed that
results produced by the functional units can be fully bypassed to any stage
between Issue and Execute. There are significant design challenges that have

to be met to achieve such a high degree of pipelining.

Reducing the penalty of critical loops may enable us to reduce ¢ogic
up to and maybe even beyond 6 FO4. We proposed a method to pipeline the
instruction issue window and reduce the penalty of the issue-wakeup critical

loop. Several other methods have been proposed to address some of the crit-

41

ical loops in the pipeline data path [10,12,55,66]. While these architectural
techniques enable the pipelining of key microarchitectural structures they also
increase design complexity. This additional design complexity in itself may

restrict pipeline depths and therefore improvement in clock frequency.

Future processor architectures cannot rely on clock frequency alone to
improve performance and will have to improve instruction throughput to a
greater extent than before. Building wider issue machines to increase TPC
will also increase the complexity of design. However, any improvement in IPC
directly translates to a corresponding improvement in processor performance.
But improving clock frequency by a factor will not improve overall perfor-
mance by the same factor. Therefore, building wider issue machines could
potentially improve processor performance to a greater extent than improving

clock frequency alone.

42

Chapter 3

Wide Issue Processors

Increasing pipeline depth to improve processor performance has proven
to be an effective design strategy so far. However, pipeline scaling studies
show that performance improvements from deeper pipelines are gradually ap-
proaching a point of diminishing returns [30, 35, 64]. Though improvements in
process technology will continue to increase clock frequency the bulk of future
performance has to be obtained by exploiting greater parallelism in the instruc-
tion stream. Future processor designs will require large on-chip structures to
dynamically detect independent instructions and must issue a greater number
of instructions every cycle. Any future wide-issue design will have to employ

partitioning to reduce the complexity and latency of on-chip structures.

In this chapter we first examine the SPEC 2000 benchmarks to quantify
how much IPC can be exploited from these workloads and determine the on-
chip resources required to obtain this IPC. We then describe, in detail, the
baseline architecture that we will use in our studies in later chapters. We also

provide a brief overview of previous work on partitioned architectures.

43

3.1 Instruction Level Parallelism in Programs

Pipeline scaling studies show that clock frequency improvements from
increasing pipeline depth will slow down. It is imperative that future proces-
sors exploit ILP to greater lengths than before to continue improving processor
performance. Postiff et al. analyzed the SPEC95 benchmarks [53] to determine
the available ILP in these programs. They found the lim:it ILP to be in the
range of 55-4003. This limit ILP was found by examining all dynamic instruc-
tions in the program. They also report that with a 10,000 entry instruction

window the available ILP in these programs ranged from 18-287.

Superscalar processors detect independent instructions by examining
small sections of the program every cycle and so they cannot detect such
distant parallelism. In this section we quantify the maximum IPC that can be
extracted from SPEC 2000 programs with issue window capacities that can be
accommodated on-chip in the near future. We also examine IPC sensitivity to

processor issue width.

3.1.1 Experimental Methodology

For these experiments we simulated out-of-order superscalar processor
configurations of varying issue-widths and instruction window capacities. We
used a modified version of the sim-alpha [20] for this purpose. Since our goal is
to examine the sensitivity of IPC to issue width and instruction capacity alone
these experiments simulated perfect branch prediction and a perfect memory

system. The capacities of other structures such as the register file and the

44

‘ Integer ‘ Inst. Skipped ‘ Floating Point ‘ Inst. Skipped ‘

164.gzip 33.20 171.swim 119.60
175.vpr 19.97 172.mgrid 38.09
176.gcc 5.07 173.applu 214.59
181.mcf 33.63 177.mesa 63.99
197.parser 90.73 178.galgel 17.23

252.eon 20.73 179.art 6.63
253.perlbmk 77.66 183.equake 19.34
256.bzip2 43.12 188.ammp 92.89
189.1ucas 126.07

Table 3.1: The number of dynamic instructions (in billions) skipped for the
SPEC 2000 benchmarks before simulating 100 million instructions.

re-order buffer were unconstrained.

We simulated benchmarks from the SPEC2000 suite with ref input
sets executing on an out-of-order superscalar machine. The benchmarks are
compiled for the Alpha EV6 instruction set. A region of 100 million dynamic
instructions was identified for each benchmark using a simulation utility (Sim-
Point) developed by Sherwood et al. [61]. SimPoint uses basic block execution
frequency to identify regions of the program that closely represent overall pro-
gram characteristics. We simulated the region of the programs identified by
SimPoint in an out-of-order simulator. Table 3.1 shows the number of dynamic
instructions skipped for each benchmark before simulation. All experiments
simulated 100 million dynamic instructions after skipping the initial number

of instructions in Table 3.1.

45

IPC

IPC

Figure 3.1: The IPC of SPEC 2000 benchmarks at different issue widths for a

—e— 164.gzip
—a— 175.vpr
—e— 176.9cc
—a— 181.mcf
—>— 197.parser
252.eon

20

T
40

Issue Width

(a)

60

T
40

Issue Width

(b)

processor with a 2048 entry issue window.

46

—e— 253.perlbmk
—a&— 254.gap
—e— 256.bzip2

—e— 171.swim
—a&— 172.mgrid
—e— 173.applu
—a— 177.mesa
—— 178.galgel
—+— 179.art
—e— 183.equake
—&— 188.ammp
—— 189.lucas

—e— 164.gzip
—a— 175.vpr
—e— 176.9cc
—a— 181.mcf
—— 197.parser
—+— 252.e0n
—e— 253.perlbmk
—a&— 254.gap
—e— 256.bzip2

10+

IPC

00 1000
| ssue Window Capacity

(a)

30

—e— 171.swim
—a&— 172.mgrid
—e— 173.applu
—a— 177.mesa
—— 178.galgel
—+— 179.art
—e— 183.equake
—&— 188.ammp
—— 189.lucas

20

IPC

10

T T T A
100 1000
I ssue Window Capacity

(b)

Figure 3.2: The IPC of SPEC benchmarks at different issue window capacities for
a 64-wide processor

47

3.1.2 Results

Figure 3.1 shows a plot of IPC against issue width for a configuration
with a 2048 entry issue window. The IPCs of both integer and floating point
benchmarks increase as issue width is increased. For all benchmarks IPC
increases when the processor issue width is increased. For some of the integer
benchmarks such as 181.mcf, 253.perlbmk, and 254.gap IPC improvements
plateau at an issue width of 32. However, for all other integer benchmarks IPC
shows an improvement as the processor issue width is increased further. The
IPCs of the integer benchmarks range between 5 to 14. Figure 3.1(b) shows the
IPC of floating point benchmarks for processor configurations with increasing
issue widths. For all the floating point benchmarks, with the exception of
179.art and 178.galgel, IPC increases as the processor issue width is increased.

The IPCs of the floating point benchmarks range between 4 to 32.

Figure 3.2 shows the sensitivity of IPC to instruction issue window
capacity, given a 64-wide processor. For some integer benchmarks, such as
181.mcf, 164.gzip, 253.perlbmk and 256.bzip2, IPC improvements plateau at a
issue window capacity of 512 entries. For the other benchmarks IPC continues
to improve as the issue window capacity is scaled. Among the floating point
benchmarks 179.art and 178.galgel show very marginal IPC improvement as
issue window capacities are increased. For two of the benchmarks—171.swim
and 183.equake— IPC improvements plateau at an issue window capacity of
1024 entries. All other floating point benchmarks show an improvement in

IPC as the issue window capacity is increased further.

48

We also examined the IPC that can be attained with a branch predic-
tor similar to the Alpha 21264 and a real memory system comprising of two
levels of cache. We observed that IPCs were in the range of 0.1-3.7 for the
SPEC 2000 benchmarks. Instruction supply and data supply are fundamental
problems to the design of any processor and innovations in these areas are
required for improving IPC. There are several efforts directed at improving
instruction supply [16, 28, 37,46, 52,57,60,75]. Similarly a significant effort is
also being made to reduce memory access latency [4,8,17,18,38,73]. How-
ever, this research addresses the issues in designing the execution core of the

machine.

To achieve high performance, superscalar processors will have to issue
more instructions every cycle, incorporate large on-chip structures with more
access ports and still operate at high clock frequencies. However, increasing
structure capacities and the number of ports also increases their access latency.
Furthermore, as processes technology shrinks, the poor scaling of wires will fur-
ther exacerbate the delay of on-chip structures. In a previous study, Agarwal
et al. examined the effect of technology scaling on processor performance [2].
Their study shows that the performance of a conventional monolithic design

will scale poorly with technology.

The twin goals of wider issue and high frequency are at odds with
each other. Increasing issue width and structure capacities increases circuit
complexity and area (e.g. greater number of register and cache ports) and

so inhibits clock frequency. A natural solution to the problem of increasing

49

circuit complexity is to partition the architecture into clusters. Each of the
processor’s on-chip structures is divided among the clusters and therefore the
complexity of each individual piece is reduced. In the rest of this chapter
we provide a brief overview of previous work on partitioned architectures and

describe in detail the baseline clustered processor that we use in later chapters.

3.2 Partitioned Architectures

Several architectures in the past have used resource partitioning to ad-
dress the growing complexity of microprocessor design. The proposed designs
range from partitioning just the execution core to multicomputer systems.
In this section we present a short summary of previous work on partitioned

architectures.

3.2.1 Very Long Instruction Word Processors

Clustering is widely used in very long instruction word (VLIW) pro-
cessors. These machines issue a single long instruction every cycle. Each
instruction has many tightly coupled independent operations that require a
statically predictable number of cycles to operate. The ELI-512, proposed by
Joseph Fisher [26], is an example of a VLIW processor. This processor has
16 clusters each with an ALU, a register file, and a memory bank. Instruc-
tions are statically scheduled by the compiler using a method called “trace

scheduling”.

The Multiflow family of machines is an example of a commercial im-

a0

plementation of the VLIW architecture [45]. In this design also the physical
registers are partitioned so that each cluster owns a subset of the registers.
Functional units write values only into the local register file and to the remote
register file via a shared global bus. If an instruction in one cluster requires an
operand in another cluster the value has to be transferred over the global bus.

The compiler generates explicit move instructions to perform such transfers.

3.2.2 Multithreaded Architectures

The HEP multithreaded processor proposed by Burton Smith [62] par-
titions the execution units, registers, and the data memory. The processing
nodes in the processor are connected to banks of data memory via a switched
network. Each processing element contains a 20-bit program counter (process
status word) that sequences through a thread. An “access state” is associated

with registers and data memory, to allow threads to synchronize.

3.2.3 Other Partitioned Architectures

Sohi et al. proposed the Multiscalar processor [27, 36,63, 71] consisting
of a collection of processing units. The processing units are organized as
parallel pipelines and each unit consists of an instruction cache, functional
units, and a register file. Every processing unit fetches, decodes, and executes
instructions in parallel. In the Multiscalar execution model the program’s
control flow graph (CFG) is partitioned into tasks and each task is assigned

to a processing unit. Multiple tasks execute in parallel on different processing

o1

units.

RAW processors partition on-chip structures such as caches and register
files among an array of processing “tiles” which are connected by a switched
network [69, 72]. Instructions in a tile are executed in-order and the architec-
ture relies on the compiler to schedule instructions onto the processing array.
The TRIPS processor is another partitioned and scalable design proposed by
Nagarajan et al. [47]. This design executes a statically mapped window of in-
structions on a substrate consisting of an array of ALUs. Though instructions
are mapped statically onto the grid they execute dynamically in a data-flow

fashion.

3.2.4 Clustered Superscalar Processors

Many modern implementations of superscalar processors partition the
architecture into two clusters—an integer cluster and a floating point clus-
ter. Since integer and floating-point are fundamentally different data types,
placing them in different clusters partitions the design along a natural bound-
ary. To operate at high frequencies future designs must incorporate multiple
integer and floating point clusters. The Alpha 21264 is the first commercial
superscalar processor to pursue such a clustered design [41]. This processor
is a 7-stage, 4-wide machine. The execution stage of the integer pipeline is
partitioned into two clusters with each cluster containing two integer units.
The floating-point functional units are placed in a cluster of their own. Each

integer cluster has a copy of the register file and when instructions complete

52

execution they write results into both register files. However, writing values
to the register file of a remote cluster requires an additional clock cycle. The
Alpha 21264 design partitions the register read, issue, and execute stages of
the processor. Other stages such as renaming, instruction scheduling etc. are

still unified and rely on monolithic structures.

Farkas et al. proposed a superscalar clustered architecture called the
Multicluster architecture [22]. This design partitions the physical register file
and the instruction issue window among the clusters. Functional units in
one cluster can access the register file in that cluster alone. Special transfer
instructions are used to transfer register values between clusters. However, un-
like in clustered VLIW architectures these transfer instructions are generated

dynamically by the hardware.

After instructions are fetched and decoded they are distributed to clus-
ters based on the registers named by each instruction and the clusters to which
the architectural registers have been assigned. Since instructions are assigned
their registers at compile time the instruction cluster assignments are done
statically (compile time). Instructions that are executed by a cluster are those
that are issued by the instruction window of that cluster and after execution

they write their outputs to the register file within the cluster.

The Multicluster architecture reduces the number of ports required for
the register file and the instruction issue window. It also requires less com-
plex instruction scheduling logic compared to a non-clustered design. In the

Alpha 21264 processor the register file is replicated in all clusters. Since in-

93

struction outputs are written to all clusters, every register file requires enough
write ports to sustain the entire processor’s commit width. In contrast, the
Multicluster processor partitions the register file among the clusters and every
register file requires enough write ports to sustain the commit rate of just one

cluster.

In the Multicluster architecture instructions are assigned to clusters at
compile time. Others have proposed dynamic mechanisms to distribute in-
structions to clusters (i.e. steering mechanisms). Palacharla et al. proposed
a dependence based steering method [50]. In this method, independent in-
structions are steered to the cluster with the lightest load. If an instruction
consumes a value produced by another instruction then it is steered to the
same cluster as its parent. If the source operands of an instruction are pro-
duced by parents in two different clusters then the instruction is assigned to
the parent cluster with the lightest load. Canal et al. proposed the load-slice
steering algorithm [14] which steers instructions that belong to the backward
slice of a load to the same cluster. Baniasadi and Moshovos proposed the
mod3 steering method [5] in which first three instructions are steered to the
first cluster, the next three instructions to the second cluster and so on. They
also examined similar methods (i.e. scheduling 4 contiguous instructions to
the same cluster and so on) and concluded that mod3 steering provides the
best performance. Researchers have proposed several other dynamic steering

policies. We describe these policies in Section 6.4.

54

3.2.5 Discussion

VLIW processors and the RAW machine rely on the compiler to stat-
ically schedule instructions. Compilers may schedule instructions using so-
phisticated optimization algorithms that are not feasible to build in hardware.
In addition, the compiler can examine and perform optimizations across a
larger number of instructions than dynamically scheduled processors. For cer-
tain classes of applications that have predictable control flow and regular data
access patterns, such as scientific workloads, this type of architecture will per-
form better than dynamically scheduled superscalar processors. However, for
other applications the compiler does not have access to run-time information
such as memory access latencies, data access strides, and control path mispre-
diction. So the static schedule produced by the compiler will not be as good as
a dynamic instruction scheduling. For these applications statically scheduled
processors will not perform better than a dynamically scheduled superscalar

Processor.

In the TRIPS processor, instructions are statically mapped onto the
execution substrate but instruction issue is done dynamically. Using a com-
bination of static placement and dynamic issue will enable such architectures
to scale to wider issue widths than a superscalar processor. However, these
architectures require significant changes to the instruction set and will break
compatibility with older designs. In addition, they also rely on the compiler
to generate large contiguous blocks of instructions (hyper-blocks). Currently

there are research efforts directed at generating large hyper-blocks. The out-

35

come of these efforts will greatly influence the performance of the TRIPS
architecture. Clustered superscalar processors use prediction mechanisms to
determine the control flow within programs. They do not require an extensive
compiler support as the TRIPS class of architectures. Furthermore, they are
similar in design to monolithic superscalar architectures and maintain com-

patibility with older machines.

In this section we presented brief overview of partitioned architectures
that have been proposed in literature. In the rest of this dissertation we exam-
ine the issues associated with the design of clustered superscalar processors.
The baseline clustered processor that we study is similar to the Multicluster

processor and is described in greater detail in the next section.

3.3 Baseline Clustered Architecture

Our baseline processor pipeline, shown in Figure 3.3, contains the fol-
lowing stages—fetch, decode, steer, rename, issue, register read, execute, and
commit. The fetch, decode, steer, rename and commit stages are not parti-
tioned. The issue, register read, and execute stages of the pipeline are par-
titioned into four clusters. The clusters are homogeneous and each cluster
can execute all categories of instructions. Every cluster has two separate 128-
entry instruction issue windows for integer and floating-point instructions.
The physical registers are also partitioned across the clusters so that every
cluster has two 128-entry physical register files, one for integer and one for

floating-point instructions. The functional units in a cluster can access only

96

Fetch | Decode | Steer | Rename| Issue |Reg Read Execute | Commit

Figure 3.3: Pipeline diagram of the baseline processor

the register files in that cluster. The physical register capacities were chosen
to match the capacity of the instruction issue windows, so that performance
is not unduly limited due to insufficient rename buffers. Each cluster can is-
sue up to two integer instructions and two floating-point instructions every
cycle. Therefore the processor can issue up to 16 instructions (8 integer and
8 floating-point) every cycle. In our experiments we evaluate a total of three
machine configurations—8-wide, 16-wide, and 32-wide. The 8-wide and 32-
wide configurations are also 4-cluster machines. We vary the issue width of

individual clusters to change the overall processor issue-width.

In addition to the issue windows and the register files, a 64 KB level-
1 data cache is also partitioned across the clusters so that each cluster has
a 16 KB cache bank. For design simplicity, we decided to statically map
addresses to the cache banks and have them operate as one logical unit. A
static mapping of addresses to cache banks also simplifies the partitioning of
the Load/Store queue and makes it easier to detect memory dependencies than
dynamic address mapping schemes. The level-1 cache banks are connected to

a 2 MB, 12 cycle, direct mapped level-2 cache via a common bus.

Figure 3.3 shows the different operations that are performed along the

57

pipeline. Every cycle up to 16 instructions are fetched!, and in subsequent
stages these instructions are decoded. In the steer stage, every instruction is
assigned a cluster on which it will be executed. There are several steering tech-
niques that have been previously proposed [5, 14, 50]. We employ the steering

methods described in Section 3.2.4 as our baseline.

After being assigned clusters the instructions move to the register re-
name stage where the output operand of every instruction is assigned a unique
physical register. Instructions are assigned output registers from the cluster to
which they have been steered. If a cluster does not have free physical registers
available then the pipeline stalls until a physical register is released. After
instructions are renamed, in the next cycle they are placed in the issue win-
dow of the cluster to which they have been assigned. Instructions wait in the
issue window until both their source operands are ready after which they are
considered for selection. Selection logic assigns ready instructions to specific
functional units. Once selected, instructions progress to the register read stage
where they read source operand values from the physical register file or the by-
pass latches. However, some instructions may require source operands that are
produced in other clusters. These operands are read from another structure,
called the transfer buffer. This method of inter-cluster communication was
proposed by Farkas et al. for the Multicluster architecture [22]. We describe

the role of transfer buffers for inter-cluster communication in detail later in

1For all configurations the fetch width matches the issue width. Thus, for the 8-wide
processor configuration 8 instructions are fetched every cycle.

98

this section. After obtaining their operands, instructions move to the appro-
priate functional unit in the execute stage. The instructions are executed and
the results are written into the physical register file. In the next cycle, the
instruction proceeds to the commit stage where instructions are committed in

order. Up to 16 instructions can be committed every cycle.

Figure 3.4 shows the issue and execute stages of the clustered processor
in detail. For simplicity, we show only two clusters. An instruction (I1) that
is assigned to one cluster (cluster 0) may require a source operand that is
produced in another cluster (cluster 1). Such inter-cluster dependencies are
detected in the rename stage of the pipeline and a special transfer instruction
is inserted into the issue window of cluster 1. The transfer instruction will
copy the required value from the register file in cluster 1 to a transfer buffer
in cluster 0. The transfer instruction is selected for issue only if the required
register value is ready and cluster 0 has a free transfer buffer entry available.
The transfer instruction not only copies the required operand value to cluster
0 it also wakes-up instruction I1. If the other operand of I1 is ready then
it can be selected for issue. Once selected I1 reads its remote operand from
the transfer buffer and releases the corresponding entry of the transfer buffer.

This clustering scheme is similar to the one proposed by Farkas et al. [22].

Unlike the Multicluster architecture, our baseline processor has a par-
titioned level-1 data cache. Therefore, some memory instructions that are
steered to one cluster (cluster 0) may require access to cache banks in other

clusters (cluster 1). Such a memory instruction will place a request in cluster

99

Cluster 0 Cluster 1

X~ s s X
= Issue S8 Issue S8 (=
o . O O . 9 O o
© Window L 3 Window L 3 ©
< Q 3 <
% wn wn %
? I i ?
o Register File Register File o

and bypassing and bypassing

A A A A
F Transfer
Buffer |
Execution Units - Execution Units
~| Transfer
Buffer J

Figure 3.4: The issue, register read and execute stages of a clustered super-
scalar processor

1’s remote memory access queue, a structure similar to a transfer buffer. This
request will compete for cache ports with cluster 1’s functional units. When
a port becomes available the appropriate memory access is performed and a
completed signal is sent to cluster 0. Requests in the remote memory queue

are processed in FIFO order.

There are four clusters in our baseline processor and we envision these
clusters laid out in the form of a square. Adjacent clusters have an inter-cluster
communication latency of 1 cycle while clusters along the diagonal have an
inter-cluster latency of 2 cycles. Therefore, once a transfer instruction has read
a register value it will take up to 2 cycles for the value to be placed in the remote
cluster’s transfer buffer (1 cycle if the remote cluster is adjacent). Similarly,
memory instructions that access remote cache banks have an additional inter-

cluster communication latency. However, these instructions pay a round trip

60

penalty of up to 4 cycles (2 cycles if the clusters are adjacent). Note that the
variable level-1 data cache access latency in our baseline processor will increase

the complexity of the instruction scheduling logic.

In the Alpha-21264 processor there is a 1-cycle communication delay
between the two integer clusters [41]. We assume a similar communication la-
tency between adjacent clusters. At future technologies wire delays will scale
poorly relative to transistor switching speeds and so inter-cluster communica-
tion delays are likely to increase. Therefore, the inter-cluster communication

latencies that we assume are aggressive.

Our baseline model of a clustered processor divides the total on-chip re-
sources among the clusters rather than replicate them like in the Alpha 21264.
The primary reason we considered this design is because it is more scalable
than an Alpha 21264-like clustered model. As processor widths increase, an
Alpha 21264-like clustering mechanism will require a greater number of ports
for register files and therefore increase their access latencies. Such a design

will not scale well as issue width increases.

3.4 Summary

In this chapter we examined the amount of IPC that can be extracted
from SPEC 2000 benchmarks. We found that with an issue window capacity
of 2048 entries, the IPCs of these benchmarks can range from 4 to 32. The IPC
of current processors typically sustain an IPC of less than 4. This suggests

that significant performance improvements can be gained by extracting more

61

IPC from programs. However, control dependences in the program make it
difficult to expose the available ILP to the processor. For future wide-issue
designs to be viable significant effort has to be devoted to improving instruction
supply. Several studies are directed towards addressing this problem [16, 28,
37,46,52,57,60,75]. However, our research addresses the issues in designing

the execution core of the machine.

To support wider issue the capacities of on-chip structures and the
number of read and write ports must be increased. These structures must also
have a low access latency and so they cannot be designed as monolithic units.
Clustering is a natural solution to manage increasing on-chip complexity. In
this chapter we provided a detailed description our baseline clustered proces-
sor. While clustering reduces the complexity of on-chip structures it introduces
other bottlenecks and inefficiencies. The focus of our work is on reducing the
bottlenecks from clustering. In Chapter 4 we evaluate the performance of our
baseline clustered design and quantify the effect of these bottlenecks. In Chap-

ters 5 and 6 we propose solutions to mitigate the effect of these bottlenecks.

62

Chapter 4

Bottlenecks in Clustered Architectures

Superscalar processors are moving towards clustered designs in order
to increase clock frequency [33,41]. Future wide-issue processors have to be
partitioned to reduce the latency of critical on-chip structures such as register
files and caches. Though clustered superscalar processors can be clocked at
higher frequencies compared to un-clustered (monolithic) ones, the partitioned
design introduces a few factors that reduce IPC. In this chapter we compare the
performance of an ideal monolithic machine with configurations of a clustered
processor employing three different steering policies. Our goal is to quantify

the performance effect of the bottlenecks introduced by clustering.

4.1 Quantifying the Effect of Bottlenecks

For superscalar processors branch prediction and memory dependence
prediction are two significant performance bottlenecks. Improvements in these
areas is essential for wide-issue processors to be useful. Several other research
efforts are directed at improving instruction supply [16,28,37,46,52,57, 60,
75]. However, this research addresses the issues in designing the execution

core of the machine. In our studies we evaluate configurations with perfect

63

branch prediction and with a tournament branch predictor like in the Alpha
21264 [41]. The perfect prediction studies were done to fully expose bottlenecks

in the execution core which will otherwise be masked by other bottlenecks.

Our baseline clustered processor is similar to the Multicluster architec-
ture and its organization is described in detail in Section 3.3. To model this
clustered processor we used sim-alpha, a simulator developed by Desikan et
al. [20]. We modified this simulator to support clustering and also the steering
policies described in Section 3.2.4. We simulated benchmarks from the SPEC
2000 suite executing on a clustered machine, described in Section 3.3, and on a
monolithic (one cluster) machine of equivalent issue width. In this section we
quantify the IPC degradation that a clustered processor suffers in comparison

with an ¢deal monolithic machine.

The monolithic machine is a one-cluster machine with the same amount
of on-chip resources as the baseline clustered processor. This machine has two
instruction issue windows—one for integer and one for floating point. The
selection logic examines all instructions in the instruction window to select
instructions to issue. Up to 8 integer and 8 floating point instructions can
issued every cycle from the issue windows. Furthermore, up to eight result
tags are broadcast to all entries in each issue window every cycle to wake
up dependent instructions. The functional units in the monolithic machine
read operands from centralized integer and floating point register files. Each
register file has 16 read ports and 8 write ports and can be accessed in one

cycle. Also, the monolithic machine has a 64KB unified data cache with a 3

64

= Mod3

= Load-dlice
i m Dependence
10— === m e ————— -
O
e
T
N
< 054
g |
5
2
0.0 -
X D () Q.
IS N B = T X g B
Qo Rce ,gbhgc” 1S
5 ¢ & 2 8 3 & 5 2 2 £ 3 g § ¢
[T I (= T NG N - g T o 9 9N~ 9
g 5 E 5§ & g &% § 2 § § € § g g

Figure 4.1: The IPC of a 16-wide 4-cluster processor normalized by the IPC of
a monolithic processor. Both the clustered processor and the monolithic ma-
chine configurations simulated perfect branch prediction and perfect memory
disambiguation.

cycle hit latency and 8 read-write ports to support the execution of up to eight

memory instructions every cycle.

Large, centralized structures have long access latencies and therefore a
monolithic machine, unlike clustered processors, cannot operate at high fre-
quencies. Clustering is a technique that is used to partition microarchitectural
structures and reduce their access latency. However, partitioning the architec-
ture into clusters also reduces IPC compared to an ideal monolithic machine.

In this section we quantify the IPC degradation by clustering.

Figure 4.1 shows the IPC of a 16-wide baseline clustered processor

65

normalized by the TPC of an ideal monolithic machine with identical resources.
The absolute IPC numbers are listed in Appendix B. Few benchmarks—
181.mcf, 171.swim, 189.lucas, 173.applu, and 179.art—have high miss rates in
the level-1 and level-2 data caches. Changes in the microarchitecture (such
as clustering) not not alter their IPC. Therefore, we do not show results for
these benchmarks in our studies. For the clustered processor, we evaluated the
performance of the three steering policies—mod3, load-slice and dependence.
These policies are described in detail in Section 3.2.4. The IPC of the clustered
processor is lower than that of the monolithic machine for all three steering
policies. On average, the IPC of integer benchmarks is reduced by 39% and
that of floating point benchmarks by 27% compared to a monolithic machine.
Of the three steering policies mod3 steering shows the greatest degradation in
IPC (37%), compared to an ideal monolithic machine, followed by load-slice

steering (35%) and dependence steering (32%).

In addition to the baseline 16-wide processor, we examined the effect
of clustering on 8-wide and 32-wide processors partitioned into four clusters.
Table 4.1 shows the average reduction in the IPC of clustered machines com-
pared to monolithic machines with equivalent resources. We observed that
clustering causes significant IPC degradation for processor issue widths that
are wider and narrower than our baseline. On average, for both 8-wide and
32-wide processors the dependence steering policy does better than mod3 and

load-slice.

We also examined the IPC degradation due to clustering by simulating

66

Steering 8-wide 16-wide 32-wide
Int. | FP | Int. | FP | Int. | FP
mod3 53% | 40% | 43% | 29% | 51% | 41%
load-slice | 56% | 46% | 40% | 26% | 44% | 33%
dependence | 51% | 44% | 35% | 256% | 39% | 30%

Table 4.1: Average reduction in the IPC of clustered processors compared to
monolithic processors with equivalent resources. Both the clustered processor
and the monolithic machine configurations simulated perfect branch prediction
and perfect memory disambiguation.

configurations with an Alpha 21264-like branch predictor. These configura-
tions used a store-wait predictor, similar to the Alpha 21264 [41], to predict
dependences between load and store instructions. If the memory dependence
of a load instruction is mis-predicted and it incorrectly executes ahead of a pre-
vious store instruction the pipeline is flushed and execution resumes from the
offending load. For such a configuration we found the IPC of a clustered pro-

cessor degraded by 46% for mod3, 35% for load-slice, and 34% for dependence

steering.

Three factors degrade the IPC of clustered processors compared to a
monolithic design. First is the communication delay to access remote operand
values and remote memory values. The monolithic machine has a centralized
register file and all functional units can access any entry in the register file in a
single cycle. In a clustered processor functional units that are within one clus-
ter have single cycle access to the register file in that cluster. Operand values
that are stored in other clusters can be accessed only by incurring additional

inter-cluster communication penalty. The second factor is poor utilization of

67

processor resources. In clustered processors on-chip resources such as physical
registers, functional units, and issue windows are partitioned among clusters
and this partitioning reduces overall efficiency. For example, in some cycles
there will be more ready instructions available than the processor’s issue width.
We refer to these cycles as issue-limited cycles. Issue-limited cycles represent
lost opportunity—situations where a wider-issue machine could have improved
performance. A 16-wide monolithic machine can dispatch ready instructions
to any of its functional units. But, in a clustered machine of similar width,
instructions are directed to execute on specific clusters. In a given cycle, if
one cluster is issue-limited, the extra ready instructions cannot be executed on
other (lightly loaded) clusters. Therefore, a clustered design has potentially
more issue-limited cycles compared to a monolithic design of similar issue
width. Furthermore, in a clustered processor the instruction issue window is
partitioned among the clusters. As described in Section 3.3, each cluster has a
128-entry instruction issue window. Instructions that are steered to a cluster
in the Steer stage are eventually placed in that cluster’s issue window. If the
issue window is full the pipeline is stalled until an entry becomes available.

Such structure capacity stalls also degrade performance.

The third factor that degrades the IPC of clustered machines is the
extra transfer instructions used for inter-cluster communication. These in-
structions do not perform useful computation but they still consume processor
resources such as entries in the instruction issue window and issue bandwidth.

Thus they aggravate issue-limited cycles and structure capacity stalls.

68

To improve IPC we have to design wide-issue processors. These designs
have to be partitioned into clusters so that they can operate at high clock
frequencies. However, clustering introduces bottlenecks that cause significant
IPC degradation compared to an ideal monolithic design. The goal of our
research is to enable the design of partitioned wide-issue machines that operate
at high frequency and also sustain instruction throughput comparable to a

monolithic design.

4.2 Quantifying the Effect of Individual Bottlenecks

In this section we quantify the maximum IPC improvement that can be
made over the baseline clustered processor if each bottleneck were individually
and completely removed. Note that the configurations that we simulate for
this study are not realistic designs and they were used only to examine the
potential improvement that could be obtained by removing each individual

bottleneck.

4.2.1 Transfer Instructions

To quantify the maximum IPC improvement that can be obtained by
eliminating transfer instructions we simulated a clustered configuration where
transfer instructions do not take up issue window slots or consume issue band-
width. Figure 4.2 shows the IPC of the baseline clustered processor, with
and without the transfer instruction bottleneck, normalized by the IPC of the

monolithic configuration. The solid shaded bars on this graph are the IPC of

69

the baseline clustered processor normalized by the TPC of the monolithic ma-
chine. The patterned bars represent the IPC improvement that can be attained
over the baseline if all transfer instructions were removed. These experiments
simulated configurations with perfect branch prediction and perfect memory
disambiguation. Most benchmarks, regardless of the steering policy, show an
improvement in IPC over the baseline clustered processor when the transfer
instruction bottleneck is removed. On average, the IPC of the integer bench-
marks improved by 26% for mod3 steering, 2% for load-slice steering and 3%
for dependence steering over their corresponding baselines. The floating-point
benchmarks show an improvement of 25% for mod3 steering, 9% for load-slice
steering and 6% for dependence steering. Furthermore, if transfer instructions
are completely eliminated, the mod3 steering policy performs better than de-

pendence and load-slice steering for all benchmarks except 178.galgel.

The mod3 steering policy attempts to balance the instruction workload
evenly by steering an equal number of instructions to every cluster. However,
this policy generates more transfer instructions than load-slice and dependence
steering. Table 4.2 shows the number of transfer instructions executed by the
baseline clustered processor as a fraction of the total number of instructions.
On average, transfer instructions constitute 48% of the instructions executed
by the clustered machine with mod3 steering. In contrast, transfer instruc-
tions constitute only 10% of the total instructions for load-slice steering and
dependence steering. Both the load-slice and dependence steering policies fa-

vor reduced inter-cluster communication at the expense of higher workload

70

= Mod3
= Load-dlice
= Dependence

Normalized |PC

197 .parser
252.eon
Int. Average
172.mgrid
177.mesa
178.galgel
183.equake
188.ammp
FP Average

164.9zip
175.vpr
176.gcc
253.perlbmk
254.9ap
256.bzip2

Figure 4.2: The IPC of a 16-wide clustered processor configuration, with and
without the transfer instruction bottleneck, normalized by the IPC of the ideal
monolithic machine. Both the clustered processor and the monolithic machine
configurations simulated perfect branch prediction and perfect memory dis-
ambiguation.

imbalance and so they require fewer transfer instructions. Therefore, remov-
ing transfer instructions benefits the mod3 steering policy to a greater extent

than load-slice and dependence steering policies.

Note that the mod3 steering policy has less state and is simpler to im-
plement compared to load-slice or dependence steering. However, it generates
a significant number of transfer instructions and could potentially consume

more power than the other two policies.

We also simulated monolithic and clustered processor configurations

with Alpha 21264-like branch and memory dependence predictors. Figure 4.3

71

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 49% 3% 13%
175.vpr 49% 23% 8%
176.gcc 43% 1% 5%

197.parser | 46% 11% 8%
252.eon 49% 1% 5%

253.perlbmk | 45% 2% 3%
254.gap 49% 5% 16%

956.bzip2 | 41% 10% %
172.mgrid | 57% 16% 18%
177.mesa 50% 1% 11%
178.galgel | 51% 18% 18%

183.equake | 43% 19% 7%

188.ammp | 47% 8% 10%
Average 48% 9% 10%

Table 4.2: Transfer instructions as a fraction of the total number of instructions
executed by the baseline clustered processor.

shows the IPC of the baseline clustered processor, with and without the trans-
fer instruction bottleneck, normalized by the IPC of the monolithic config-
uration. On average, the IPC of the integer benchmarks improved by 16%
for mod3 steering, 5% for load-slice steering and 3% for dependence steering
over their corresponding baselines. The floating-point benchmarks show an
improvement of 13% for mod3 steering, 5% for load-slice steering and 6% for

dependence steering.

The configurations that simulate perfect branch prediction, discussed
in Figure 4.2, show a greater improvement when transfer instructions are re-
moved than the configurations with the Alpha 21264-like branch prediction.

For these configurations the pipeline is always full of useful instructions and

72

= Mod3
= Load-dlice
= Dependence

Normalized |PC

197 .parser
252.eon
Int. Average
172.mgrid
177.mesa
178.galgel
183.equake
188.ammp
FP Average

164.9zip
175.vpr
176.gcc
253.perlbmk
254.9ap
256.bzip2

Figure 4.3: The IPC of a 16-wide clustered processor configuration, with and
without the transfer instruction bottleneck, normalized by the IPC of the
ideal monolithic machine. Both the clustered processor and the monolithic
machine configurations used Alpha 21264-like branch prediction and memory
dependence prediction.

every transfer instruction that is generated consumes resources, such as in-
struction issue window entries and issue bandwidth, and denies it to useful in-
structions (i.e. instructions that are actually performing computation). In the
configurations that simulate Alpha 21264-like branch prediction the pipeline
has both useful (correct path) and mis-predicted instructions. In this case,
some transfer instructions consume resources that would have otherwise been
allocated to mis-predicted instructions. Such transfer instructions do not af-
fect the IPC of the machine and therefore the effect of removing the transfer

instruction bottleneck appears less significant. However, as branch predic-

73

Steering 8-wide 16-wide 32-wide
Int. | FP | Int. | FP | Int. | FP
mod3 54% | 52% | 26% | 25% | 29% | 29%
load-slice | 5% | 13% | 2% | 9% | 2% | 6%
dependence | 8% | 10% | 3% | 6% | 1% | 3%

Table 4.3: Average improvement in the IPC of clustered processors when the
transfer instruction overhead is removed. Both the clustered processor and
the monolithic machine configurations simulated perfect branch prediction and
perfect memory disambiguation.

tion and memory dependence prediction techniques improve in the future, the

transfer instruction bottleneck will become more severe.

In addition to a 16-wide processor we also examined the effect of re-
moving the transfer instruction bottleneck for 8-wide and 32-wide processors.
All the three clustered processors that we evaluated are 4-cluster machines.
Table 4.3 shows the average improvement in IPCs when the transfer instruc-
tion bottleneck is removed. The effect of the transfer instruction bottleneck
reduces as the issue width of the processor is increased. The smaller issue
width processors have a lower issue bandwidth and therefore removing the

transfer instruction bottle improves their IPC to a greater extent.

4.2.2 Inter-cluster Communication Delay

As described in Section 3.3, our baseline clustered processor partitions
the register file and the level-1 data cache. Though the data cache is physically
partitioned it operates as one logical unit. For design simplicity, we statically

map addresses to cache banks. Therefore, a given cache line in memory will

74

always map to the same cache bank. Each cluster has direct access to one cache
bank and remote banks are accessed by placing requests in the appropriate
remote request queue. Since the data cache is partitioned among the clusters
some memory instructions that are steered to one cluster (cluster 0) may
require to access cache banks in other clusters (e.g. cluster 1). Such memory
instructions will gain access to the cache bank in cluster 1 by queuing their
request in cluster 1’s remote request queue. When a port becomes available the
appropriate memory access is performed and the value is forwarded to cluster
0. Effectively, clusters have fast access to memory addresses that map to the
local cache bank but pay additional communication penalty if the address
maps to remote cache banks. This additional communication penalty is equal
to twice the communication latency (round-trip time) between the clusters

involved.

Since the register file is also partitioned, some instructions that are
steered to cluster 0 may require input register operands that are in other clus-
ters (e.g. cluster 1). Such inter-cluster dependences are detected in the steer
stage and a transfer instruction is inserted into cluster 1 to transfer the appro-
priate value. The communication penalty to transfer operand values is equal

to the communication delay between the clusters involved in the transaction.

To quantify the maximum IPC improvement that can be obtained by
eliminating inter-cluster communication we simulated a clustered configura-
tion with no inter-cluster communication cost (0 cycles). Figure 4.4 shows

the IPC of the baseline clustered processor, with and without the inter-cluster

75

communication bottleneck, normalized by the IPC of the ideal monolithic ma-
chine. These experiments simulated configurations with perfect branch pre-
diction and perfect memory disambiguation. The solid shaded bars on this
graph are the IPC of the baseline clustered processor normalized by the IPC
of the monolithic machine. The patterned bars represent the IPC improve-
ment that can be attained over the baseline if inter-cluster communication
were 0 cycles. On average, the IPC of the integer benchmarks improved by
29% for mod3 steering, 10% for load-slice steering and 12% for dependence
steering over their corresponding baselines. The floating-point benchmarks
show an improvement of 23% for mod3 steering, 8% for load-slice steering and
5% for dependence steering. Note that, if the inter-cluster communication
bottleneck is completely eliminated, the mod3 steering policy performs better

than dependence and load-slice steering for the majority of benchmarks.

The mod3 steering policy attempts to balance the instruction workload
evenly by steering an equal number of instructions to every cluster. Though
this policy makes the best use of the processor’s issue window slots it does
so at the cost of increasing the inter-cluster communication. Table 4.4 shows
the number of remote operands required by each steering policy as a fraction
of the total number of operands read during execution. On average, remote
operands constitute 66% of all operands read by the clustered machine with
mod3 steering. In contrast, remote operands constitute only 8% of the total
operands read for load-slice and dependence steering. Therefore, removing the

inter-cluster communication bottleneck benefits the mod3 steering policy to a

76

= Mod3
= Load-dlice
= Dependence

Normalized |PC

252.eon

164.9zip
175.vpr
176.gcc
197 .parser
253.perlbmk
254.9ap
256.bzip2
Int. Average
172.mgrid
177.mesa
178.galgel
183.equake
188.ammp
FP Average

Figure 4.4: The IPC of a 16-wide clustered processor configuration, with and
without the inter-cluster communication bottleneck, normalized by the IPC
of the ideal monolithic machine. Both the clustered processor and the mono-
lithic machine configurations simulated perfect branch prediction and perfect
memory disambiguation.

greater extent than load-slice and dependence steering policies.

For load-slice and dependence steering policies the inter-cluster com-
munication and the transfer instruction bottlenecks degrade IPC by approxi-
mately the same extant. In the case of mod3 steering, for benchmarks 164.gzip,
176.gcc, 253.perlbmk, 254.gap, 178.galgel, and 188.ammp the inter-cluster
communication bottleneck is more significant than the transfer instruction bot-
tleneck (Figure 4.2). While for benchmarks 175.vpr and 177.mesa the transfer
instruction bottleneck is more significant. For the other benchmarks, both

bottlenecks degrade IPC by approximately the same extant.

7

Benchmark | Mod3 | Load-slice | Dependence
16d.gzip | 68% 2% 10%
175.vpr 66% 21% 6%
176.gcc 55% 1% 4%

197.parser | 62% 9% ™%
252.eon 69% 1% 4%

253.perlbmk | 64% 1% 3%

254.gap 68% 3% 13%
256.bzip2 | 56% 8% 6%
172.mgrid | 80% 12% 14%
177.mesa 1% 1% 9%
178.galgel | 78% 16% 16%

183.equake | 60% 18% 6%

188.ammp | 66% ™% 8%
Average 66% 8% 8%

Table 4.4: Remote operand accesses as a fraction of the total number of
operands read during execution by the baseline clustered processor.

We also simulated monolithic and clustered processor configurations
with Alpha 21264-like branch and memory dependence predictors. Figure 4.5
shows the IPC of the baseline clustered processor, with and without the inter-
cluster communication bottleneck, normalized by the IPC of the monolithic
configuration. On average, the IPC of the integer benchmarks improved by
64% for mod3 steering, 41% for load-slice steering and 35% for dependence
steering over their corresponding baselines. The floating-point benchmarks
show an improvement of 41% for mod3 steering, 24% for load-slice steering
and 25% for dependence steering. The configurations that simulate perfect
branch prediction, discussed in Figure 4.4, show lower improvement when the

inter-cluster communication bottleneck is removed as compared to the configu-

78

= Mod3
= Load-dlice
= Dependence

Normalized |PC

164.9zip
175.vpr
176.gcc
197 .parser
252.eon
253.perlbmk
254.9ap
256.bzip2
Int. Average
172.mgrid
177.mesa
178.galgel
183.equake
188.ammp
FP Average

Figure 4.5: The IPC of a 16-wide clustered processor configuration, with and
without the inter-cluster communication bottleneck, normalized by the IPC of
the ideal monolithic machine. Both the clustered processor and the monolithic
machine configurations used Alpha 21264-like branch prediction and memory
dependence prediction.

rations with the Alpha 21264-like branch predictor. For the perfect prediction
experiments the pipeline is frequently full of useful instructions and at a given
cycle there are more ready instructions available than in the case with the Al-
pha 21264-like predictor. Therefore, in the perfect prediction experiments, a
larger portion of the time spent waiting for remote operands is overlapped by
other executing instructions. For this reason, removing the inter-cluster com-
munication bottleneck shows a greater IPC benefit in the experiments with

the Alpha 21264-like predictor.

Note that for all configurations in which we simulate Alpha 21264-like

79

Steering 8-wide 16-wide 32-wide
Int. | FP | Int. | FP | Int. | FP
mod3 23% | 12% | 29% | 23% | 50% | 39%
load-slice | 4% | 1% | 10% | 8% | 26% | 13%
dependence | 8% | 1% | 12% | 5% | 23% | 11%

Table 4.5: Average improvement in the IPC of clustered processors when
inter-cluster communication latency is removed. For these experiments, all
configurations simulated perfect branch prediction and perfect memory dis-
ambiguation.

branch prediction the IPC benefits from removing the inter-cluster commu-
nication bottleneck is greater than the benefits from removing the transfer
instruction bottleneck (Figure 4.3). However, as branch prediction techniques
improve, the IPC degradation due to inter-cluster communication reduces

while the degradation due to transfer instructions will become more signifi-

cant.

In addition to a 16-wide processor we also examined the effect of re-
moving the transfer instruction bottleneck for 8-wide and 32-wide processors.
All the three clustered processors that we evaluated are 4-cluster machines.
Table 4.5 shows the average improvement in IPCs when the inter-cluster com-
munication bottleneck is removed. The other two bottlenecks—transfer in-
structions and cluster resource limitations—are more significant in smaller
issue-width processors. These bottlenecks mask the inter-cluster communica-
tion bottleneck. Therefore, IPC degradation due to the inter-cluster commu-
nication bottleneck is more significant in wide-issue processors than in small

issue-width processors.

80

4.2.3 Cluster Resource Limitations

To quantify the effect of cluster resource limitations we simulated a
clustered processor configuration where an individual cluster’s resources are
not restricted. For example, in an 16-wide configuration, each cluster can is-
sue up to 16 instructions but the total number of instructions issued across all
clusters in one cycle is still restricted to 16. Similarly, instructions are allowed
to map to any issue window as long as the total number of instructions in all
issue windows is less than 512. Figure 4.6 shows the IPC of the baseline clus-
tered processor, with and without the cluster resource limitation bottleneck,
normalized by the IPC of the monolithic configuration. The solid shaded bars
on this graph are the IPC of the baseline clustered processor normalized by
the TPC of the monolithic machine. The patterned bars represent the IPC
improvement that can be attained over the baseline if the cluster resource
limitation bottleneck is removed. These experiments simulated configurations
with perfect branch prediction and perfect memory disambiguation. On aver-
age, the IPC of the integer benchmarks improved by 23% for mod3 steering,
53% for load-slice steering and 43% for dependence steering over their cor-
responding baselines. The floating-point benchmarks show an improvement
of 3% for mod3 steering, 25% for load-slice steering and 24% for dependence

steering.

The dependence steering mechanism works on the premise that depen-
dent instructions could potentially be part of the critical path of the program.

To minimize operand communication latency between producer and consumer

81

= Mod3
= Load-dlice
= Dependence

Normalized |PC

197 .parser
252.eon
Int. Average
172.mgrid
177.mesa
178.galgel
183.equake
188.ammp
FP Average

164.9zip
175.vpr
176.gcc
253.perlbmk
254.9ap
256.bzip2

Figure 4.6: The IPC of a 16-wide clustered processor configuration, with and
without the cluster resource limitation bottleneck, normalized by the IPC of
the ideal monolithic machine. Both the clustered processor and the mono-
lithic machine configurations simulated perfect branch prediction and perfect
memory disambiguation.

instructions this policy attempts to steer dependent instructions to the same
cluster. The load-slice steering policy steers all instructions that are part of the
address computation for a load instruction to the same cluster. However, both
these policies inundate a few clusters with instructions while starving others
and thereby underutilize processor resources. We evaluated the workload im-
balance in the following manner. Every cycle we rank order the clusters based
on the number of instructions in each cluster (cluster with most instructions
has highest rank). We track the number of instructions issued from every rank.

Table 4.6 shows the fraction of instructions that are executed by each rank for

82

Benchmark | Rank 0 | Rank 1 | Rank 2 | Rank 3
164.gzip 0.10 0.14 0.15 0.61
175.vpr 0.05 0.13 0.19 0.64

176.gcc 0.05 0.25 0.30 0.40
197.parser 0.14 0.17 0.19 0.49
252.eon 0.08 0.15 0.36 0.41
253.perlbmk | 0.20 0.05 0.42 0.32
254.gap 0.13 0.14 0.40 0.36

256.bzip2 0.24 0.25 0.24 0.27
172.mgrid 0.19 0.25 0.27 0.30
177.mesa 0.10 0.15 0.30 0.46
178.galgel 0.20 0.23 0.27 0.30
183.equake 0.09 0.14 0.39 0.39
188.ammp 0.07 0.14 0.13 0.65

Table 4.6: Workload imbalance in a 16-wide, 4-cluster machine using depen-
dence steering.

a 16-wide, 4-cluster machine with dependence steering. For most benchmarks
dependence steering produces a skewed instruction distribution that results in
under utilization of processor resources. We found that the load-slice steering
policy also produces similarly skewed instruction distribution. The mod3 pol-
icy, on the other hand, distributes an equal number of instructions to every

cluster and therefore makes better use of processor resources.

We collected statistics on the number of structure capacity stalls (i.e.
the number of processor stalls because of a full issue window) and the number
of instructions that were affected by limited per-cluster issue width. If in
a given cycle a cluster has 4 ready instructions but can issue only two of

them then we count the other two instructions as issue-limited instructions.

83

Mod3 Load-slice | Dependence
Benchmark | ILI | SCS | ILI | SCS | ILI | SCS
164.gzip 6.7 | 2.2 | 18.2|23.4|14.8| 22.1
175.vpr 10.7] 2.1 | 10.8 | 186 | 7.1 | 18.2
176.gcc 29 | 18 | 3.7 | 3.2 | 34 2.6
197.parser 53 | 1.6 | 81 | 179 | 6.2 | 14.0
252.eon 74 | 1.5 [17.6 | 26.7 | 10.1 | 20.5
253.perlbmk | 124 | 1.3 | 19.3 | 22.6 | 17.2 | 23.1
254.gap 19 | 0.7 | 9.3 |12.0]10.7| 134
256.bzip2 53 | 1.1 | 6.8 | 2.7 | 7.5 2.1
172.mgrid 1.1 | 1.4 | 20 | 3.6 | 1.7 2.0
177.mesa 4.7 | 1.2 | 93 | 184 | 64 | 11.2
178.galgel 1.1 | 1.0 | 23 | 1.7 | 1.6 1.1
183.equake | 10.2 | 1.3 | 184 | 24.5 | 13.4 | 23.2
188.ammp | 4.2 | 1.1 | 2.7 | 15.1| 3.1 | 14.0
Average 5.7 | 1.4 | 99 (146 | 79 | 129

Table 4.7: The number of issue-limited instructions (ILI) and structure ca-
pacity stalls (SCS) per 100 instructions. These statistics were collected for
configurations with Alpha 21264-like branch prediction and memory depen-
dence prediction.

Table 4.7 shows the number of issue-limited instructions and structure capacity
stalls per 100 instructions. The load-slice and dependence steering produce a
skewed instruction distribution. They steer the bulk of the instructions to
just one or two clusters, in effect using few of the total number of available
issue-window slots. Therefore, they suffer a large number of issue-limited
instructions and structure capacity stalls. On the other hand, mod3 steering
distributes an equal number of instructions to every cluster and so does not
have as many issue-limited instructions and structure capacity stalls. For

these reasons, removing the cluster resource limitation bottleneck improves

84

= Mod3
= Load-dlice
= Dependence

Normalized |PC

172.mgrid
177.mesa
178.galgel
183.equake

175.vpr
176.gcc
252.eon

164.9zip
197 .parser
253.perlbmk
254.9ap
256.bzip2
Int. Average
188.ammp
FP Average

Figure 4.7: The IPC of a 16-wide clustered processor configuration, with and
without the cluster resource limitation bottleneck, normalized by the IPC of
the ideal monolithic machine. Both the clustered processor and the monolithic
machine configurations used Alpha 21264-like branch prediction and memory
dependence prediction.

the performance of load-slice and dependence steering to a greater extent than

mod3 steering.

We also simulated monolithic and clustered processor configurations
with Alpha 21264-like branch and memory dependence predictors. Figure 4.7
shows the IPC of the baseline clustered processor, with and without the clus-
ter resource limitation bottleneck, normalized by the TPC of the monolithic
configuration. On average, the IPC of the integer benchmarks improved by
5% for mod3 steering, 24% for load-slice steering and 23% for dependence

steering over their corresponding baselines. The floating-point benchmarks

85

Steering 8-wide 16-wide 32-wide
Int. FP Int. | FP | Int. | FP
mod3 45% | 22% | 23% | 3% | 25% | 10%
load-slice | 113% | 118% | 53% | 25% | 50% | 23%
dependence | 90% | 108% | 43% | 24% | 42% | 29%

Table 4.8: Average improvement in the IPC of clustered processors when clus-
ter resource limitations are removed. For these experiments, all configurations
simulated perfect branch prediction and perfect memory disambiguation.

show an improvement of 2% for mod3 steering, 12% for load-slice steering and
8% for dependence steering. The configurations that simulate perfect branch
prediction, discussed in Figure 4.6, show a greater improvement when cluster
resource limitations are removed than the configurations with the Alpha 21264-
like branch prediction. For these configurations the pipeline is frequently full
of useful instructions and at every issue-limited cycle useful instructions are
prevented from being executed. In the configurations that simulate Alpha
21264-like branch prediction the pipeline has both useful (correct path) and
mis-predicted instructions. In this case, some of the issue-limited cycles and
structure capacity stalls are due to instructions along mis-speculated paths.
Such stalls, caused by instructions on mis-speculated paths, do not affect over-
all performance and therefore the effect of removing the cluster resource limi-

tation bottleneck is less significant.

In addition to a 16-wide processor we also examined the effect of re-
moving the transfer instruction bottleneck for 8-wide and 32-wide processors.

All the three clustered processors that we evaluated are 4-cluster machines.

86

Table 4.8 shows the average improvement in IPCs when the cluster resource
limitation bottleneck is removed. The cluster resource limitation bottleneck
degrades the IPC of small issue-width processors to a greater extent than wide-
issue processors. Each cluster is an 8-wide processor can issue only two instruc-
tions (one integer and one floating point) every cycle. Since most benchmarks
have an IPC greater than one, removing cluster resource limitations improves
the IPC of this processor configuration significantly. However, as the total
issue width of the processor is increased the issue bandwidth of every cluster
increases and therefore the per-cluster resource limitation bottleneck becomes

less significant.

4.3 Summary

In this chapter we quantified the IPC degradation of the baseline clus-
tered processor compared to an ideal monolithic machine. Our evaluation
shows that clustering degrades the IPC by 29-43% compared to a monolithic
machine. Three bottlenecks reduce the IPC of the clustered processor—(1)
inter-cluster communication delays, (2) transfer instruction overhead, and (3)
cluster resource limitation. We quantified the improvement that can be ob-

tained over the baseline processor if each bottleneck were individually removed.

We simulated monolithic and clustered processor configurations with
Alpha 21264-like branch and memory dependence predictors. Table 4.9 shows

the average improvement that can be attained over the baseline if each bottle-

87

Steering Transfer Inter-cluster | Cluster Resource

Instruction | Communication Limitation
Int. | FP | Int. FP Int. FP
mod3 16% | 13% | 64% 41% 5% 2%

load-slice | 5% | 5% | 41% 24% 24% 12%
dependence | 3% | 6% | 35% 25% 23% 8%

Table 4.9: Average improvement in the IPC of a 16-wide 4-cluster processor
when clustering bottlenecks are removed. Both the clustered processor and the
monolithic machine configurations used Alpha 21264-like branch prediction
and memory dependence prediction.

neck were individually removed. We found that the effects of the bottlenecks
vary depending on the steering policy, the issue width of each cluster and the
benchmark. All the three steering policies that we evaluated are affected most
severely by the inter-cluster communication bottleneck followed by the cluster
resource limitations and transfer instructions bottleneck. The mod3 steering
policy is affected more severely by the transfer instruction overhead and by the
inter-cluster communication bottleneck than the other policies. The cluster re-
source limitation bottleneck affects the load-slice and dependence policies to

a greater extant than mod3 steering.

To fully expose the effect of the clustering bottlenecks we also simu-
lated configurations with perfect branch prediction and memory disambigua-
tion. Table 4.10 shows the average improvement that can be attained over
the baseline if each bottleneck were individually removed. For these con-
figurations we observed that the effect of transfer instruction overhead and

the cluster resource bottleneck become more significant while the inter-cluster

88

Steering Transfer Inter-cluster | Cluster Resource
Instruction | Communication Limitation
Int. | FP | Int. FP Int. FP
mod3 26% | 25% | 29% 23% 23% 3%
load-slice | 2% | 9% | 10% 8% 53% 25%
dependence | 3% | 6% | 12% 5% 43% 24%

Table 4.10: Average improvement in the IPC of a 16-wide 4-cluster processor
when clustering bottlenecks are removed. For these experiments, all configura-
tions simulated perfect branch prediction and perfect memory disambiguation.

communication bottleneck become less significant.

To discover and exploit parallelism in the instruction stream future su-
perscalar processors will require larger on-chip structures and issue a greater
number of instructions every cycle compared to current designs. These changes
will increase the circuit complexity of these structures and therefore limit the
achievable clock frequency. A natural solution to address the increase in com-
plexity is to partition the various on-chip structures and organize them as clus-
ters. However, our evaluation of the baseline clustered processor shows that
partitioning a monolithic design significantly degrades instruction throughput.
Clustered processors suffer from bottlenecks that degrade IPC. In the remain-
der of this dissertation we propose and evaluate techniques to address these
bottlenecks. Our goal is to improve the IPC of a clustered processor to be

closer to that of the ideal monolithic machine.

In the remainder of this dissertation we propose and evaluate methods

to reduce the effect of the clustering bottlenecks. In Chapter 5 we propose

89

and evaluate techniques to remove the transfer instruction bottleneck by re-
placing them with hardware mechanisms. We propose dynamic instruction
steering mechanisms in Chapter 6. These steering policies attempt to reduce
inter-cluster communication latency and the bottlenecks from poor processor

resource utilization.

90

Chapter 5

Reducing Transfer Instructions

Transfer instructions can be a significant overhead for clustered pro-
cessors. Our experiments in Section 4.2.1 show that removing all transfer in-
structions can improve performance between 2-30%. In addition, if all transfer
instructions are removed, a simple steering algorithm such as mod3 outper-
forms more sophisticated methods like dependence steering. In this chapter
we examine three mechanisms to reduce this overhead. In the first mecha-
nism, called register caching, we attempt to reduce the number of transfer
instructions by caching remote register values. This mechanism eliminates
multiple transfer instructions from being generated for re-used operands. The
other two mechanisms—consumer-requested forwarding and hot-register based

forwarding—replace transfer instructions with hardware signals.

5.1 Register Caching

In the baseline clustered processor a transfer instruction is generated
for every inter-cluster dependence. As an example, for the code shown in
Figure 5.1, instructions I3 and I4 both require register R24 as one of their

input operands. Instruction I1, which produces R24, is assigned to cluster 0

91

I11: Add R24, R32, R47 (R24 <=— R32 + R47) Cluster 0
12: And R56, R52, R47 (R56 <=— R47 && R52) Cluster 0
13: Add R127, R24, R125 (R127<=— R24 + R125) Cluster 1
14: Sub R128. R24. R126 (R128<— R24 - R126) Cluster 1

Figure 5.1: Example of a stream of instructions with an inter-cluster depen-
dence. Instructions 1 and 2 are assigned to cluster 0 while instructions 3 and
4 are assigned to cluster 1.

while I3 and I4 are assigned to cluster 1. In the situation described above,
both I3 and I4 generate transfer instructions to transfer the value of R24 from
cluster 0 to cluster 1. In this section we propose to augment each cluster with
a register file cache that will be used to cache remote register values. In the
register cache augmented processor only the first consumer instruction (I3) will
generate a transfer instruction. The transfer instruction will copy the value of
R24 from cluster 0 and place in the register cache in cluster 1. Instruction 14

will read its remote operand, register R24, from the register cache.

For the discussion in this section we use the following terminology. The
first time that a register value is read after being produced is called “first use”.
All subsequent accesses to that operand are termed “re-uses”. Thus, in the
example shown in Figure 5.1, the first use of R24 is initiated by instruction I3
while instruction 14 re-uses R24. Table 5.1 shows the number of input operands
that are re-used as a fraction of the total number of input operands. The
table also shows how many times the operands were re-used. These statistics
were generated by examining program traces in a functional simulator and

are independent of the underlying microarchitecture. Approximately 45% of

92

Benchmark | All Re-used Reused
operands | 1 time | 2 times | 3 times | >3 times

164.gzip 42% 23% ™% 5% 6%
175.vpr 43% 20% 8% 5% 10%
176.gcc 55% 20% 18% 9% 8%
197.parser 42% 21% ™% 3% 9%
252.eon 52% 23% 10% 6% 12%
253.perlbmk 46% 24% 9% 5% 8%
254.gap 41% 16% 12% 2% 12%
256.bzip2 36% 22% 8% 4% 2%
Average 45% 21% 10% 5 8%
172.mgrid 43% 16% 12% 6% 9%
177.mesa 46% 16% 10% 3% 16%
178.galgel 42% 23% 5% 6% 8%
183.equake 41% 20% 8% 5% 8%
188.ammp 42% 22% 9% 5% 6%
Average 43% 19% 9% 5% 9%

Table 5.1: The number of source operands that are re-used
total number of source operands.

all input operands read in integer benchmarks are re-uses

as a fraction of the

. Similarly, 43% of

input operands read in floating point benchmarks are re-uses. These statistics
suggest that caching register values could improve performance by eliminating

the transfer instructions that are generated for re-used operands.

We simulated a configuration of the baseline clustered processor aug-

93

mented by register caches. The register cache in each cluster is large enough to
hold all remote operands (384 remote registers). These experiments represent
a best case situation wherein register caches are not capacity limited. They

provide an upper bound on the performance benefits that can be obtained by

= Mod3

= Load-dlice
i m Dependence
L0 == == == m e e e e
O
a
8
N
< 054
g
e
zZ
0.0~
X D [}]
IS ~ ¥ T gol 2 9
2 g8 - 5 o s § o 8 E
H] = = B
5 ¥ 8 & &8 3 B z 2 2 £ 8 § § ¢
S @~ ¢ 5 o4 90N 0@
g 5 E 5§ & g &% § 2 § § € § g g

Figure 5.2: The IPC of a 16-wide 4-cluster processor, with and without reg-
ister caching, normalized by the IPC of the ideal monolithic machine. Both
the clustered processor and the monolithic machine configurations simulated
perfect branch prediction and perfect memory disambiguation.

caching remote register data. Figure 5.2 shows the IPC of the baseline clus-
tered processor, with and without register caching, normalized by the IPC of
the monolithic configuration. All configurations were simulated with perfect
branch prediction and memory disambiguation. The solid shaded bars on this
graph are the IPC of the baseline clustered processor normalized by the IPC of
the monolithic machine. The patterned bars represent the IPC improvement

attained by using register caching.

The mod3 steering policy shows the most improvement in performance

among the steering mechanisms. On average, register caching improves the

94

performance of mod3 steering by 6% for integer and floating point benchmarks.

Load-slice and dependence steering policies show 1% IPC improvement.

We also examined the IPC improvement that can be obtained from
register caching by simulating configurations with a Alpha 21264-like branch
predictor. Figure 5.3 shows the IPC of the baseline clustered processor, with
and without register caching, normalized by the IPC of the monolithic con-
figuration. On average, the IPC of the integer benchmarks improved by 1%
for mod3 steering and load-slice steering over their corresponding baselines.
There was no change in the performance of the dependence steering policy.
The floating-point benchmarks show an improvement of 1% for all three steer-

ing policies over their corresponding baselines.

The IPC improvements provided by register caching are very modest
even though the register re-use statistics presented in Table 5.1 show that on
average about 45% of all input operands are re-used. The reason for this incon-
gruence is as follows. The operand re-use statistics presented in Table 5.1 do
not take into account the distribution of instructions to clusters. While there
is significant re-use of operands within the instruction stream, instructions are
not always steered in a fashion that exploits re-use. In the example shown in
Figure 5.1, register caching will benefit this code only if I4 is steered to the
same cluster as 13. Suppose 14 is steered to cluster 3 instead of cluster 1 then
both I3 and 14 will constitute first use of R24 in their respective clusters. In
such a situation transfer instructions will be generated to transfer the value of

R24 to clusters 1 and 3 and register caching will not help.

95

= Mod3

= Load-dlice
i m Dependence
N e e
O
e
T
N
< 054
g |
5
2
0.0 -
X D () Q.
IS N B = T 2 Q
2 g - 5 = ;_gcn%ég
2 = 2 B
5 & & & &8 3 E 5 : B £ %5 g £ 2
© NN ¢ T 9« 9~ 9
g 5 E 5§ & g &% § 2 § § € § g g

Figure 5.3: The IPC of a 16-wide 4-cluster processor, with and without reg-
ister caching, normalized by the IPC of the ideal monolithic machine. Both
the clustered processor and the monolithic machine configurations simulated
Alpha 21264-like branch prediction and memory dependence prediction.

Register caching reduces the number of transfer instructions only margi-
nally. Therefore, this method does not yield significant improvements in IPC.
Even under the ideal conditions of perfect branch prediction and unlimited
register cache capacity, IPC improves by only 6%. Our studies show that
register caching is not a useful mechanism to reduce transfer instructions in

clustered superscalar processors.

96

I11: Add R24, R32, R47 (R24 =— R32+ RA47) Cluster 0
12: And R56, R52, R47 (R56 <=— R47 && R52) Cluster 0
13: Add R127, R24, R125 (R127 =— R24 + R125) Cluster 1
14: Sub R128. R24. R126 (R128<— R24 - R126) Cluster 2

Figure 5.4: Example of a stream of instructions with inter-cluster dependence.
Instructions I1 and I2 are assigned to cluster 0. Instruction I3 is assigned to
cluster 1 and I4 to cluster 2.

5.2 Inter-cluster Operand Forwarding

In clustered superscalar processors, inter-cluster dependencies are de-
tected in the rename stage of the pipeline. Once an inter-cluster dependence is
detected a transfer instruction is inserted into the producing cluster to transfer
the appropriate operand to the consuming cluster. For example, consider the
fragment of code shown in Figure 5.4. The steering logic has assigned instruc-
tions I1 and I2 to cluster 0 and I3, which is dependent on I1, to cluster 1. In
the rename stage of the pipeline this inter-cluster dependence is detected and
a transfer instruction is inserted in cluster 0 to copy the value of R24 after I1

has executed.

Transfer instructions, as in the above example, are generated for every
inter-cluster dependence that is detected. Though they facilitate inter-cluster
communication, transfer instructions can be a significant overhead. We pro-
pose to replace transfer instructions with hardware signals. In this section
we describe and evaluate two methods that can be used to remove transfer
instructions—(a) consumer-requested forwarding and (b) hot-register based

forwarding.

97

IFB Table (Cluster 0)
1 2 3

Bl o0 0

Figure 5.5: The inter-cluster forwarding bit table.

5.2.1 Consumer-requested Forwarding

In this mechanism, consumer instructions that require values from re-
mote clusters explicitly request the value to be forwarded. For this purpose,
each cluster is augmented with a register cache that is used to hold remote
register values. We evaluated different register cache capacities and found that
a 16-entry structure performed as well as a register cache that could hold all
remote register values. The register caches use a simple FIFO replacement

policy.

Each cluster is also augmented with a table that holds “inter-cluster
forwarding bits” (IFB). These tables, shown in Figure 5.5, have an entry for
each physical register within a cluster and for a processor with N clusters each
entry is N-1 bits wide. The consumer-requested forwarding (CRF) mecha-
nism works as follows. Instructions that require a remote register value set

the appropriate bit in the remote cluster’s IFB table. When any instruction

98

Issue ‘Reg Read Execute‘ Writeback

Detect to set delay

|
o

‘ Fetch ‘Decode‘ Steer Rename& lRM
|

IFB

Issue ‘Reg Read Execute‘Writeback
o
Window of opportunity

Figure 5.6: Clustered processor pipeline with inter-cluster forwarding bits.

producing a value is executed, the entry corresponding to the produced out-
put register is read from the IFB table. This entry, a bit vector, will indicate
whether instructions in other clusters require the produced value. The pro-
duced operand is forwarded to clusters whose bits have been set in the bit

vector.

For example, consider the code segment shown in Figure 5.4, executing
on a clustered processor illustrated in Figure 5.6. For simplicity we show only
two clusters in the figure. In this example, when instruction I3 reaches the
rename stage of the pipeline an inter-cluster dependence is detected. At this
juncture, the baseline clustered processor will generate a transfer instruction
to transfer the value of R24 from cluster 0 to cluster 1. However, in the
CRF mechanism the transfer instruction is not generated. Instead the entry
corresponding to R24 in cluster 0’s IFB is set to indicate that the value R24
should be forwarded to cluster 1. Note that every entry in the IFB table is

a bit vector. In this example, when I3 reaches the rename stage, the entry

99

in the vector corresponding to cluster 1 is set. Instruction I3 is then placed
in the issue window of cluster 1 where it waits until both its source operands
are ready. When I1 reaches the execute stage, the IFB table in cluster 0 is
read to determine the clusters to which the result should be forwarded. By
default, values are always forwarded to the local cluster. A wake-up signal
is sent to instruction I3 in cluster 1 at the beginning of the cycle. Once I1
has finished execution the result is written to R24 and also forwarded to the
register cache in cluster 1. Note that in the CRF mechanism both the wake-
up tags and the result values are broadcast between clusters only if they are
explicitly requested. If all other dependences are satisfied, I3 can be selected
for issue. Once selected, instruction I3 reads R24 from the register cache and
its other source operand from the register file in cluster 1 and proceeds to a
functional unit to be executed. When the physical register R24 is eventually
retired all cached copies are also invalidated. Figure 5.7 shows the pipeline

timing diagram for the above example.

In the above discussion we assumed that producer (I1) reaches the
execute stage after the consumer (I3) reaches the rename stage and has had
sufficient time to set the bit in the IFB table. However, this situation does
not always happen in practice. When instruction I3 reaches the rename stage
of the pipeline there are three possible scenarios. The first case, instruction
I1 has finished executing and had been committed. For such cases, where the
producer has already exited the pipeline, the CRF method generates a transfer

instruction to transfer the appropriate register value. In the second scenario,

100

Cycles | Fetch | Decode | Steer | Rename| Issue | Reg Read |Execute | Commit
5 13 12 11
Set IFB hit
r
6 13 12 11 ﬁ
Wake-up
v |

7 13 12 11

8 13 12 11

9 13 12
10 13

Figure 5.7: Pipeline timing for a clustered processor with consumer-requested
forwarding.

instruction I1 is between the rename and execute stages of the pipeline and
has not yet finished execution. In this case, instruction I3 sets the appropriate
entry in the IFB table and proceeds to wait in cluster 1’s issue window. When
instruction I1 finishes execution, the IFB table is consulted and the value of
R24 is forwarded to cluster 1. In the third scenario, instruction I1 has passed
the execute stage of the pipeline by the time I3 reaches the rename stage. In
this case, even though instruction I3 sets the IFB entry, the value of R24 is not
forwarded since the IFB table is consulted only when I1 is in the execute stage
of the pipeline. The situation described above leads to a pipeline deadlock
since I3 will never get one of its input operands (R24). Furthermore, it may
take multiple cycles between when an inter-cluster dependence is detected to
when the corresponding IFB bit is set. We term this delay as the detect-to-
set delay. The longer the detect-to-set delay the greater the probability of a
deadlock.

101

As illustrated in Figure 5.6, consumer instructions have a “window
of opportunity” within which to “catch” their producers. If the consumer
instructions set the forwarding bits before the producer crosses the execute
stage, the required remote value will be correctly forwarded. If the producer is

past the execute stage before the forwarding bit is set then a deadlock occurs.

We propose two mechanisms that are used in conjunction with the CRF
technique to avoid deadlocks. The first mechanism is called the dual-wakeup
policy. In this mechanism every producer instruction checks the IFB table
twice. Producer instructions read the IFB tables in the execute stage as de-
scribed above. They access the IFB tables once more when they reach the
commit stage, and wake up any dependent instructions and forward the re-
quired operand value. For the dual-wakeup policy to work all instructions must
carry the value they produce along the pipeline until they exit the pipeline.
The dual-wakeup mechanism avoids deadlocks but it delays consumer instruc-

tions that miss their window of opportunity.

The second method to avoid deadlock is called pro-active operand fetch
(POF). In this technique consumer instructions that miss their window of
opportunity obtain their remote operand values by reading it directly from the
remote cluster’s register file. The POF method works as follows. If the oldest
instruction in a cluster’s issue-window (e.g. I3) requires a remote operand the
processor conservatively assumes that this instruction missed its window of
opportunity. The hardware attempts to read the required operand value from

the remote cluster. It will require a duration equal to twice the inter-cluster

102

communication delay to obtain the remote operand (round-trip communication
delay). If the concerned operand had been produced in the remote cluster the
pro-active operand read will succeed and I3 will be issued for execution. If
the remote value has not yet been produced (i.e. the producer has not yet
executed) the pro-active fetch will fail and the operand will be transferred
after the producer executes. The POF technique eliminates deadlocks caused
by consumers that miss their window of opportunity but it requires additional
hardware to arbitrate between remote and local read accesses to the register

file.

In addition to the deadlock situation discussed above there is one other
corner case. Since the register caches are of finite capacity it is possible that
a cached value is evicted before the dependent instruction that requires the
value can be issued. When issued, the instruction will attempt to read its
source operand from the register cache and will suffer a miss. We handle
this corner case by first stalling the pipeline and then forwarding the required
value to the instruction that caused the register cache miss. Normal execution
is resumed once the value has been forwarded. An alternative mechanism to
handle register caches is to flush the pipeline and restart execution from the
instruction that caused the register cache miss. In our simulations we found

that register cache misses are very infrequent and so they are not a bottleneck.

We evaluated the performance improvement that can be obtained over
the baseline clustered processor using IFB bits in conjunction with the two

techniques for avoiding deadlocks. In the rest of this section we present the

103

= Mod3
= Load-dlice
= Dependence

Normalized |PC

197 .parser
252.eon
Int. Average
172.mgrid
177.mesa
178.galgel
183.equake
188.ammp
FP Average

164.9zip
175.vpr
176.gcc
253.perlbmk
254.9ap
256.bzip2

Figure 5.8: The IPC of a 16-wide clustered processor configuration, with and
without the IFB mechanism, normalized by the IPC of the ideal monolithic
machine. The configurations with the IFB mechanism used the dual-wakeup
policy to avoid deadlocks. Both the clustered processor and the monolithic ma-
chine configurations simulated perfect branch prediction and perfect memory
disambiguation.

results from our simulations.

5.2.1.1 Dual-wakeup

Using IFB tables to express inter-cluster dependence will significantly
reduce transfer instructions and mitigate the effect of one of the bottlenecks
in clustered processors. To quantify the effectiveness of IFB tables we eval-
uated the performance of SPEC 2000 benchmarks executing on a 16-wide,

4-cluster machine described in Section 3.3. We examined configurations with

104

and without perfect branch prediction. Figure 5.8 shows the IPC of the base-
line clustered processor, with and without the IFB mechanism, normalized by
the IPC of the monolithic configuration. All configurations shown in this figure
simulated perfect branch prediction and perfect memory disambiguation. The
solid shaded bars on this graph are the IPC of the baseline clustered processor
normalized by the IPC of the monolithic machine. The patterned bars rep-
resent the IPC improvement that can be attained over the baseline by using
the IFB mechanism. For these simulations we assumed a 1-cycle detect-to-set
delay. Furthermore, these simulations used the dual-wakeup policy to avoid

deadlocks.

Overall, using IFB tables improves performance of almost all bench-
marks, and across all steering algorithms. On average, the IPC of the integer
benchmarks improved by 25% for mod3 steering, 2% for load-slice steering
and 3% for dependence steering over their corresponding baselines. The IPC
of floating point benchmarks improved by 24% for mod3 steering, and by
5% for load-slice and dependence steering. In Section 4.2.1 we quantified the
maximum performance that can be obtained by completely removing transfer
instructions. Note that the IPC improvements obtained using IFB tables is

close to that maximum value.

The above experiments assumed that the IFB table entries can be set
with a 1-cycle detect-to-set delay. At small process technologies, and very
aggressive clock frequencies multiple cycles may elapse between detecting an

inter-cluster dependence and setting the appropriate IFB table entry. This

105

Steering Int. FP

2 3 4 2 3 4
mod3 % | -14% | -18% | 1% | -18% | -27%
ldslice 1% | 2% | -3% | 4% | 2% | 0%

dependence | 2% | 0% | -1% | 3% | -1% | -2%

Table 5.2: Average improvement the IPC of clustered processor with IFB
tables compared to a baseline machine for increasing values of detect-to-set
delay. All configurations were simulated with perfect branch prediction.

additional detect-to-set delay may cause many consumer instructions to miss
their window of opportunity and therefore cause delayed wakeups. We quan-
tified the sensitivity of IPC to this delay. Table 5.2 shows the average IPC
improvement of an IFB-enabled machine over the baseline processor for in-
creasing values of detect-to-set delay. As the detect-to-set delay increases a
greater number of consumer instructions miss their window of opportunity re-
sulting in an increased number of delayed wakeups. These delayed wakeups
degrade performance. As the detect-to-set delay increases the benefit of IFB
tables decreases. For detect-to-set delays of 3 cycle and greater the perfor-

mance of the IFB enhanced processors is lower than the baseline processor.

We also performed experiments that simulated monolithic and clus-
tered processor configurations with Alpha 21264-like branch and memory de-
pendence predictors. Figure 5.9 shows the IPC of the baseline clustered pro-
cessor, with and without the IFB mechanism, normalized by the IPC of the
monolithic configuration. On average, using [FB tables improved the IPC of

the integer benchmarks improved by 9% for mod3 steering, 3% for load-slice

106

= Mod3
= Load-dlice
= Dependence

Normalized |PC

164.9zip
197 .parser
252.eon
Int. Average
172.mgrid
177.mesa
178.galgel
183.equake
188.ammp
FP Average

175.vpr
176.gcc
253.perlbmk
254.9ap
256.bzip2

Figure 5.9: The IPC of a 16-wide clustered processor configuration, with and
without the IFB mechanism, normalized by the IPC of the ideal monolithic
machine. The configurations with the IFB mechanism used the dual-wakeup
policy to avoid deadlocks. Both the clustered processor and the monolithic
machine configurations used Alpha 21264-like branch prediction and memory
dependence prediction.

steering and 2% for dependence steering over their corresponding baselines.
The IPC of floating point benchmarks improved by 8% for mod3 steering, 3%
for load-slice and 5% for dependence steering. In Section 4.2.1 we quanti-
fied the maximum performance that can be obtained by completely removing
transfer instructions. Note that the IPC improvements obtained using IFB

tables is close to that maximum value.

As explained in Section 4.2.1, the transfer instruction overhead is more

significant when the pipeline is full of useful instructions. Therefore, the CRF

107

technique shows greater improvement for the experiments that simulate perfect
branch prediction than for the ones that simulate configurations with a Alpha

21264-like predictor.

5.2.1.2 Pro-active Operand Fetch

We also examined the performance improvement that can be obtained
by using IFB tables in conjunction with the pro-active operand fetch (POF)
technique. We examined configurations with and without perfect branch pre-
diction. Figure 5.10 shows the IPC of the baseline clustered processor, with
and without the IFB mechanism, normalized by the IPC of the monolithic
configuration. All configurations shown in this figure simulated simulated per-
fect branch prediction and perfect memory disambiguation. The solid shaded
bars on this graph are the IPC of the baseline clustered processor normal-
ized by the IPC of the monolithic machine. The patterned bars represent the
IPC improvement that can be attained over the baseline by using the IFB
mechanism. For these simulations we assumed a detect-to-set delay of 1 cycle.

Furthermore, these simulations used the POF policy to avoid deadlocks.

On average, the IPC of the integer benchmarks improved by 27% for
mod3 steering, 2% for load-slice steering and 3% for dependence steering over
their corresponding baselines. The IPC of floating point benchmarks improved
by 24% for mod3 steering, and by 5% for load-slice and dependence steering.
Observe that for a detect-to-set latency of 1 cycle there is no difference in

performance between the dual-wakeup and the pro-active fetch policies. We

108

= Mod3
= Load-dlice
= Dependence

Normalized |PC

252.eon
172.mgrid
177.mesa
178.galgel
183.equake

164.9zip
175.vpr
176.gcc
197 .parser
253.perlbmk
254.9ap
256.bzip2
Int. Average
188.ammp
FP Average

Figure 5.10: The IPC of a 16-wide clustered processor configuration, with and
without the IFB mechanism, normalized by the IPC of the ideal monolithic
machine. The configurations with the IFB mechanism used the pro-active
operand fetch policy to avoid deadlocks. Both the clustered processor and the
monolithic machine configurations simulated perfect branch prediction and
perfect memory disambiguation.

also performed experiments that simulated monolithic and clustered processor
configurations with Alpha 21264-like branch and memory dependence predic-
tors. As in the perfect prediction case, there was no appreciable difference in

performance between the dual-wakeup and the pro-active fetch policies.

The above experiments assumed that the IFB table entries can be set
with a 1-cycle detect-to-set delay. Table 5.3 shows the average IPC improve-
ment of an IFB-enabled machine over the baseline processor for increasing

values of detect-to-set delay. Just as in the dual-wakeup policy, as the detect-

109

Steering Int. FP

2 3 4 2 3 4
mod3 8% | -13% | -17% | 2% | -16% | -25%
ldslice 1% | 2% | -3% | 4% | 2% | 1%

dependence | 2% | 0% | -1% | 3% | -1% | -2%

Table 5.3: Average improvement the IPC of clustered processor with IFB
tables compared to a baseline machine for increasing values of detect-to-set
delay. All configurations were simulated with perfect branch prediction.

to-set delay increases the IPC improvement gained from using IFB tables de-

creases. For detect-to-set delays of 3 cycle and greater the performance of the

IFB enhanced processors is lower than the baseline processor.

Both deadlock avoidance mechanisms show similar performance im-
provements over the baseline. However, the pro-active fetch policy requires
clusters to be able to directly read values from remote register files. Addi-
tional hardware will be required to arbitrate between local and remote reads
to the register files. The dual-wakeup policy is a better mechanism to avoid

deadlock since it has lower design complexity.

5.2.2 Hot-register Based Forwarding

So far the techniques we have discussed to reduce transfer instructions
rely on the consumer instructions explicitly signaling their producer instruc-
tions to forward operand values. In this section we describe a method that
predicts the values to be forwarded based on past history. These predictions

are made at the time the producer instruction reaches the rename stage of the

110

pipeline and so, unlike consumer-requested forwarding, this method does not

have additional constraints such as the detect-to-set delay.

The hot-registers mechanism tracks the registers that are used by each
cluster and uses this information to predict where instruction outputs should
be forwarded. For this purpose a each cluster has a table, called the hot-
register table, with one entry for every physical register in the processor. The
hot-register prediction tables are located in the rename stage of the pipeline.
Each entry in the table is a saturating counter that has three states—don’t for-
ward, forward, strong-forward. The hot-register tables in each cluster record
the input operands of instructions executing on that cluster over the course
of the program by incrementing the appropriate counter. This information
is used to predict the clusters to which instruction outputs should be for-
warded. The hot-register predictions may be incorrect. Sometimes a required
value may not be forwarded to the correct cluster. Such a situation leads to
a pipeline deadlock. We use the pro-active operand fetch policy, described in
Section 5.2.1, to eliminate such deadlocks. When an required operand is not
correctly forwarded the corresponding hot-register counter is incremented so
that future instructions, producing that register value, forward the data cor-
rectly. Similarly, when a physical register is retired we check to see if the all
forwarded copies of this register were used. If a forwarded value was not used
by the cluster the corresponding hot-register entry is decremented. We call
such unused values frivolous forwards. This mechanism ensures that future

instructions producing that register value do not forward it to clusters that do

111

1 ‘ Issue ‘Reg Read‘ ExecuteWriteback\

/

‘ Fetch ‘Decode‘ Steer ‘Rename

‘ Issue ‘Reg Read‘ Execute‘Writeback

R24

oy
[I1]
Forward bits

Hot-register tables

Figure 5.11: Clustered processor pipeline with hot-register based forwarding.

not require the value. A clustered processor pipeline with hot-register based

forwarding is shown in Figure 5.11

The pipeline with hot-register tables functions as follows:

Step 1 At the rename stage, the hot-register table corresponding to the in-
struction’s cluster is accessed. The counters in the table that correspond
to the instruction’s input operands (architectural registers) are incre-

mented.

Step 2 The entry corresponding to the instruction’s output architectural reg-
ister is read from all hot-register tables. These values are combined
to form a bit vector called “forward bits”. Counters that are in the
forward /strong-forward states contribute a 1 to this bit vector while
counters in the don’t forward state contribute a 0 to this bit vector. The
forward-bits are a prediction made based on each cluster’s operand uti-
lization history. The forward-bits travel through the pipeline along with

the instruction.

112

= Mod3
= Load-dlice
= Dependence

Normalized |PC

164.9zip
175.vpr
176.gcc
197 .parser
252.eon
253.perlbmk
254.9ap
256.bzip2
Int. Average
172.mgrid
177.mesa
178.galgel
183.equake
188.ammp
FP Average

Figure 5.12: The IPC of a 16-wide clustered processor configuration, with
and without the hot-register mechanism, normalized by the IPC of the ideal
monolithic machine. Both the clustered processor and the monolithic ma-
chine configurations simulated perfect branch prediction and perfect memory
disambiguation.

Step 3 After the instruction has finished execution its output value is for-

warded to clusters identified in the forward-bits.

Step 4 When a physical register is retired we check to see if all of its forwarded
values have been used. The corresponding hot-register counters in clus-

ters that requested but did not consume this value are decremented.

To quantify the effectiveness of hot-register based prediction we eval-
uated the performance of SPEC 2000 benchmarks executing on a 16-wide,

4-cluster machine described in Section 3.3. We examined configurations with

113

and without perfect branch prediction. Figure 5.12 shows the IPC of the
baseline clustered processor, with and without the hot-register mechanism,
normalized by the IPC of the monolithic configuration. All configurations
shown in this figure simulated simulated perfect branch prediction and perfect
memory disambiguation. The solid shaded bars on this graph are the IPC
of the baseline clustered processor normalized by the IPC of the monolithic
machine. The patterned bars represent the IPC improvement that can be

attained over the baseline by using the hot-register mechanism.

On average, the IPC of the integer benchmarks improved by 14% for
mod3 steering, 1% for load-slice and dependence steering over their corre-
sponding baselines. The IPC of floating point benchmarks improved by 12%
for mod3 steering, and by 2% for load-slice and dependence steering. The
hot-register forwarding mechanism shows improvement over the baseline but
this improvement is lower than the CRF method with a 1-cycle detect-to-
set delay. The hot-register mechanism predicts the cluster to which producer
instructions should forward values and in some cases the predictions are incor-
rect. Such mis-predictions delay the execution of the corresponding dependent
instructions and therefore the performance of the hot-register policy is lower
than that of the CRF policy. Mis-predictions in the hot-register mechanism
also result in frivolous forwards of data. We found that on average 35% of the
forwarded values were frivolous forwards. Because of these frivolous forwards
the hot-register mechanism will require a greater amount of power than the

consumer-requested forwarding method.

114

= Mod3

= Load-dlice
i m Dependence
I T T
O
a
8
N
< 054
g
e
zZ
0.0~
X D [}]
IS ~ ¥ T gol 2 9
2 g8 - 5 o s § o 8 E
H] = = B
5 ¥ 8 & &8 3 B z 2 2 £ 8 § § ¢
S @~ ¢ 5 o4 90N 0@
g 5 E 5§ & g &% § 2 § § € § g g

Figure 5.13: The IPC of a 16-wide clustered processor configuration, with
and without the hot-register mechanism, normalized by the IPC of the ideal
monolithic machine. Both the clustered processor and the monolithic machine
configurations used Alpha 21264-like branch prediction and memory depen-
dence prediction.

We also performed experiments that simulated monolithic and clus-
tered processor configurations with Alpha 21264-like branch and memory de-
pendence predictors. Figure 5.13 shows the IPC of the baseline clustered
processor, with and without the IFB mechanism, normalized by the IPC of
the monolithic configuration. For such a configuration, on average, the IPC of
the integer benchmarks improved by 5% for mod3 steering, 2% for load-slice
steering and 1% for dependence steering over their corresponding baselines.
The IPC of floating point benchmarks improved by 3% for mod3 steering, and

by 1% for load-slice and dependence steering.

115

The hot-register based forwarding mechanism improves the IPC of clus-
tered machines by eliminating transfer instructions but this improvement is
lower than that provided by consumer-requested forwarding with a 1-cycle
detect-to-set delay. In addition, mis-predictions in the hot-register mecha-
nism cause a large fraction of frivolous forwards and so result in greater power
consumption. For these reasons the CRF mechanism is more effective than
hot-register forwarding. However, technology scaling projections predict that
the latency of wires will scale poorly. This poor scaling could result in in-
creased detect-to-set delays in the consumer-requested forwarding method. In
such a situation, a prediction based forwarding method, like the hot-register
mechanism, will be preferable to consumer-requested forwarding. However,
better prediction based mechanisms will have to be developed to reduce the
number of frivolous forwards. Butts and Sohi proposed a method to predict
the number of dynamic uses of a register value [13]. Such a predictor could be
used to broadcast register values that have high degree of use to all clusters

while generating transfer instructions for other values.

5.3 Related Work

In this chapter we examined the feasibility of caching remote register
operands to reduce transfer instructions and to reduce the access latency to
remote operands. Fast register access times are critical to high performance.
Swensen and Patt evaluated a hierarchical register file consisting of a small set

of fast access (1 cycle or less) registers and a larger set of slower access (multi

116

cycle) registers in a different context [68]. They observed that this hierarchical

organization could perform as well as a large single-cycle register file.

Cruz et al. proposed a banked register file organization for superscalar
processors [19]. Each register bank has a different access latency. They eval-
uated a multi-level register file organization. In this organization only the
uppermost level can provide source operands to functional units. Results are
always written into the lowest level and optionally into the upper levels. The
upper level, in effect, subsets or caches the lower level register banks. Operand
values that can be bypassed are written to only the lower register-bank while

operands that cannot be bypassed are written to both register banks.

Both the above studies examined register caching as a means to reduce
the access latency of register files in a un-clustered processor. Borch et al. de-
scribe a register caching mechanism for a clustered superscalar processor [9].
In their model there are eight functional unit clusters and a cluster register
cache (CRC) associated with each cluster. In addition, there is a centralized
register file. Instructions assigned to a cluster attempt to obtain their input
operands from the CRC. On a CRC miss they access the required operand
from the central register file. A structure, called the insertion table, is asso-
ciated with each register cache. This structure is used to track the number
of outstanding consumers of an operand that will execute on that cluster.
Upon completing execution instructions forward their results to all CRCs and
to the centralized register file. All values that are produced are written into

the centralized register file but are written into a CRC only if the insertion

117

table entry associated with that value is non-zero. Their studies show that
a CRC capacity of 16 entries with a FIFO replacement policy is close to the

performance of a mechanism with perfect caching.

Brown and Patt proposed the demand-only broadcast technique to by-
pass values between clusters [11]. In this method an instruction’s result is
broadcast to remote clusters only if it is needed by dependent instructions in
those clusters. For this purpose, an additional bit is added to the busy bit
table (BBT) in every cluster. This bit, which we refer to as BBT-1, is used to
indicate if the broadcast of a result should be blocked. Initially, all BBT-1 bits
are set to 0, indicating that the corresponding register value should be blocked
(i.e. not broadcast). When an instruction (I2) in cluster 2 that is dependent on
another instruction (I1) in cluster 1 reaches the scheduling window it sets the
BBT-1 entries corresponding to its source register operands. After I1 executes
the result is forwarded to clusters cluster 2 since the corresponding BBT-1 bit
in that cluster is set. The value produced by I1 will not be forwarded to other

clusters that do not have the corresponding BBT-1 entry set.

The demand-only broadcast method is similar to the consumer re-
quested forwarding technique discussed in Section 5.2.1. Both methods re-
quire the approximately same amount of hardware state. The the IFB tables
in the CRF method have one entry per physical register and each entry is 3
bits wide. The demand-only broadcast policy requires an additional bit in the
BBT tables in each cluster. The number of entries in a BBT table is equal to

the number of physical registers in the machine. The main difference between

118

the two techniques is that in the demand-only broadcast method the wake-up
tags are always broadcast to all clusters. In the CRF method, wake-up tags
are broadcast only on-demand. Therefore, the CRF policy requires a fewer
number of ports in the instruction issue window to broadcast wake-up tags.
However, selectively broadcasting wake-up tags could potentially deadlock the
processor. The CRF mechanism requires the dual-wakeup or the pro-active

fetch mechanism discussed in Section 5.2.1 to avoid deadlocks.

5.4 Summary

In this chapter we discussed several techniques to remove transfer in-
structions. The first method that we examined attempts to reduce the num-
ber of transfer instructions by caching remote register values. This mech-
anism eliminates multiple transfer instructions from being generated for re-
used operands. Our evaluation showed that while there is moderate re-use
of operands within the instruction stream, instructions are not steered in a
fashion that exploits this re-use. Therefore, the register caching mechanism

provides little improvement in performance.

We also examined two techniques that replace transfer instructions
with hardware signals—(a) consumer-requested forwarding (CRF) and (b)
hot-register based forwarding. In the CRF method, consumer instructions
that require values from remote clusters explicitly request the value to be
forwarded by setting a bit in a structure called the inter-cluster forward bit

table. Producer instructions, upon completion of execution, consult this table

119

to determine if the value should be forwarded to other clusters. The IPC im-
provement from the CRF method is very close to the maximum improvement

that can be gained by completely eliminating all transfer instructions.

Inter-cluster dependences between instructions are detected when the
consumer instruction reaches the rename stage of the pipeline. When such a
dependence is detected the corresponding forward bit is set. We term the time
between detecting the dependence to setting the forward-bit as the detect-to-
set delay. We found that the benefits of the CRF policy are reduced as the
detect-to-set delay increases. For detect-to-set latencies of 3 cycles and greater

the CRF mechanism provides no performance improvement.

The hot-registers mechanism tracks the registers that are used by each
cluster and uses this information to predict where instruction outputs should
be forwarded. These predictions are made at the time the producer instruc-
tion reaches the rename stage of the pipeline. Though the hot-register for-
warding mechanism shows improvement over the baseline this improvement
is lower than the CRF method with a 1-cycle detect-to-set delay. Incorrect
forwarding-predictions in the hot-register mechanism delay the execution of
the corresponding dependent instructions and therefore the performance of
this policy is lower than that of the CRF policy. Hot-register forwarding is
a prediction based mechanism and does not have additional constraints like
the detect-to-set delay in the CRF mechanism. Technology scaling projec-
tions suggest that the latency of wires will scale poorly. This poor scaling

could result in increased detect-to-set delays at future technologies. If the

120

detect-to-set delay is greater than 2 cycles then the CRF mechanism is no
longer useful. In such a situation, prediction based forwarding mechanisms,
like the hot-register mechanism, will perform better than consumer-requested
forwarding. However, the hot-register mechanism generates a large number of
frivolous forwards which results in greater power consumption. More accurate
prediction based mechanisms will have to be developed to reduce the number

of frivolous forwards.

The inter-cluster forwarding techniques discussed in this chapter yield
IPC improvements from 1% to of 9% over the baseline processor. Such small
gains in performance are not worth the additional design complexity these
mechanisms impose. Transfer instructions will become a significant bottle-
neck only if the pipeline is frequently full with useful instructions. Therefore,
these techniques will be useful only if researchers improve control and memory

prediction significantly.

121

Chapter 6

Instruction Steering

In Chapter 5 we discussed techniques to remove transfer instructions.
In this chapter we propose techniques to address the other two bottlenecks
in clustered processors—cluster resource limitations and inter-cluster commu-
nication. We propose new steering policies to mitigate the effect of these

bottlenecks.

Instruction steering policies for clustered processors must attempt to
reduce inter-cluster communication penalties and provide a balanced distri-
bution of instructions to clusters. However, there is a trade-off between these
two objectives and optimizing for just one of the two problems exacerbates the
other. The steering mechanisms that we have discussed so far—mod3, load-
slice, and dependence—are at different extremes in the spectrum of steering
mechanisms. The mod3 steering mechanism tries to maximize the utiliza-
tion of processor resources but pays no heed to inter-cluster communication.
As shown in Section 4.2.3, this policy has fewer structure capacity stalls and
issue-limited instructions compared to load-slice and dependence steering. De-
pendence steering, on the other hand, attempts to reduce inter-cluster com-

munication penalties by steering all dependent instructions to the same cluster

122

but completely ignores resource utilization. Similarly, the load-slice steering
policy steers all instructions that are part of the address computation for a
load instruction to the same cluster. This policy also optimizes for inter-cluster
communication alone while ignoring instruction load balance. However, both
dependence and load-slice steering reduce inter-cluster communication signifi-
cantly. For these steering policies, on average, 8% of source operands are read
from remote clusters while for mod3 steering 66% of source operands are re-
mote operands. In this chapter we propose and evaluate steering policies that
attempt to find a balance between inter-cluster communication and processor

utilization.

As discussed in Chapter 4, the effect of the clustered processor bot-
tlenecks varies depending on how full the processor pipeline is kept. In this
chapter we evaluate our new steering policies by simulating configurations with

both an Alpha 21264-like branch predictor and with perfect branch prediction.

6.1 Memory Instruction Steering

Some of the steering mechanisms that we have explored so far, such
as dependence and load-slice steering, attempt to reduce inter-cluster operand
communication. However, none of these policies attempt to address the la-
tency of memory instructions. The baseline clustered processor, described in
Section 3.3, partitions the level-1 data-cache among the clusters. Each cluster
has direct access to a 16KB cache bank. Cache lines are statically interleaved

among the cache banks based on the low-order address bits. In this organiza-

123

tion consecutive cache-lines in memory will map to different banks. Note that

a given address will always map the same cache bank.

The level-1 data cache can be organized in several other configurations.
For example, cache lines in memory could be dynamically mapped to any
of the level-1 banks. Designers may also choose to allow replication of data
between the cache banks. While dynamic mapping and data replication may
increase performance over a statically mapped organization they also increase
design complexity. In this study we evaluate our ideas in the context of a
simple statically mapped organization. Agarwal examined dynamic mapping

of data to cache banks and data replication across the banks [1].

Since the baseline processor partitions the level-1 data cache, some
memory instructions that are steered to one cluster (cluster 0) may require
access to cache banks in other clusters (cluster 1). We refer to such a memory
access as a remote cache access. Remote memory accesses take longer than lo-
cal accesses. The additional latency is equal to twice the communication delay
between the clusters (round-trip delay). Since the inter-cluster communication
delay could be 1 or 2 cycles (see Section 3.3), the communication latency for

a remote memory access could be 2 or 4 cycles.

Table 6.1 shows the number of remote cache accesses as a fraction of
all cache accesses for the three baseline steering mechanisms. A significant
fraction of memory instructions require remote cache accesses for all three
steering policies. On average, about 75% of all memory instructions in the

baseline clustered architecture access remote cache banks. In a monolithic

124

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 74% 84% 67%
175.vpr 74% 74% 73%
176.gcc 75% 67% 68%

197.parser | 75% 75% 2%
252.eon 75% 75% 76%

253.perlbmk | 75% 80% 79%

254.gap 74% 73% 74%
256.bzip2 74% 83% 73%
172.mgrid | 75% 7% 74%
177.mesa 74% 82% 79%
178.galgel | 74% 4% 75%

183.equake | 75% 70% 75%

188.ammp | 75% 73% 75%
Average 75% 76% 74%

Table 6.1: Remote cache accesses as a fraction of the total number of memory
instructions executed by the baseline clustered processor.

machine, memory instructions access one unified cache and on a cache-hit the
corresponding value is forwarded to dependent instructions in 3-cycles (cache
hit latency). But in a clustered processor, a large fraction of memory instruc-
tions pay an additional communication delay before the value is forwarded to
dependent instructions. Such remote cache accesses in clustered processors are

one reason for the degradation in their IPC compared to a monolithic machine.

In this chapter we propose a memory steering policy that attempts to
reduce the number of remote memory accesses by steering memory instructions
to clusters that can obtain the required value from their local cache bank. The
memory steering policy is overlayed on top of the baseline steering policies and

works as follows. Non-memory instructions are steered based on the baseline

125

= Mod3
= Load-dlice
= Dependence

Normalized |PC

197 .parser
252.eon
Int. Average
172.mgrid
177.mesa
178.galgel
183.equake
188.ammp
FP Average

164.9zip
175.vpr
176.gcc
253.perlbmk
254.9ap
256.bzip2

Figure 6.1: The IPC of a 16-wide clustered processor configuration, with and
without ideal memory steering, normalized by the IPC of the ideal monolithic
machine. Both the clustered processor and the monolithic machine configura-
tions simulated perfect branch prediction and perfect memory disambiguation.
Also, the configurations in these experiments used the CRF method to remove
transfer instructions.

steering policy (i.e. mod3, load-slice or dependence) but when a memory
instruction reaches the steer stage of the pipeline we predict the cache bank
that this instruction will access. The instruction is then steered to the cluster

with local access to the predicted cache bank.

6.1.1 Ideal Memory Instruction Steering

To quantify the maximum improvement that can be obtained using
the memory steering policy we simulated a configuration where every memory

instruction is steered to the “correct cluster” (i.e. a cluster that has local access

126

to the required value). We call this configuration ideal memory steering. These
simulations used the CRF mechanism with a 1 cycle detect-to-set latency,

described in Section 5.2.1, to orchestrate inter-cluster communication.

Figure 6.1 shows the IPC of the baseline clustered processor, with and
without ideal memory steering, normalized by the IPC of the monolithic con-
figuration. All configurations shown in this figure simulated perfect branch
prediction and perfect memory disambiguation. The shaded bars on this graph
are the IPC of the baseline clustered processor normalized by the IPC of the
monolithic machine. The patterned bars represent the IPC improvement that
can be attained over the baseline if memory instructions are steered to clusters
in a fashion that ensures the instruction will not require a remote cache access.
On average, ideal memory steering improved the IPC of integer benchmarks
by 13% for mod3 steering, and by 29% for load-slice and dependence steering.
The IPC of floating point benchmarks improved by 4% for mod3 steering, 23%

for load-slice and 24% for dependence steering.

Overlaying memory steering on top of dependence or load-slice steer-
ing changes the resulting instruction distribution significantly. For example,
consider the data dependence graph shown in Figure 6.2. The nodes in this
graph represent instructions and the edges represent data dependence. The
shaded nodes represent memory instructions. In this example instructions 12-
I9 are all dependent on instruction I1 (either directly or through other nodes).
Therefore, conventional dependence steering will steer all these instructions to

the same cluster as I1. On the other hand, when dependence steering is used

127

@@@Q

Figure 6.2: An example data dependence graph. The nodes represent in-
structions and the edges represent dependence. The shaded node represents a
memory instruction.

in conjunction with memory steering the load instruction 12 is steered based
on memory steering rather than dependence steering. This instruction may
be placed in a different cluster from I1. In that case, the instructions that are
dependent on I2 will also be steered to the same cluster as I12. In effect, 12
and its data dependence sub-tree could be steered to one cluster while I1 and
its left sub-tree (comprising of I3, 16 and I8) could be steered to another clus-
ter. For this reason, memory steering produces a more balanced instruction

distribution compared to dependence and load-slice steering.

We evaluated the workload imbalance in the following manner. Every
cycle we rank order the clusters based on the number of instructions in each
cluster (cluster with most instructions has highest rank). We track the num-
ber of instructions issued from every rank. Table 4.6 shows the fraction of
instructions that are executed by each rank for a 16-wide, 4-cluster machine
with memory steering overlayed on dependence steering. For most bench-

marks memory steering produces a better balance of instructions compared

128

Benchmark | Rank 0 | Rank 1 | Rank 2 | Rank 3
164.gzip 0.19 0.22 0.26 0.33

175.vpr 0.22 0.24 0.24 0.30
176.gcc 0.25 0.26 0.24 0.25
197.parser 0.24 0.23 0.24 0.29
252.eon 0.20 0.27 0.27 0.26
253.perlbmk | 0.22 0.25 0.28 0.26
254.gap 0.25 0.23 0.24 0.27

256.bzip2 0.21 0.25 0.26 0.29
172.mgrid 0.22 0.23 0.26 0.29
177.mesa 0.23 0.23 0.26 0.28
178.galgel 0.23 0.23 0.27 0.27
183.equake 0.24 0.21 0.28 0.27
188.ammp 0.24 0.28 0.23 0.25

Table 6.2: Workload imbalance in a 16-wide, 4-cluster machine using memory
steering overlayed on dependence steering.

to dependence steering (Table 4.6, Section 4.2.3). A balanced instruction dis-
tribution results in fewer resource conflicts, such as structure capacity stalls
and issue-limited instructions, compared to dependence and load-slice steer-
ing. Therefore, memory steering performs better than both dependence and
load-slice steering. Furthermore, memory steering (overlayed on dependence or
load-slice steering) requires fewer remote operands compared to mod3 steering

and so it also out performs mod3 steering.

Overlaying, memory steering on top of dependence and load-slice steer-
ing has two prominent effects. The first effect is to produce a more balanced
instruction distribution as discussed above. The second effect is to lower the

number of remote cache accesses. These two effects together account for the

129

improvements shown in Figure 6.1.

6.1.2 Memory Instruction Steering with Last-cluster Prediction

So far we have evaluated the maximum IPC improvement that is pos-
sible from using memory steering. For these experiments we simulated config-
urations wherein memory instructions are always steered to a cluster that can
access the required data from a local bank. In practice, it is not possible to
steer all memory instructions to the “correct” cluster since the address that
they will access may not be known at steer time. When a memory instruction
reaches the steer stage we predict the cache bank that it will access. We use
a simple prediction mechanism that steers instructions to the last cache bank
that they accessed. For this purpose, a table, called the last-cluster table, is
used to track the cache bank accessed by every memory instruction. This
table is indexed by the memory instruction’s program counter. When a mem-
ory instruction reaches the steer stage of the pipeline the last-cluster table is
consulted to determine the cluster that the instruction should be steered to.
When memory instructions complete execution they update the last-cluster
table with the cluster that they accessed. As described above, the memory
steering policy is used in conjunction with the baseline steering mechanisms.
Memory instructions are steered using memory steering while other instruc-

tions are steered using the corresponding baseline policy.

We evaluated the effectiveness of the memory steering policy with the

last-cluster prediction mechanism by simulating a 16-wide, 4-cluster proces-

130

= Mod3
= Load-dlice
= Dependence

Normalized |PC

164.9zip
175.vpr
176.gcc
197 .parser
252.eon
172.mgrid
177.mesa
178.galgel
183.equake
188.ammp
FP Average

253.perlbmk
254.9ap
256.bzip2
Int. Average

Figure 6.3: The IPC of a 16-wide clustered processor configuration, with and
without last-cluster memory steering, normalized by the IPC of the ideal
monolithic machine. Both the clustered processor and the monolithic ma-
chine configurations simulated perfect branch prediction and perfect memory
disambiguation. Also, the configurations in these experiments used the CRF
method to remove transfer instructions.

sor. We simulated configurations with perfect and Alpha 21264-like branch
prediction. In addition, these simulations used the CRF mechanism with a
1 cycle detect-to-set latency, described in Section 5.2.1, to orchestrate inter-
cluster communication. We varied the capacity of the last-cluster table and
found that a 4096-entry table has the same prediction accuracy as a table
with a unique entry for every memory instruction in the program. For a few
benchmarks the prediction accuracy dropped by 10% for a 2048-entry table.
Therefore, in these simulations we used a last-cluster prediction table with

4096 entries. Figure 6.3 shows the IPC of the baseline clustered processor,

131

with and without memory steering using the last-cluster table, normalized by
the IPC of the monolithic configuration. All configurations shown in this fig-
ure simulated perfect branch prediction and perfect memory disambiguation.
The shaded bars on this graph are the IPC of the baseline clustered proces-
sor normalized by the IPC of the monolithic machine. The patterned bars
represent the IPC improvement that can be attained over the baseline using
memory steering. On average, the last-cluster memory steering mechanism im-
proves the performance of integer benchmarks by 3% for mod3 steering, 18%
for load-slice steering, and 17% for dependence steering. The IPC of floating
point benchmarks improved by 3% for mod3 steering, 22% for load-slice, and

24% for dependence steering.

As discussed earlier, there are two factors that improve IPC when us-
ing memory steering—improved workload balance and fewer remote cache ac-
cesses. Table 6.3 shows the number of remote cache accesses as a fraction of the
total number of memory instructions executed by the clustered processor uti-
lizing memory steering in conjunction with the baseline steering policies. The
simple last-cluster prediction mechanism reduces the number of remote cache
accesses for all benchmarks but its effectiveness varies across benchmarks.
For a few benchmarks, namely 256.bzip2, 177.mesa, and 183.equake, there is a
large reduction in the number of remote cache accesses. For these benchmarks,
the number of remote cache accesses is reduced to less than 20% of all mem-
ory instructions. Other benchmarks, such as 164.gzip, 252.eon, 253.perlbmk,

show an appreciable reduction in the number of remote cache accesses. For

132

Benchmark Mod3 Load-slice | Dependence
Mem | Base | Mem | Base | Mem | Base
164.gzip 38% | 4% | 36% | 84% | 35% | 67%
175.vpr 54% | T4% | 54% | 74% | 53% | 73%
176.gcc 69% | 5% | 64% | 67% | 64% | 68%
197.parser | 56% | 75% | 55% | 75% | 55% | 2%
252.eon 44% | 5% | 42% | 5% | 43% | 76%
253.perlbmk | 36% | 75% | 32% | 80% | 33% | 79%
254.gap 64% | 74% | 63% | 73% | 63% | T4%
256.bzip2 14% | 74% | 11% | 83% | 10% | 73%
172.mgrid 67% | 5% | 67% | TT% | 66% | 74%
177.mesa 15% | 4% | 11% | 82% | 12% | 79%
178.galgel | 73% | 74% | 73% | 74% | 73% | 75%
183.equake | 18% | 75% | 18% | 70% | 16% | 75%
188.ammp | 40% | 75% | 40% | 73% | 37% | 75%
Average 45% | 5% | 44% | 76% | 43% | 4%

Table 6.3: Remote cache accesses as a fraction of the total number of mem-
ory instructions executed by the baseline clustered processor using memory
steering (Mem) and with the baseline steering policies (Base).

these benchmarks, the last-cluster prediction mechanism reduces the fraction
of remote cache access from 75% (see Table 6.1) to less than 45%. For another
set of benchmarks, namely 156.vpr, 176.gcc, 197.parser, 254.gap, 172.mgrid,
and 178.galgel, the last-cluster prediction mechanism reduces the number of
remote cache accesses only by a small amount. The IPC improvements of
individual benchmarks correlates with the effectiveness of the last-cluster pre-
diction mechanism for that benchmark. The load-slice and dependence steer-
ing policies result in a skewed workload distribution among clusters. Using
memory steering in conjunction with these policies results in a better work-

load distribution in addition to reducing the number of remote cache accesses.

133

Normalized |IPC

Int. Average

172.mgrid
177.mesa
178.galgel
183.equake
188.ammp
FP Average

x
[S
2
2
]
&

164.9zip
175.vpr
176.gcc
197.parser
252.eon
254.92p
256.bzip2

Figure 6.4: The IPC of a 16-wide clustered processor configuration, with
and without last-cluster memory steering, normalized by the IPC of the ideal
monolithic machine. Both the clustered processor and the monolithic machine
configurations used Alpha 21264-like branch prediction and memory depen-
dence prediction. Also, the configurations in these experiments used the CRF
method to remove transfer instructions.

Therefore, the load-slice and dependence steering baselines, when used in con-
junction with memory steering, show a greater IPC improvement than the
mod3 policy.

We also examined the IPC improvement that can be obtained from last-
cluster based memory steering by simulating configurations with Alpha 21264-
like branch and memory dependence predictors. Figure 6.4 shows the IPC of
an 16-wide, 4-cluster machine with the different steering policies normalized
by the IPC of a monolithic machine. On average, the last-cluster memory

steering mechanism improves the performance of integer benchmarks by 9%

134

for mod3 steering, 5% for load-slice steering, and 5% for dependence steering.
The IPC of floating point benchmarks improved by 12% for mod3 steering,
10% for load-slice, and 12% for dependence steering. Memory steering with
last-cluster prediction shows improvement over the mod3 steering for all bench-
marks. This policy also shows an improvement over load-slice and dependence
steering for most benchmarks. However, for a few benchmarks-197.parser,
175.vpr, 254.gap, and 178.galgel—the memory steering policy shows lower IPC
compared to dependence and load-slice steering. For these benchmarks the ac-
curacy of the last-cluster based cache-bank predictor is poor and therefore it
does not reduce the number of remote cache accesses. In addition, as discussed
earlier, using memory steering in conjunction with dependence and load-slice
steering results in a instruction distribution that requires more inter-cluster
(register) operand communication. Memory steering increased the amount of

inter-cluster operand communication by a factor of 2.5.

For the benchmarks listed above, the last-cluster prediction mechanism
does not reduce the number of remote cache accesses significantly and at the
same time it increases the number of remote operands. Therefore, for these
benchmarks last-cluster based memory steering reduces performance compared

to the baseline.

In addition to the last-cluster prediction method we also examined the
feasibility of using a stride-based cache bank predictor to steer memory in-
structions. Like the last-cluster predictor the stride predictor uses a table to

record the cache bank that a memory instruction accessed. In addition, the

135

Last—cluster Prediction Table

2 bits 2 bits 2 bits

[INSErUCtion PC e Last—cluster id | Stride | Confidence

Figure 6.5: Memory instruction steering with a cluster-stride predictor.

table also records the “stride” (i.e. difference in cluster identity numbers)
between the last cache bank the instruction accessed and the current cache
bank. Figure 6.5 shows the cache bank-stride prediction table. When memory
instructions reach the steer stage they read the stride predictor by indexing
into the table using the instruction PC. If the confidence in the stride is low,
the instruction is steered to the same cluster that was accessed the last time. If
the prediction confidence is high, the instruction is steered to the cluster that
is numerically a “stride” distance away. Like in the last-cluster method, mem-
ory instructions update the stride prediction table after execution. The stride
predictor reduces the number of remote cache accesses to 41% for 197.parser

and 45% for 254.gap and improves their IPC by 2% and 5% respectively.

The last-cluster based prediction and the stride prediction mechanisms
are simple methods to predict the cache bank that a load or store instruction
will access. While their prediction accuracies are high for several benchmarks,
they do not work as well for 197.parser, 175.vpr, 254.gap and 178.galgel. These

benchmarks have cache-bank access patterns that cannot be captured using a

136

simple last-cluster mechanism or a stride based mechanism. Other predictors,
based on bank access pattern history, could be used to improve the predic-
tion accuracy. Yoaz et al. proposed using prediction mechanisms based on
bank access history [76]. Also, many techniques have been proposed to pre-
dict the address accessed by memory instructions [4,8,18]. Such techniques
could be used to steer memory instructions to the correct cluster. Increasing
the cache-bank prediction accuracy using more sophisticated predictors will

further reduce remote cache accesses and thereby benefit these benchmarks.

6.2 Critical Operand Steering

The mod3 steering and dependence steering mechanisms both have
advantages and a few disadvantages. The mod3 policy spreads instructions
evenly across clusters and thereby making maximum use of the processor’s
issue window capacity and issue width. However, this policy also results in a
large number of instructions requiring remote register operands. The depen-
dence steering policy steers dependent instructions to the same cluster. If the
two source operands of an instruction are being produced by different clus-
ters the instruction is steered to the producer cluster with a fewer number of
instructions (i.e. the cluster with the lighter load). The dependence steering
policy steers too many instructions to one cluster and therefore does not make
complete use of the processor resources like issue-bandwidth and issue window

capacity.

In this section we propose and evaluate the critical-operand steering

137

Critical Operand Prediction Table

2 bits
.............. 00 - Both operands critical
Instruction PC . Critical Operand 01 - Left operand critical

10 - Right operand critical

Figure 6.6: Critical-operand prediction table.

policy that attempts to find a balance between processor resource utilization
and inter-cluster communication delay. This steering policy works as follows.
When instructions reach the steer stage of the pipeline we predict which of its
two source operands is more critical and steer the instruction to the cluster
that produces the more critical operand. For this purpose we use a hardware
structure called the critical operand table. The critical-operand table, shown
in Figure 6.6, is indexed by the instruction PC. Each entry in the table is 2-bits
wide. For each instruction we track which of its two source operands was pro-
duced last (i.e. the source operand that delayed the issue of the instruction).
We deem this operand to be the critical operand for this instruction. For
every instruction, the critical operand table is updated with information on
which of the instruction’s two source operands is critical. When instructions
reach the steer stage of the pipeline they access the critical operand table to
determine which of their source operands is more critical. The instruction is
then steered to the same cluster as the producer of the more critical operand.
In the event that both its operands are equally critical the instruction is then

steered to the producer cluster with the lightest load. We experimented with

138

different critical operand table capacities found that a table with 8192 entries

performed as well as tables with larger capacities.

We evaluated the effectiveness of the critical operand steering policy by
simulating benchmarks executing on a 16-wide, 4-cluster machine described in
Section 3.3. We simulated configurations with perfect and Alpha 21264-like
branch prediction. In addition, these simulations used the CRF mechanism
with a 1 cycle detect-to-set latency, described in Section 5.2.1, to orchestrate

inter-cluster communication.

For the experiments with perfect branch prediction we found that the
critical-operand steering policy performs marginally better than the depen-
dence and load-slice mechanisms. On the other hand, the mod3 mechanism
performs better than critical-operand steering. In the perfect prediction ex-
periments the pipeline is always full of useful instructions. Therefore, a large
fraction of the cycles spent waiting for remote operands can be overlapped
with the execution of other instructions in the pipeline. In this situation, the
mod3 policy performs better than the other three policies because it makes
best use of the processor’s issue window capacity and issue-width and there-
fore has greater opportunity to overlap remote operand latencies with useful

work.

We also examined the IPC improvement that can be obtained from
last-cluster based memory steering by simulating configurations with Alpha
21264-like branch and memory dependence predictors. Figure 6.7 shows the

IPC of an 16-wide, 4-cluster machine with the different steering policies nor-

139

= Mod3

O Load-slice
m Dependence
1 O Critical-operand
104 ————————mmmm e e ——— - — -
O]
a
— 054
0.0 - o

164.9zip
175.vpr
176.gcc
197.parser
252.eon
253.perlbmk
254.9ap
256.bzip2
Int. Average
172.mgrid
177.mesa
178.galgel
183.equake
188.ammp
FP Average

Figure 6.7: The IPC of a 16-wide 4-cluster processor using critical-operand
steering. All configurations used Alpha 21264-like branch prediction and mem-
ory dependence prediction. Also, the configurations in these experiments used
the CRF method to remove transfer instructions.

malized by the IPC of a monolithic machine. Critical-operand steering im-
proves IPC on average by 16% for integer benchmarks and 10% for floating
point benchmarks over mod3 steering. However, the dependence and load-slice

mechanisms outperform critical-operand steering.

The critical-operand steering policy steers instructions to the same clus-
ter as the instruction that produces their critical source operand. It shows IPC
improvement when compared to the mod3 steering policy because it requires
fewer remote register operands. Though this policy produces a better instruc-
tion distribution, and therefore fewer resource conflicts, compared to depen-
dence and load-slice steering it requires a greater number of remote operands

compared to both those mechanisms. Therefore, both dependence and load-

140

slice steering perform better than critical-operand steering.

6.3 Issue-width Balance Steering

In this section we propose and evaluate the issue-width balance steering
policy that attempts to improve performance by reducing the number of issue-
limited and structure capacity stall cycles. This steering policy keeps track of
the number of independent instructions available in each cluster and uses this
information to avoid overloading clusters. This steering mechanism works as
follows. When an instruction (I1) reaches the steer stage this policy attempts
to steer I1 the same cluster as the producers of its input operands (e.g. Cluster
0), just like in dependence steering. However, if Cluster 0 has more ready
instructions than it can issue, I1 is assigned to the cluster with the fewest

number of independent instructions.

This steering policy attempts to place dependent instructions in the
same cluster and thereby avoid the inter-cluster communication penalty and
at the same time it also makes better utilization of processor issue width.
To quantify the effectiveness of the issue-balance steering policy we evaluated
the performance of SPEC 2000 benchmarks executing on a clustered machine
described in Section 3.3. We simulated configurations with Alpha 21264-like
branch prediction and perfect branch prediction. In addition, these simulations
used the CRF mechanism with a 1 cycle detect-to-set latency, described in

Section 5.2.1, to orchestrate inter-cluster communication.

Figure 6.8 shows the IPC of an 16-wide, 4-cluster machine with the

141

= Mod3

O Load-slice
m Dependence
| O Issue-balance
10— ————— - mm e e mm - — -
O |
a
— 054
0.0- -

164.9zip
175.vpr
176.gcc
197.parser
252.eon
253.perlbmk
254.9ap
256.bzip2
Int. Average
172.mgrid
177.mesa
178.galgel
183.equake
188.ammp
FP Average

Figure 6.8: The IPC of a 16-wide 4-cluster processor using issue-balance steer-
ing. All configurations simulated perfect branch prediction and memory dis-
ambiguation. Also, the configurations in these experiments used the CRF
method to remove transfer instructions.

different steering policies normalized by the IPC of a monolithic machine. All
configurations shown in this figure simulated perfect branch prediction and
perfect memory disambiguation. The issue-balance steering policy performs
better than the mod3 policy because it requires fewer remote operands. Issue-
balance steering also performs better than dependence and load-slice policies
because it reduces the number of issue-limited cycles compared to these steer-
ing mechanisms.

We also examined the IPC improvement that can be obtained us-
ing issue-balance steering by simulating configurations with Alpha 21264-like
branch and memory dependence predictors. Figure 6.9 shows the IPC of an

16-wide, 4-cluster machine with the different steering policies normalized by

142

= Mod3

O Load-slice
m Dependence
| O Issue-balance
O i e e
O |
a
— 054
0.0- -

164.9zip
175.vpr
176.gcc
197.parser
252.eon
253.perlbmk
254.9ap
256.bzip2
Int. Average
172.mgrid
177.mesa
178.galgel
183.equake
188.ammp
FP Average

Figure 6.9: The IPC of a 16-wide 4-cluster processor using issue-balance steer-
ing. All configurations used Alpha 21264-like branch prediction and memory
dependence prediction. Also, the configurations in these experiments used the
CRF method to remove transfer instructions.

the IPC of a monolithic machine. The issue-balance steering policy performs
better than the mod3 and load-slice policies for all benchmarks except 178.gal-
gel. However, in spite of reducing the number of issue-limited instructions and
structure capacity stalls it does not perform better than dependence steering.
In the experiments simulating Alpha 21264-like branch prediction the issue
window is not always full with useful instructions and many of the structure
capacity stalls and issue-limited cycles are caused by instructions that are in

the wrong path. Reducing the stalls caused by mis-predicted instructions does

not improve performance.

143

6.4 Related Work

Instruction steering mechanisms for clustered processors is an active
area of research within computer architecture. Several steering methods have
been proposed to dynamically steer instructions to clusters. The dependence
steering policy, that we use as a baseline in several experiments, was proposed
by Palacharla et al. [50]. This steering policy steers instructions to the same
cluster as the producer of one of their source operands. If the producers are in
two different clusters we steer the consumer instruction to the producer cluster

with the fewest instructions.

Bhargava and John proposed a technique to steer instructions for clus-
tered processors with trace caches [6,7]. In this technique, like in dependence
steering, instructions are assigned to the same cluster as their producers. How-

ever, this steering is done at retire time thereby reducing issue-time complexity.

Fields et al. proposed a technique to dynamically identify critical paths
in a program [23,24]. They use this method to steer all instructions in the
critical path to the same cluster to avoid inter-cluster communication along
this path. The critical-operand steering method that we proposed treats does
not differentiate between critical-path instructions and other instructions. It
attempts to reduce the execution latency of all instructions. The critical-path
steering policy specifically identifies critical instructions and schedules them
in a manner that reduces their execution latency. Therefore, critical-path

steering will perform better than the critical-operand method.

144

Canal et al. proposed the load-store-slice (LdSt slice) steering policy.
This technique attempts to steer all instructions that are part of the address
computation of a load or store instruction to the same cluster [14]. In their
paper, the authors describe the hardware support required to dynamically
identify the “backward slice” of load and store instructions. The authors show
that the dynamic LdSt-slice policy that they propose achieves a speedup of
16% over a static instruction steering policy, previously suggested by Sastry et
al. [58]. They also examined a similar steering policy that steers the backward
slice of a branch instruction to the same cluster and found that LdSt-slice

steering performs better than the Branch-slice policy.

The LdSt-slice steering results in an poor workload balance between
clusters and to reduce this imbalance Canal et al. proposed a balancing mech-
anism. They use two parameters to identify an workload imbalance between
clusters—the total number of instructions and the number of ready instruc-
tions in each cluster. Based on these two parameters they compute a load-
balance metric and if this metric is above a pre-determined threshold value
they assume that the current instruction distribution has resulted in a work-
load imbalance. The details of how these parameters are used to compute the
load-balance metric is described in [14]. When an imbalance is detected in-
structions are steered to the cluster with the lighter load in order to re-balance
the workload. Though the balancing mechanism reduces workload imbalance
it increases the amount of communication between clusters and therefore does

not improve the performance of the LdSt-slice steering policy. The technique

145

described above can be used to balance the workload between two clusters
and cannot me extended to three or greater number of clusters. On the other
hand, the issue-balance steering policy that we propose can be used to schedule

instructions in a processor with greater that two clusters.

Parcerisa et al. proposed a steering policy that attempts to reduce
the amount of inter-cluster communication and also to balance instruction
workload [51]. In their mechanism instructions are assigned to the same cluster
as one of their parent instructions unless the workload imbalance between

clusters is greater than a given threshold.

Baniasadi and Moshovos proposed and evaluated a number of steering
policies for clustered superscalar processors [5]. Among the policies they pro-
posed, the “voting-based” policy is closest to the steering mechanisms that we
discuss in this chapter. This steering method attempts to reduce the num-
ber of stalls due to limited per-cluster issue-width. The voting-based steering
policy starts with an underlying non-adaptive technique and attempts to iden-
tify instruction distributions that cause problems. This method uses a cluster
prediction table (CPT) that is indexed by the instruction’s program counter.
Each entry in the table has four 2-bit saturating counters. This table is used to
record the instances when an instruction could be issued as soon as its operands
are ready. For example, if an instruction, steered to cluster 1, was issued as
soon as both its source operands were ready the counter corresponding to clus-
ter 1 is incremented. If the instruction was not issued immediately after its

operands are ready the corresponding counter is decremented. Instructions are

146

assigned to the cluster with the highest CPT counter value. In the event of a

tie the instruction is assigned based on the under-lying non-adaptive policy.

Yoaz et al. proposed using prediction mechanisms based on bank access
history [76] to steer memory instructions. They evaluated several binary pre-
dictors that capture the cache-bank access pattern for memory instructions.
In addition, they also use a confidence mechanism to determine if the cache-
bank for a memory instruction should be predicted. They report that binary
predictors can can predict the cache bank that will be accessed by memory
instructions with an accuracy of 97%. However, the confidence mechanism
filters the instructions with low confidence. Predictions were made for only
50%-70% of memory instructions. Instructions with low prediction-confidence
are replicated on both clusters. Therefore, their unfiltered cache-bank predic-

tion accuracies range between 49% to 68%.

The last-cluster mechanism, that we proposed, has a prediction accu-
racy (55%) comparable to the binary predictor’s filtered accuracy. Also, the
last-cluster mechanism does not require memory instructions to be replicated.
Though binary predictors provide slightly better cache-bank prediction com-
pared to last-cluster prediction, they have greater design complexity and could
also result in greater power consumption. For these reasons, the last-cluster
prediction method would be a better design choice than the binary predictor

based mechanism.

Racunas and Patt proposed a method to reduce cache access latency

for a partitioned cache [56]. In their technique cache lines could be mapped

147

to either of two level-1 cache banks and so they have two ways to reduce the
cache access latencies—directing memory instructions to the correct cluster or
moving cache lines between cache banks. They use two partition assignment
tables (PAT) to steer instructions and to track the level-1 bank that a cache
line has been mapped to. Instructions are assigned to clusters corresponding

to their partition identifiers.

Agarwal proposed a hybrid steering mechanism that selects between
memory steering (with last-cluster prediction) and dependence steering [1].
This hybrid mechanism uses 2-bit confidence counters to determine the con-
fidence in the last-cluster prediction. Memory instructions are steered based
on the last-cluster table only if the confidence in the prediction is high. If
the confidence is low, the instruction is steered based on dependence predic-
tion. Also, in their processor model they allowed cache lines to be dynamically

mapped to the level-1 cache banks.

Both PAT steering and hybrid steering allow cache lines to be dynam-
ically re-mapped to any cache bank. Such dynamic cache-line mapping may
allow these methods to perform better than the memory-steering policy that
we proposed. However, dynamic mapping of cache lines will require addi-
tional buses between the level-1 cache banks and the level-2 cache. It will also

increase the overall power consumption of the processor.

148

6.5 Summary

The dependence steering policy, by optimizing for inter-cluster com-
munication alone, suffers an inordinate number of stall cycles due to poor
processor resource utilization. The mod3 policy attempts to fully utilize the
processor issue-window but in the bargain it generates an excessive amount
of inter-cluster communication. We examined three new steering policies that
attempt to address the aforementioned problems with dependence and mod3
steering—issue-balance steering, memory steering, and critical-operand steer-
ing.

The issue-balance steering policy attempts to steer dependent instruc-
tions to the same cluster to reduce inter-cluster communication. However,
if such an assignment will result in a cluster having more ready instructions
than it can issue, instructions are re-assigned to another cluster to avoid stalls
due to limited cluster issue-bandwidth. We found that the issue-balance policy
performs better than mod3 and load-slice steering for most benchmarks. How-
ever, it offers no improvement over dependence steering. While issue-balance
steering reduces the number of issue-limited stall cycles it requires more inter-
cluster communication compared to dependence steering. The benefit from re-
ducing issue-limited cycles is offset by the additional communication required.
In the future, as branch prediction techniques improve, limited per-cluster
issue-bandwidth will become a more significant problem. In such a scenario
issue-balance steering will be a more effective policy compared to dependence

steering.

149

The critical-operand steering policy identifies which of the two source
operands for an instruction is more critical and steers the instruction to the
cluster that has fast access to that source operand. This policy performs better
than mod3 and load-slice steering for most benchmarks. However, on average,

it does not perform better than the dependence steering mechanism.

Memory steering works in conjunction with the baseline policies. This
policy steers memory instructions to the cluster that will have local access to
their data. Non-memory instructions are steered based on the baseline steering
policy (i.e. mod3, load-slice or dependence). Memory steering improves IPC

by 5-12% across benchmarks.

Of the three steering mechanisms that we proposed in this chapter we
found that critical-operand steering does not improve IPC compared to the
baseline mechanisms. Issue-balance steering outperforms the baseline policies
in the experiments with perfect branch prediction. For the experiments with
an Alpha-21264 like branch predictor we found that this policy does only as
well as dependence steering. We found that the memory steering policy, used
in conjunction with dependence steering, provides the best performance among
the three policies that we proposed. The effectiveness of this policy can be
further improved by increasing the cache bank prediction accuracy for memory

instructions.

150

Chapter 7

Conclusions

Historically processor performance has been improved by increasing
clock frequency and IPC. Increasing the processor pipeline depth (fewer gates
per cycle) has been one technique that has been used to improve clock fre-
quency. In this research we examined how much further reducing the amount

of logic per pipeline stage can improve performance.

Increasing processor pipeline depth improves clock frequency. How-
ever, there are certain critical sections of the pipeline, termed critical loops,
that must operate in the fewest possible cycles to achieve good performance.
Increasing pipeline depth increases the latency of these critical loops and in
turn reduces IPC. Thus, there is a tradeoff between increasing pipeline depth
(clock frequency) and IPC. To obtain maximum performance processor de-
signers must balance pipeline depth and IPC. We explored this tradeoff for an
Alpha 21264 processor. Increasing pipeline depths improves performance up
till the point where the reduction in IPC outweighs the benefits of increased
clock frequency. Further increasing the pipeline depth beyond this optimal
point will degrade overall performance. We determined that the amount of

useful logic per stage that will provide the best performance is approximately

151

6 FO4 inverter delays.

Our pipeline scaling study shows that clock improvements from proces-
sor pipelines are approaching a point diminishing return. Novel architectural
techniques targeted at reducing the effect of critical loops may allow designers
to increase pipeline depths beyond the 6 FO4 optimal point. However, critical
loops in modern processors, such as the Pentium IV, are already aggressively
pipelined and are of significant design complexity. It is unlikely that structures

that are part of critical loops can be pipelined much further.

Microprocessor performance has improved at about 55% per year for
the last three decades, with much of the gains resulting from higher clock fre-
quencies, due to process technology and deeper pipelines. However, our results
show that pipelining can contribute at most another factor of two to clock rate
improvements. Subsequently, in the best case, clock rates will increase at the
rate of feature size scaling, which is projected to be 12-20% per year. Any
additional performance improvements must come from increases in concur-
rency, whether they be instruction-level parallelism, thread-level parallelism,

or a combination of the two.

To exploit greater parallelism in the instruction stream processors will
have to issue more instructions every cycle. In addition, the capacity and the
number of ports of on-chip structures such as the register file, the instruc-
tion issue-window, and the data-cache must also be increased. However, large
multi-ported structures will have long access latencies that will not scale with

technology. Such structures cannot be clocked at aggressive frequencies. A

152

natural solution to the problem of increasing circuit complexity is to parti-
tion the architecture into clusters. Each of the processors on-chip structures
is divided among the clusters and therefore the complexity of each individual
piece is reduced. Farkas et al. proposed a clustered superscalar architec-
ture [22] called the Multicluster architecture. We use this architecture as our

baseline.

While clustering reduces the complexity of on-chip structures it intro-
duces other bottlenecks and inefficiencies. The three primary bottlenecks in
clustered processors are—(1) inter-cluster communication delays, (2) transfer
instruction overhead, and (3) cluster resource limitation. These bottlenecks
reduce the IPC of a clustered machine compared to an ideal monolithic ma-
chine. We found that clustering lowered IPC between 29-43% compared to an
ideal unclustered machine. In this research we proposed techniques to reduce
the effect of the bottlenecks from clustering. Our goal is to improve the IPC

of a clustered processor to be closer to that of the ideal monolithic machine.

7.1 Dissertation Summary

We proposed and evaluated two mechanisms that replace transfer in-
structions with hardware signals—(a) consumer requested forwarding (CRF)
and (b) hot-register based forwarding. In the CRF method, consumer instruc-
tions that require values from remote clusters explicitly request the value to
be forwarded by setting a bit in a structure called the inter-cluster forward

bit (IFB) table. Producer instructions, upon completion of execution, consult

153

this table to determine if the value should be forwarded to other clusters.

Inter-cluster dependence between producer and consumer instructions
is detected when the consumer instruction reaches the rename stage of the
pipeline. When such a dependence is detected the corresponding forward bit
it set in the producer cluster’s IFB table. The time between detecting the
dependence to setting the forward-bit is termed the detect-to-set delay. We
found that the benefits of the CRF policy are reduced as the detect-to-set
delay increases. For detect-to-set latencies of 3 cycles and greater the CRF

mechanism provides no performance improvement.

The hot-registers mechanism tracks the registers that are used by each
cluster and uses this information to predict where instruction outputs should
be forwarded. These predictions are made at the time the producer instruction
reaches the rename stage of the pipeline. Though the hot-register forwarding
mechanism shows improvement over the baseline this improvement is lower

than the CRF method with a 1-cycle detect-to-set delay.

The two mechanisms that we proposed to orchestrate inter-cluster com-
munication remove almost all transfer instructions. The IPC improvement
from these methods range between 1% to 9% over the baseline processor. Such
small gains in performance is not worth the additional design complexity that
these mechanisms will introduce. Transfer instructions will become a signifi-
cant bottleneck only if the pipeline is frequently full with useful instructions.
Therefore, these techniques will be useful only if researchers improve control

and memory prediction significantly.

154

In this research we also proposed steering mechanisms to reduce the
inter-cluster communication bottleneck and the per-cluster resource bottle-
neck. We proposed and examined three new steering policies—issue-balance

steering, memory steering, and critical-operand steering.

The issue-balance steering policy attempts to steer dependent instruc-
tions to the same cluster to reduce inter-cluster communication. However, if
such an assignment will result in a cluster having more ready instructions than
it can issue, instructions are re-assigned to another cluster to avoid stalls due
to limited cluster issue-bandwidth. We found that the issue-balance policy
performs better than two of the baseline steering policies—mod3 and load-
slice steering—for most benchmarks. However, it performs only as well as the

dependence steering.

The critical-operand steering policy identifies which of the two source
operands for an instruction is more critical and steers the instruction to the
cluster that has fast access to that source operand. This policy also performs
better than mod3 and load-slice steering for most benchmarks. However, on

average, it does not perform better than the dependence steering mechanism.

Memory-steering works in conjunction with the baseline policies. This
policy steers memory instructions to the cluster that will have local access to
their data. Non-memory instructions are steered based on the baseline steering

policy. Memory-steering improves IPC by 5-12% across benchmarks.

155

O = Mod3

a = Load-dlice

§ 1] mm Dependence

s 3 Memory steering (with Dep.)
= Monoalithic

= Alpha 21264

Integer Floating pt.

Figure 7.1: The IPCs of a 16-wide clustered processor, a 16-wide monolithic
processor, and an Alpha 21264-like configuration. All these simulations used
a tournament style predictor like in the Alpha-21264.

7.2 Discussion

This research proposed and evaluated several techniques to reduce the
effect of bottlenecks in clustered processors and improve their IPC. Figure 7.1
shows the IPC of the baseline clustered processor, a clustered processor that
uses the CRF policy and our best steering mechanism (memory steering in
conjunction with dependence steering), the IPC of a monolithic 16-wide pro-
cessor, and a Alpha 21264-like (6-wide) configuration. All these experiments

used a tournament style branch predictor like in the Alpha 21264.

For integer benchmarks the IPC of a 16-wide monolithic machine is

43% greater than an Alpha 21264 (6-wide). For floating-point benchmarks

156

the IPC of a 16-wide monolithic machine is 31% greater than an Alpha 21264.
Even though the issue width of the 16-wide monolithic processor is more than
double that of the Alpha 21264, the improvements in IPC are at best 43%.
It will not be worth increasing the area of the execution core (almost double)

and increasing processor power for such a small increase in TPC.

Furthermore, the issue width of the Alpha 21264 is close to that of
each cluster in the 16-wide clustered processor. Therefore, it is reasonable to
assume that a 6-wide Alpha 21264 can be clocked at the same frequency as
the 16-wide clustered processor. The IPC of the Alpha 21264 is 6% greater
than the best clustered processor configuration for integer benchmarks. For
floating-point benchmarks the IPC of the Alpha 21264 is 5% lower than the

IPC of the best clustered processor configuration.

Instruction supply is the primary bottleneck in wide-issue processors.
This bottleneck is the reason why the 16-wide clustered processor does not
show significant improvement over the Alpha 21264. It will unviable to design
wide-issue processors unless researchers improve branch prediction accuracies.
In our studies we also examined configurations that simulated perfect branch
prediction. Figure 7.2 shows the average IPC of a 16-wide clustered processor
and an Alpha 21264 processor for configurations with perfect branch predic-
tion. Using the techniques that we proposed improves the IPC of the clustered
processor significantly. For these experiments the IPC of a 16-wide clustered
processor (best case) is 53% greater than an Alpha 21264 processor for integer

benchmarks (41% for floating pt.). The clustered processor with CRF based

157

3
O 27
D_ -
=] = Mod3
§] = Load-dice
= 1_3 = Dependence
1 = Memory steering (with Dep.)
] = Monoalithic
= Alpha 21264
0 —

Integer Floating pt.

Figure 7.2: The IPCs of a 16-wide clustered processor, a 16-wide monolithic
processor, and an Alpha 21264-like configuration. All these simulations used
a perfect branch prediction.

forwarding and memory steering has an IPC that is 23% lower than a mono-
lithic machine for integer benchmarks. For floating point benchmarks the IPC

of the clustered processor is only 5% lower.

The techniques presented in this dissertation solve most of the bottle-
necks in the execution core of clustered processors. Several architectural ideas
have already been proposed to improve branch prediction [16,28, 37, 52,57, 60]
and future research will provide further improvements. The architectural ideas
proposed in this research will acquire greater significance as instruction supply

techniques improve.

158

Appendices

159

Appendix A

Pipeline Scaling Simulation Results

Benchmark Drogic
2 3 4 5 6 7 8
164.gzip 0.22 1 0.320.39 | 0.51 | 0.65 | 0.66 | 0.70
175.vpr 0.21 | 0.31 | 0.38 | 0.47 | 0.59 | 0.60 | 0.64
176.gcc 0.1810.26 | 0.32 | 0.38 | 0.45 | 0.47 | 0.50
181.mcf 0.18 [0.28 | 0.33 | 0.42 | 0.50 | 0.53 | 0.55
197.parser | 0.18 | 0.26 | 0.32 | 0.39 | 0.48 | 0.48 | 0.52
252.eon 0.19 | 0.27 | 0.34 | 0.43 | 0.51 | 0.55 | 0.60
253.perlbmk | 0.16 | 0.22 | 0.27 | 0.33 | 0.40 | 0.40 | 0.43
256.bzip2 | 0.27 | 0.38 | 0.48 | 0.55 | 0.67 | 0.68 | 0.71
171.swim | 0.49 | 0.63 | 0.77 | 0.80 | 0.83 | 0.83 | 0.83
172.mgrid | 0.37 | 0.52 | 0.68 | 0.83 | 0.95 | 1.04 | 1.13
173.applu | 0.26 | 0.36 | 0.46 | 0.54 | 0.60 | 0.64 | 0.67
177.mesa | 0.23 | 0.33 | 0.42 | 0.52 | 0.62 | 0.67 | 0.73
178.galgel | 0.26 | 0.37 | 0.48 | 0.60 | 0.68 | 0.79 | 0.85
179.art 0.17{0.23 | 0.28 | 0.31 | 0.34 | 0.35 | 0.37
183.equake | 0.20 [0.30 | 0.37 | 0.47 | 0.59 | 0.58 | 0.64
188.ammp | 0.05 | 0.07| 0.09 | 0.10 | 0.11 | 0.11 | 0.12
189.lucas | 0.28 | 0.41 | 0.53 | 0.67 | 0.78 | 0.93 | 0.99

Table A.1: The TPCs of SPEC 2000 benchmarks at pipeline depths corre-
sponding to ¢y,gic between 2 and 8 FO4

160

Benchmark Drogic
9 10 11 12 13 14 15 16
164.gzip 0.88 | 0.95|0.97 | 0.98 | 0.98 | 0.98 | 1.04 | 1.04
175.vpr 0.79 | 0.86 | 0.88 | 0.88 | 0.88 | 0.89 | 0.97 | 0.97
176.gcc 0.57 | 0.63 | 0.65 | 0.65 | 0.66 | 0.66 | 0.69 | 0.69
181.mcf 0.65|0.72 | 0.75|0.74 | 0.75 | 0.75 | 0.78 | 0.78
197.parser | 0.62 | 0.67 | 0.69 | 0.70 | 0.70 | 0.70 | 0.73 | 0.73
252.eon 0.68 | 0.76 | 0.78 | 0.83 | 0.84 | 0.88 | 0.93 | 0.93
253.perlbmk | 0.50 | 0.55 | 0.57 | 0.57 | 0.57 | 0.58 | 0.62 | 0.62
256.bzip2 | 0.83 | 0.91 | 0.96 | 0.96 | 0.96 | 0.96 | 1.01 | 1.01
171.swim | 0.83 | 0.84 | 0.84 | 0.84 | 0.84 | 0.85 | 0.85 | 0.88
172.mgrid 1.22 1130132 (1.38|1.39|1.43 | 1.45 | 1.45
173.applu 0.7110.76 | 0.74 |1 0.79 | 0.79 | 0.81 | 0.82 | 0.82
177.mesa | 0.83 | 0.93 | 0.93 | 0.98 | 0.99 | 1.04 | 1.09 | 1.08
178.galgel | 0.94 | 1.04 | 1.03 | 1.15 | 1.15 | 1.28 | 1.29 | 1.28
179.art 0.381040(0.41|0.42 |0.42 | 042 |0.42|0.42
183.equake | 0.75 | 0.82 | 0.85 | 0.86 | 0.86 | 0.86 | 0.90 | 0.90
188.ammp | 0.13 | 0.14 | 0.14 | 0.15 | 0.15 | 0.15 | 0.16 | 0.16
189.1ucas 1.10 1 1.22 1 1.25|1.36 | 1.36 | 1.51 | 1.51 | 1.51

Table A.2: The TPCs of SPEC 2000 benchmarks at pipeline depths corre-
sponding to ¢iygic between 9 and 16 FO4

161

Appendix B

Clustered Processor Simulation Results

B.1 The Baseline Clustered Processor

Benchmark | Monolithic | Mod3 | Load-slice | Dependence
164.gzip 3.47 1.77 1.77 2.16
175.vpr 1.98 0.96 1.22 1.17
176.gcc 1.83 1.48 1.35 1.44
181.mcf 0.11 0.11 0.11 0.11

197.parser 2.65 1.37 1.54 1.71
252.eon 4.29 2.31 2.50 2.92

253.perlbmk 2.03 0.98 0.99 1.04

254.gap 3.77 1.17 1.31 1.43
256.bzip2 3.75 3.42 3.55 3.59
171.swim 0.60 0.60 0.60 0.60
172.mgrid 1.28 1.23 1.18 1.19
173.applu 0.62 0.59 0.57 0.59
177.mesa 4.85 2.72 2.28 2.89
178.galgel 4.13 2.44 3.11 3.29

179.art 0.38 0.38 0.37 0.38

183.equake 3.92 2.88 3.15 2.54

188.ammp 2.01 1.43 1.50 1.54
189.1ucas 0.40 0.40 0.40 0.40

Table B.1: The IPCs of a monolithic and a 16-wide 4-cluster processor. These
configurations simulated perfect branch prediction and perfect memory dis-
ambiguation.

162

Benchmark | Monolithic | Mod3 | Load-slice | Dependence
164.gzip 1.79 0.73 0.92 0.99
175.vpr 0.93 0.47 0.60 0.61
176.gcc 1.13 0.90 0.95 0.99
181.mcf 0.11 0.11 0.11 0.11

197.parser 1.36 0.73 0.91 0.96
252.eon 1.38 0.62 0.67 0.75

253.perlbmk 0.93 0.44 0.47 0.53

254.gap 1.28 0.53 0.63 0.66
256.bzip2 2.65 1.08 1.35 1.49
171.swim 0.60 0.60 0.60 0.60
172.mgrid 1.25 1.15 1.19 1.17
173.applu 0.59 0.55 0.55 0.56
177.mesa 1.98 0.97 1.12 1.24
178.galgel 3.74 2.31 3.25 2.90

179.art 0.35 0.34 0.35 0.35

183.equake 2.59 0.90 1.09 1.18

188.ammp 1.44 0.93 1.09 1.15
189.1ucas 0.40 0.40 0.40 0.40

Table B.2: The IPCs of a monolithic and a 16-wide 4-cluster processor. These
configurations simulated Alpha 21264-like branch prediction and memory de-
pendence prediction.

163

Benchmark | Monolithic | Mod3 | Load-slice | Dependence
164.gzip 3.24 1.35 1.03 1.31
175.vpr 1.95 0.88 1.06 0.99
176.gcc 1.79 1.14 0.90 1.02
181.mcf 0.11 0.11 0.10 0.10

197.parser 2.52 1.17 1.05 1.25
252.eon 4.29 1.75 1.36 1.71

253.perlbmk 1.86 0.85 0.73 0.79

254.gap 3.41 1.09 0.96 1.23
256.bzip2 3.67 2.24 2.58 2.83
171.swim 0.60 0.60 0.60 0.60
172.mgrid 1.27 1.20 1.10 1.11
173.applu 0.61 0.57 0.52 0.56
177.mesa 4.58 1.77 1.18 1.52
178.galgel 4.13 2.43 2.59 3.02

179.art 0.38 0.37 0.36 0.37

183.equake 3.92 1.90 1.66 1.28

188.ammp 1.97 1.20 1.00 1.04
189.1ucas 0.40 0.40 0.40 0.40

Table B.3: The IPCs of a monolithic and a 8wide 4-cluster processor. These
configurations simulated perfect branch prediction and perfect memory dis-
ambiguation.

164

Benchmark | Monolithic | Mod3 | Load-slice | Dependence
164.gzip 5.12 1.94 2.32 2.66
175.vpr 2.05 1.01 1.29 1.25
176.gcc 1.98 1.55 1.54 1.61
181.mcf 0.11 0.11 0.11 0.11

197.parser 2.98 1.42 1.70 1.86
252.eon 6.48 2.51 3.33 3.67

253.perlbmk 2.26 1.02 1.12 1.16

254.gap 4.02 1.20 1.41 1.48
256.bzip2 6.67 4.09 4.79 5.95
171.swim 0.60 0.60 0.60 0.60
172.mgrid 1.28 1.24 1.19 1.21
173.applu 0.63 0.60 0.60 0.61
177.mesa 8.13 3.13 3.39 3.96
178.galgel 4.13 2.44 3.02 3.27

179.art 0.38 0.38 0.38 0.38

183.equake 8.49 3.42 4.58 4.27

188.ammp 2.48 1.54 1.86 1.94
189.1ucas 0.40 0.40 0.40 0.40

Table B.4: The IPCs of a monolithic and a 32-wide 4-cluster processor. These
configurations simulated perfect branch prediction and perfect memory dis-
ambiguation.

165

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 2.39 1.80 2.34
175.vpr 1.38 1.33 1.19
176.gcc 1.69 1.36 1.45
181.mcf 0.11 0.11 0.11
197.parser 1.84 1.59 1.75
252.eon 3.17 2.50 2.98
253.perlbmk | 1.16 0.99 1.05
254.gap 1.75 1.33 1.53
256.bzip2 3.61 3.60 3.62
171.swim 0.60 0.60 0.60
172.mgrid 1.27 1.19 1.20
173.applu 0.62 0.57 0.60
177.mesa 4.35 2.29 3.11
178.galgel 2.88 3.54 3.49

179.art 0.38 0.37 0.38

183.equake | 3.74 3.63 2.74

188.ammp 1.70 1.53 1.60
189.1ucas 0.40 0.40 0.40

Table B.5: The IPC of an 16-wide 4-cluster processor with no transfer instruc-
tions. These configurations simulated perfect branch prediction and perfect
memory disambiguation.

166

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 0.93 0.98 1.03
175.vpr 0.56 0.61 0.63
176.gcc 0.96 1.00 1.00
181.mcf 0.11 0.11 0.11
197.parser 0.86 0.95 1.00
252.eon 0.74 0.71 0.77
253.perlbmk | 0.52 0.50 0.54
254.gap 0.63 0.67 0.70
256.bzip2 | 1.32 1.43 1.53
171.swim 0.60 0.60 0.60
172.mgrid 1.20 1.21 1.20
173.applu 0.55 0.56 0.56
177.mesa 1.15 1.21 1.30
178.galgel 2.65 3.34 3.18

179.art 0.35 0.35 0.35
183.equake | 1.20 1.17 1.24
188.ammp 1.05 1.14 1.23
189.1ucas 0.40 0.40 0.40

Table B.6: The IPC of an 16-wide 4-cluster processor with no transfer instruc-
tions. These configurations simulated Alpha 21264-like branch prediction and
memory dependence prediction.

167

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 2.18 1.06 1.51
175.vpr 1.35 1.18 1.03
176.gcc 1.65 0.90 1.05
181.mcf 0.11 0.11 0.11
197.parser 1.77 1.12 1.33
252.eon 3.04 1.36 1.77
253.perlbmk | 1.10 0.73 0.81
254.gap 1.69 0.98 1.33
256.bzip2 3.60 3.03 3.36
171.swim 0.60 0.60 0.60
172.mgrid 1.27 1.11 1.15
173.applu 0.61 0.52 0.57
177.mesa 3.87 1.19 1.75
178.galgel 2.88 3.40 3.46

179.art 0.38 0.36 0.37

183.equake | 3.40 2.11 1.40

188.ammp 1.66 1.05 1.12
189.1ucas 0.40 0.40 0.40

Table B.7: The IPC of an 8-wide 4-cluster processor with no transfer instruc-
tions. These configurations simulated perfect branch prediction and perfect
memory disambiguation.

168

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 2.53 2.33 2.71
175.vpr 1.41 1.40 1.26
176.gcc 1.76 1.54 1.61
181.mcf 0.11 0.11 0.11
197.parser 1.91 1.74 1.88
252.eon 3.44 3.33 3.70
253.perlbmk | 1.19 1.12 1.16
254.gap 1.78 1.42 1.58
256.bzip2 4.69 4.85 5.97
171.swim 0.60 0.60 0.60
172.mgrid 1.28 1.19 1.21
173.applu 0.62 0.60 0.61
177.mesa 4.83 3.39 4.06
178.galgel 2.88 3.38 3.40

179.art 0.38 0.38 0.38

183.equake | 5.19 5.30 4.40

188.ammp 1.84 1.89 1.99
189.1ucas 0.40 0.40 0.40

Table B.8: The IPC of an 32-wide 4-cluster processor with no transfer instruc-
tions. These configurations simulated perfect branch prediction and perfect
memory disambiguation.

169

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 2.54 1.95 2.37
175.vpr 1.31 1.46 1.33
176.gcc 1.62 1.37 1.47
181.mcf 0.11 0.11 0.11
197.parser 1.81 1.65 1.83
252.eon 3.18 2.62 3.12
253.perlbmk | 1.33 1.16 1.23
254.gap 2.18 1.87 2.34
256.bzip2 3.58 3.57 3.62
171.swim 0.60 0.60 0.60
172.mgrid 1.24 1.19 1.19
173.applu 0.59 0.57 0.59
177.mesa 3.34 2.32 3.01
178.galgel 3.32 3.70 3.77

179.art 0.38 0.37 0.38

183.equake | 3.71 3.30 2.56

188.ammp 1.78 1.54 1.60
189.1ucas 0.40 0.40 0.40

Table B.9: The IPC of an 16-wide 4-cluster processor without the inter-cluster
communication bottleneck. These configurations simulated perfect branch pre-
diction and perfect memory disambiguation.

170

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 1.39 1.33 1.39
175.vpr 0.75 0.76 0.76
176.gcc 1.06 1.07 1.07
181.mcf 0.10 0.10 0.10
197.parser 1.12 1.13 1.15
252.eon 1.12 1.05 1.10
253.perlbmk | 0.74 0.68 0.71
254.gap 1.09 1.10 1.12
256.bzip2 2.22 2.40 2.47
171.swim 0.60 0.60 0.60
172.mgrid 1.21 1.21 1.20
173.applu 0.57 0.57 0.57
177.mesa 1.64 1.62 1.72
178.galgel 3.26 3.57 3.44

179.art 0.35 0.35 0.35
183.equake 1.91 1.99 2.14
188.ammp 1.29 1.32 1.35
189.1ucas 0.40 0.40 0.40

Table B.10: The IPC of an 16-wide 4-cluster processor without the inter-cluster
communication bottleneck. These configurations simulated Alpha 21264-like
branch prediction and memory dependence prediction.

171

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 1.62 1.05 1.35
175.vpr 1.15 1.21 1.08
176.gcc 1.30 0.91 1.03
181.mcf 0.11 0.10 0.10
197.parser 1.43 1.07 1.28
252.eon 2.06 1.37 1.74
253.perlbmk | 1.07 0.79 0.87
254.gap 1.65 1.02 1.70
256.bzip2 | 2.29 2.59 2.83
171.swim 0.60 0.60 0.60
172.mgrid 1.22 1.10 1.11
173.applu 0.57 0.52 0.56
177.mesa 1.88 1.19 1.54
178.galgel 3.22 2.62 3.11

179.art 0.37 0.36 0.37

183.equake | 2.08 1.68 1.28

188.ammp 1.32 1.01 1.06
189.1ucas 0.40 0.39 0.40

Table B.11: The IPC of an 8-wide 4-cluster processor without the inter-cluster
communication bottleneck. These configurations simulated perfect branch pre-
diction and perfect memory disambiguation.

172

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 3.20 2.86 3.25
175.vpr 1.42 1.58 1.46
176.gcc 1.73 1.59 1.66
181.mcf 0.11 0.11 0.11
197.parser 1.96 1.92 2.05
252.eon 4.01 4.13 4.67
253.perlbmk | 1.46 1.41 1.47
254.gap 2.33 2.38 2.58
256.bzip2 6.26 6.36 6.43
171.swim 0.60 0.60 0.60
172.mgrid 1.26 1.20 1.21
173.applu 0.61 0.60 0.61
177.mesa 4.72 3.78 4.80
178.galgel 3.33 3.65 3.75

179.art 0.38 0.38 0.38

183.equake | 5.81 5.47 4.77

188.ammp 2.12 2.06 2.10
189.1ucas 0.40 0.40 0.40

Table B.12: The IPC of an 32-wide 4-cluster processor without the inter-cluster
communication bottleneck. These configurations simulated perfect branch pre-
diction and perfect memory disambiguation.

173

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 2.08 3.00 3.00
175.vpr 1.19 1.76 1.76
176.gcc 1.48 1.83 1.83
181.mcf 0.11 0.11 0.11
197.parser 1.74 2.46 2.46
252.eon 2.56 4.09 4.09
253.perlbmk | 1.51 1.78 1.78
254.gap 1.78 2.36 2.36
256.bzip2 3.43 3.74 3.74
171.swim 0.61 0.61 0.61
172.mgrid 1.23 1.33 1.32
173.applu 0.60 0.58 0.60
177.mesa 2.72 4.10 4.05
178.galgel 2.45 3.11 3.44

179.art 0.38 0.38 0.38

183.equake | 2.89 3.31 3.72

188.ammp 1.44 1.92 1.88
189.1ucas 0.40 0.40 0.40

Table B.13: The IPC of an 16-wide 4-cluster processor without the cluster
resource limitation bottleneck. These configurations simulated perfect branch
prediction and perfect memory disambiguation.

174

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 0.77 1.32 1.36
175.vpr 0.51 0.76 0.77
176.gcc 0.92 0.97 1.04
181.mcf 0.11 0.11 0.11
197.parser 0.79 1.11 1.14
252.eon 0.65 0.95 1.01
253.perlbmk | 0.50 0.70 0.74
254.gap 0.53 0.77 0.80
256.bzip2 1.11 1.53 1.62
171.swim 0.61 0.61 0.61
172.mgrid 1.15 1.22 1.19
173.applu 0.57 0.56 0.57
177.mesa 1.00 1.39 1.45
178.galgel 2.35 3.35 2.93

179.art 0.35 0.35 0.35

183.equake | 0.96 1.62 1.59

188.ammp 0.95 1.18 1.17
189.1ucas 0.40 0.40 0.40

Table B.14: The IPC of an 16-wide 4-cluster processor without the cluster
resource limitation bottleneck. These configurations simulated Alpha 21264-
like branch prediction and memory dependence prediction.

175

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 2.14 3.10 3.01
175.vpr 1.22 1.67 1.83
176.gcc 1.15 1.79 1.76
181.mcf 0.11 0.11 0.11
197.parser 1.65 2.43 241
252.eon 2.70 3.89 3.90
253.perlbmk | 1.40 1.81 1.77
254.gap 2.25 3.03 2.73
256.bzip2 2.27 3.23 3.14
171.swim 0.61 0.61 0.61
172.mgrid 1.27 1.27 1.25
173.applu 0.57 0.62 0.60
177.mesa 2.48 4.20 4.25
178.galgel 2.91 3.31 3.62

179.art 0.37 0.38 0.38

183.equake | 2.25 3.45 3.41

188.ammp 1.49 1.92 1.88
189.1ucas 0.40 0.40 0.40

Table B.15: The IPC of an 8-wide 4-cluster processor without the cluster
resource limitation bottleneck. These configurations simulated perfect branch
prediction and perfect memory disambiguation.

176

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 2.62 3.56 4.38
175.vpr 1.25 1.66 1.85
176.gcc 1.59 1.94 1.94
181.mcf 0.11 0.11 0.11
197.parser 1.97 2.73 2.77
252.eon 3.58 5.69 5.45
253.perlbmk | 1.27 1.88 1.76
254.gap 1.61 2.65 2.23
256.bzip2 4.09 5.04 6.18
171.swim 0.61 0.61 0.61
172.mgrid 1.24 1.27 1.27
173.applu 0.61 0.63 0.63
177.mesa 3.75 5.24 6.20
178.galgel 2.82 3.14 3.53

179.art 0.38 0.39 0.39

183.equake | 3.74 5.93 6.87

188.ammp 1.61 2.25 2.27
189.1ucas 0.40 0.40 0.40

Table B.16: The IPC of an 32-wide 4-cluster processor without the cluster
resource limitation bottleneck. These configurations simulated perfect branch
prediction and perfect memory disambiguation.

177

B.2 Register Caching

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 1.89 1.78 2.20
175.vpr 1.03 1.24 1.17
176.gcc 1.54 1.36 1.45
181.mcf 0.11 0.11 0.11
197.parser 1.46 1.55 1.71
252.eon 2.54 2.50 2.95
253.perlbmk | 1.02 0.99 1.04
254.gap 1.26 1.32 1.44
256.bzip2 3.48 3.56 3.60
171.swim 0.61 0.61 0.61
172.mgrid 1.25 1.19 1.20
173.applu 0.61 0.58 0.60
177.mesa 3.14 2.28 2.92
178.galgel 2.46 3.12 3.35

179.art 0.38 0.38 0.38

183.equake | 3.17 3.21 2.55

188.ammp 1.46 1.51 1.56
189.lucas 0.40 0.40 0.40

Table B.17: The IPC of an 16-wide 4-cluster processor with register caching.
These configurations simulated perfect branch prediction and perfect memory
disambiguation.

178

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 0.74 0.93 1.01
175.vpr 0.48 0.60 0.62
176.gcc 0.92 0.97 1.00
181.mcf 0.11 0.11 0.11
197.parser 0.75 0.91 0.97
252.eon 0.63 0.68 0.76
253.perlbmk | 0.45 0.48 0.53
254.gap 0.53 0.63 0.67
256.bzip2 1.09 1.37 1.47
171.swim 0.61 0.61 0.61
172.mgrid 1.15 1.20 1.18
173.applu 0.55 0.56 0.56
177.mesa 0.99 1.13 1.26
178.galgel 2.33 3.32 291

179.art 0.35 0.35 0.35
183.equake | 0.90 1.09 1.20
188.ammp 0.95 1.09 1.15
189.1ucas 0.40 0.40 0.40

Table B.18: The IPC of an 16-wide 4-cluster processor with register caching.
These configurations simulated Alpha 21264-like branch prediction and mem-
ory dependence prediction.

179

B.3 Consumer-requested Forwarding

Benchmark Detect-to-set delay

1 2 3 4
164.gzip 237 (216|182 | 1.68
175.vpr 1.33 | 1.16 | 0.79 | 0.77
176.gcc 1.68 | 1.63 | 1.53 | 1.51
181.mcf 0.11 { 0.11 | 0.11 | 0.11
197.parser | 1.79 | 1.48 | 1.20 | 1.13
252.eon 3.10 | 248 | 1.87 | 1.77
253.perlbmk | 1.15 | 1.09 | 1.03 | 1.01
254.gap 1.66 | 0.99 | 0.84 | 0.78
256.bzip2 | 3.60 | 3.30 | 1.81 | 1.70
171.swim | 0.60 | 0.60 | 0.60 | 0.60
172.mgrid | 1.27 | 1.24 | 1.15 | 1.02
173.applu | 0.62 | 0.60 | 0.58 | 0.56
177.mesa | 4.20 | 3.05 | 2.08 | 1.92
178.galgel | 2.83 | 1.83 | 1.34 | 1.26
179.art 0.38 | 0.38 | 0.37 | 0.36
183.equake | 3.66 | 3.04 | 2.65 | 2.06
188.ammp | 1.68 | 1.59 | 1.29 | 1.23
189.lucas | 0.40 | 0.40 | 0.40 | 0.40

Table B.19: The IPC of an 16-wide 4-cluster processor with consumer re-
quested forwarding for different detect-to-set latencies. These simulations used
the dual-wakeup policy to avoid deadlocks and used mod3 steering. These
configurations simulated perfect branch prediction and perfect memory dis-
ambiguation.

180

Benchmark Detect-to-set delay

1 2 3 4
164.gzip 1.80 | 1.80 | 1.80 | 1.80
175.vpr 1.33 | 1.20 | 0.97 | 0.95
176.gcc 1.36 | 1.36 | 1.36 | 1.36
181.mcf 0.11 | 0.11 | 0.11 | 0.11
197.parser | 1.59 | 1.57 | 1.56 | 1.54
252.eon 2.50 | 2.50 | 2.50 | 2.50
253.perlbmk | 0.99 | 0.99 | 0.99 | 0.99
254.gap 1.33 | 1.31 | 1.30 | 1.29
256.bzip2 | 3.60 | 3.56 | 3.49 | 3.45
171.swim | 0.60 | 0.60 | 0.60 | 0.60
172.mgrid | 1.19 | 1.19 | 1.18 | 1.18
173.applu | 0.57 | 0.57 | 0.57 | 0.57
177.mesa | 2.29 | 2.29 | 2.29 | 2.29
178.galgel | 3.41 | 3.20 | 2.98 | 2.78
179.art 0.37 | 0.37 | 0.37 | 0.37
183.equake | 3.62 | 3.60 | 3.55 | 3.49
188.ammp | 1.50 | 1.50 | 1.49 | 1.49
189.lucas | 0.40 | 0.40 | 0.40 | 0.40

Table B.20: The IPC of an 16-wide 4-cluster processor with consumer re-
quested forwarding for different detect-to-set latencies. These simulations used
the dual-wakeup policy to avoid deadlocks and used load-slice steering. These
configurations simulated perfect branch prediction and perfect memory dis-

ambiguation.

181

Benchmark

Detect-to-set delay

1 2 3 4

164.gzip 2.34 | 2.34 | 2.33 | 2.32
175.vpr 1.18 | 1.15 | 1.13 | 1.12
176.gcc 145|145 | 145 | 1.44
181.mcf 0.11 { 0.11 | 0.11 | 0.11
197.parser | 1.75 | 1.73 | 1.70 | 1.67
252.eon 2.99 | 2.98 | 2.98 | 2.98
253.perlbmk | 1.05 | 1.05 | 1.05 | 1.05
254.gap 1.53 | 1.50 | 1.33 | 1.31
256.bzip2 | 3.62 | 3.62 | 3.59 | 3.52
171.swim | 0.60 | 0.60 | 0.60 | 0.60
172.mgrid | 1.20 | 1.20 | 1.19 | 1.19
173.applu | 0.60 | 0.60 | 0.60 | 0.60
177.mesa | 3.09 | 3.09 | 3.07 | 3.06
178.galgel | 3.52 | 3.14 | 2.53 | 2.35
179.art 0.38 | 0.38 | 0.38 | 0.38
183.equake | 2.74 | 2.74 | 2.74 | 2.74
188.ammp | 1.60 | 1.60 | 1.60 | 1.62
189.lucas | 0.40 | 0.40 | 0.40 | 0.40

Table B.21: The IPC of an 16-wide 4-cluster processor with consumer re-
quested forwarding for different detect-to-set latencies.
used the dual-wakeup policy to avoid deadlocks and used dependence steering.
These configurations simulated perfect branch prediction and perfect memory

disambiguation.

182

These simulations

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 0.83 0.96 1.02
175.vpr 0.52 0.61 0.62
176.gcc 0.95 0.98 1.01
181.mcf 0.10 0.10 0.10
197.parser 0.78 0.89 0.98
252.eon 0.66 0.70 0.76
253.perlbmk | 0.47 0.49 0.53
254.gap 0.57 0.66 0.69
256.bzip2 1.23 1.42 1.52
171.swim 0.60 0.60 0.60
172.mgrid 1.18 1.21 1.19
173.applu 0.55 0.56 0.56
177.mesa 1.04 1.18 1.27
178.galgel 2.62 3.34 3.25

179.art 0.35 0.35 0.35
183.equake | 0.97 1.15 1.22
188.ammp 1.02 1.12 1.18
189.lucas 0.40 0.40 0.40

Table B.22: The IPC of an 16-wide 4-cluster processor with consumer re-
quested forwarding. These simulations used the dual-wakeup policy to avoid
deadlocks and assumed a 1-cycle detect-to-set latency. These configurations
simulated Alpha 21264-like branch prediction and memory dependence pre-
diction.

183

Benchmark Detect-to-set delay

1 2 3 4
164.gzip 2.37 (217|186 | 1.73
175.vpr 1.33 | 1.17 | 0.80 | 0.77
176.gcc 1.68 | 1.63 | 1.54 | 1.51
181.mcf 0.11 | 0.11 | 0.11 | 0.11
197.parser | 1.79 | 1.49 | 1.21 | 1.15
252.eon 3.10 [2.51 | 1.96 | 1.86
253.perlbmk | 1.15 | 1.10 | 1.04 | 1.01
254.gap 1.66 | 1.00 | 0.85 | 0.79
256.bzip2 | 3.60 | 3.34 | 1.86 | 1.74
171.swim | 0.60 | 0.60 | 0.60 | 0.60
172.mgrid | 1.27 | 1.25 | 1.17 | 1.02
173.applu | 0.62 | 0.60 | 0.58 | 0.57
177.mesa | 4.20 | 3.16 | 2.21 | 2.04
178.galgel | 2.83 | 1.86 | 1.38 | 1.30
179.art 0.38 | 0.38 | 0.37 | 0.36
183.equake | 3.66 | 3.18 | 2.75 | 2.23
188.ammp | 1.68 | 1.59 | 1.31 | 1.25
189.lucas | 0.40 | 0.40 | 0.40 | 0.40

Table B.23: The IPC of an 16-wide 4-cluster processor with consumer re-
quested forwarding for different detect-to-set latencies. These simulations used
the pro-active operand fetch policy to avoid deadlocks and used mod3 steering.
These configurations simulated perfect branch prediction and perfect memory
disambiguation.

184

Benchmark Detect-to-set delay

1 2 3 4
164.gzip 1.80 | 1.80 | 1.80 | 1.80
175.vpr 1.33 | 1.21 | 0.99 | 0.96
176.gcc 1.36 | 1.36 | 1.36 | 1.36
181.mcf 0.11 | 0.11 | 0.11 | 0.11
197.parser | 1.59 | 1.57 | 1.55 | 1.52
252.eon 2.50 | 2.50 | 2.50 | 2.50
253.perlbmk | 0.99 | 0.99 | 0.99 | 0.99
254.gap 1.33 | 1.31 | 1.30 | 1.29
256.bzip2 | 3.60 | 3.57 | 3.49 | 3.46
171.swim | 0.60 | 0.60 | 0.60 | 0.60
172.mgrid | 1.19 | 1.19 | 1.18 | 1.18
173.applu | 0.57 | 0.57 | 0.57 | 0.57
177.mesa | 2.29 | 2.29 | 2.29 | 2.29
178.galgel | 3.41 | 3.21 | 3.01 | 2.86
179.art 0.37 | 0.37 | 0.37 | 0.37
183.equake | 3.62 | 3.60 | 3.54 | 3.49
188.ammp | 1.50 | 1.50 | 1.50 | 1.49
189.lucas | 0.40 | 0.40 | 0.40 | 0.40

Table B.24: The IPC of an 16-wide 4-cluster processor with consumer re-
quested forwarding for different detect-to-set latencies. These simulations
used the pro-active operand fetch policy to avoid deadlocks and used load-
slice steering. These configurations simulated perfect branch prediction and
perfect memory disambiguation.

185

Benchmark Detect-to-set delay

1 2 3 4
164.gzip 2.34 | 2.34 | 2.33 | 2.32
175.vpr 1.18 | 1.15 | 1.13 | 1.13
176.gcc 145|145 | 145 | 1.44
181.mcf 0.11 | 0.11 | 0.11 | 0.11
197.parser | 1.75 | 1.73 | 1.71 | 1.69
252.eon 2.99 | 2.99 | 2.99 | 2.98
253.perlbmk | 1.05 | 1.05 | 1.05 | 1.05
254.gap 1.53 | 1.50 | 1.33 | 1.31
256.bzip2 | 3.62 | 3.62 | 3.59 | 3.54
171.swim | 0.60 | 0.60 | 0.60 | 0.60
172.mgrid | 1.21 | 1.20 | 1.19 | 1.19
173.applu | 0.60 | 0.60 | 0.60 | 0.60
177.mesa | 3.09 | 3.09 | 3.07 | 3.06
178.galgel | 3.52 | 3.14 | 2.54 | 2.37
179.art 0.38 | 0.38 | 0.38 | 0.38
183.equake | 2.74 | 2.74 | 2.74 | 2.74
188.ammp | 1.60 | 1.60 | 1.62 | 1.58
189.lucas | 0.40 | 0.40 | 0.40 | 0.40

Table B.25: The IPC of an 16-wide 4-cluster processor with consumer re-
quested forwarding for different detect-to-set latencies. These simulations used
the pro-active operand fetch policy to avoid deadlocks and used dependence
steering. These configurations simulated perfect branch prediction and perfect

memory disambiguation.

186

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 0.83 0.96 1.02
175.vpr 0.52 0.61 0.62
176.gcc 0.95 0.98 1.00
181.mcf 0.10 0.10 0.10

197.parser 0.79 0.92 0.98
252.eon 0.66 0.70 0.76

253.perlbmk | 0.47 0.49 0.53

254.gap 0.58 0.66 0.69
256.bzip2 1.23 1.42 1.52
171.swim 0.60 0.60 0.60
172.mgrid 1.18 1.21 1.19
173.applu 0.55 0.56 0.56
177.mesa 1.05 1.18 1.28
178.galgel 2.62 3.34 3.25

179.art 0.35 0.35 0.35
183.equake | 0.98 1.15 1.22
188.ammp 1.03 1.11 1.18
189.lucas 0.40 0.40 0.40

Table B.26: The IPC of an 16-wide 4-cluster processor with consumer re-
quested forwarding. These simulations used the pro-active operand fetch pol-
icy to avoid deadlocks and assumed a 1-cycle detect-to-set latency. These
configurations simulated Alpha 21264-like branch prediction and memory de-
pendence prediction.

187

B.4 Hot-register Based Forwarding

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 2.03 1.77 2.19
175.vpr 1.14 1.30 1.17
176.gcc 1.64 1.35 1.44
181.mcf 0.11 0.11 0.11
197.parser 1.61 1.55 1.72
252.eon 2.75 2.50 2.95
253.perlbmk | 1.07 0.99 1.04
254.gap 1.44 1.32 1.46
256.bzip2 3.51 3.58 3.60
171.swim 0.60 0.60 0.60
172.mgrid 1.26 1.18 1.20
173.applu 0.60 0.57 0.59
177.mesa 3.35 2.27 2.93
178.galgel 2.53 3.17 3.33

179.art 0.38 0.37 0.38

183.equake | 3.41 3.39 2.58

188.ammp 1.59 1.51 1.60
189.lucas 0.40 0.40 0.40

Table B.27: The IPC of an 16-wide 4-cluster processor with hot-register based
forwarding. These simulations used the pro-active operand fetch policy to
avoid deadlocks. These configurations simulated perfect branch prediction
and perfect memory disambiguation.

188

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 0.77 0.93 1.00
175.vpr 0.50 0.60 0.61
176.gcc 0.92 0.96 0.98
181.mcf 0.10 0.10 0.10

197.parser 0.78 0.91 0.97
252.eon 0.64 0.69 0.75

253.perlbmk | 0.45 0.48 0.52

254.gap 0.55 0.64 0.67
256.bzip2 1.14 1.38 1.45
171.swim 0.60 0.60 0.60
172.mgrid 1.15 1.20 1.17
173.applu 0.54 0.55 0.56
177.mesa 1.00 1.13 1.24
178.galgel 2.40 3.24 2.92

179.art 0.35 0.35 0.35
183.equake | 0.94 1.10 1.20
188.ammp 0.98 1.10 1.16
189.lucas 0.40 0.40 0.40

Table B.28: The IPC of an 16-wide 4-cluster processor with hot-register based
forwarding. These simulations used the pro-active operand fetch policy to
avoid deadlocks. These configurations simulated Alpha 21264-like branch pre-
diction and memory dependence prediction.

189

B.5 Memory Instruction Steering

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 2.59 2.44 2.89
175.vpr 1.51 1.56 1.64
176.gcc 1.69 1.63 1.76
181.mcf 0.11 0.11 0.11
197.parser 1.89 2.01 2.15
252.eon 3.53 3.65 4.00
253.perlbmk | 1.39 1.37 1.45
254.gap 2.25 1.92 2.37
256.bzip2 3.73 3.74 3.74
171.swim 0.60 0.60 0.60
172.mgrid 1.27 1.21 1.27
173.applu 0.62 0.59 0.62
177.mesa 4.57 4.15 4.74
178.galgel 2.84 3.41 3.41

179.art 0.38 0.38 0.38

183.equake | 3.90 3.92 3.95

188.ammp 1.75 1.82 1.94
189.lucas 0.40 0.40 0.40

Table B.29: The IPC of an 16-wide 4-cluster processor with ideal memory-
steering. These configurations simulated perfect branch prediction and perfect
memory disambiguation. Also, the configurations in these experiments used
the CRF method to remove transfer instructions.

190

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 2.37 2.51 2.45
175.vpr 1.34 1.39 1.44
176.gcc 1.68 1.59 1.73
181.mcf 0.11 0.11 0.11
197.parser 1.80 1.79 2.05
252.eon 3.34 3.45 3.83
253.perlbmk | 1.28 1.26 1.32
254.gap 1.66 1.38 1.74
256.bzip2 3.72 3.71 3.73
171.swim 0.60 0.60 0.60
172.mgrid 1.27 1.21 1.27
173.applu 0.62 0.59 0.62
177.mesa 4.49 4.10 4.73
178.galgel 2.83 3.66 3.52

179.art 0.38 0.37 0.38

183.equake | 3.87 3.91 3.93

188.ammp 1.73 1.73 1.90
189.lucas 0.40 0.40 0.40

Table B.30: The IPC of an 16-wide 4-cluster processor with memory-steering
using the last-cluster prediction method. These configurations simulated per-
fect branch prediction and perfect memory disambiguation. Also, the con-
figurations in these experiments used the CRF method to remove transfer
instructions.

191

Benchmark | Mod3 | Load-slice | Dependence
164.gzip 0.89 0.98 1.07
175.vpr 0.55 0.58 0.60
176.gcc 0.96 0.98 0.98
181.mcf 0.11 0.11 0.11

197.parser 0.79 0.88 0.96
252.eon 0.75 0.77 0.83

253.perlbmk | 0.54 0.55 0.58
254.gap 0.58 0.64 0.67

256.bzip2 1.58 1.82 1.92
171.swim 0.60 0.60 0.60
172.mgrid 1.18 1.20 1.20
173.applu 0.55 0.56 0.56
177.mesa 1.26 141 1.55
178.galgel 2.62 3.24 3.22
179.art 0.34 0.35 0.35
183.equake | 1.28 1.44 1.64
188.ammp 1.11 1.20 1.27
189.lucas 0.40 0.40 0.40

Table B.31: The IPC of an 16-wide 4-cluster processor with memory-steering
using the last-cluster prediction method. These configurations simulated Al-
pha 21264-like branch prediction and memory dependence prediction. Also,
the configurations in these experiments used the CRF method to remove trans-
fer instructions.

192

B.6 Critical Operand Steering

Benchmark | Critical Operand
164.gzip 1.00
175.vpr 0.58
176.gcc 1.00
181.mcf 0.11

197 .parser 0.98
252.eon 0.71

253.perlbmk 0.52

254.gap 0.70
256.bzip2 1.56
171.swim 0.60
172.mgrid 1.19
173.applu 0.55
177.mesa 1.22
178.galgel 2.63

179.art 0.35

183.equake 1.23

188.ammp 1.12

189.lucas 0.40

Table B.32: The IPC of an 16-wide 4-cluster processor with critical-operand
steering. These configurations simulated Alpha 21264-like branch prediction
and memory dependence prediction. Also, the configurations in these experi-
ments used the CRF method to remove transfer instructions.

193

B.7 Issue-width Balance Steering

Benchmark | Issue-balance
164.gzip 2.80
175.vpr 1.46
176.gcc 1.67
181.mcf 0.11

197.parser 2.04
252.eon 3.64

253.perlbmk 1.17

254.gap 1.89
256.bzip2 3.63
171.swim 0.60
172.mgrid 1.27
173.applu 0.62
177 .mesa 4.51
178.galgel 3.44

179.art 0.38

183.equake 3.91

188.ammp 1.83

189.1ucas 0.40

Table B.33: The IPC of an 16-wide 4-cluster processor with issue-balance
steering. These configurations simulated perfect branch prediction and perfect
memory disambiguation. Also, the configurations in these experiments used
the CRF method to remove transfer instructions.

194

Benchmark | Issue-balance
164.gzip 1.02
175.vpr 0.62
176.gcc 0.99
181.mcf 0.10

197.parser 0.97
252.eon 0.75

253.perlbmk 0.53

254.gap 0.67
256.bzip2 1.41
171.swim 0.60
172.mgrid 1.21
173.applu 0.56
177.mesa 1.23
178.galgel 3.12

179.art 0.35

183.equake 1.18

188.ammp 1.17

189.1ucas 0.40

Table B.34: The IPC of an 16-wide 4-cluster processor with issue-balance steer-
ing. These configurations simulated Alpha 21264-like branch prediction and
memory dependence prediction. Also, the configurations in these experiments
used the CRF method to remove transfer instructions.

195

1]

Bibliography

Vikas Agarwal. Scalable Primary Cache Memory Architectures. PhD

thesis, The University of Texas at Austin, May 2004.

Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, and Doug Burger.
Clock rate vs. IPC : The end of the road for conventional microprocessors.
In Proceedings of the 27th Annual International Symposium on Computer

Architecture, pages 248—-259, June 2000.

Vikas Agarwal, Stephen W. Keckler, and Doug Burger. The effect of
technology scaling on microarchitectural structures. Technical Report
TR2000-02, Department of Computer Sciences, The University of Texas
at Austin, 2000.

Todd M. Austin and Gurindar S. Sohi. Zero-cycle loads: Microarchi-
tecture support for reducing load latency. In Proceedings of the 28th

International Symposium on Microarchitecture, pages 82-92, December

1995.

Amirali Baniasadi and Andreas Moshovos. Instruction distribution heuris-
tics for quad-cluster dynamically-scheduled, superscalar processors. In
Proceedings of the 33rd International Symposium on Microarchitecture,

pages 337-347, December 2000.

196

[6]

[10]

[11]

Ravi Bhargava. Instruction History Management for High-Performance
Microprocessors. PhD thesis, The University of Texas at Austin, August
2003.

Ravi Bhargava and Lizy K. John. Improving dynamic cluster assign-
ment for clustered trace cache processors. In Proceedings of the 30th

international symposium on computer architecture, pages 264-274, June

2003.

Bryan Black, Brian Mueller, Stephanie Postal, Ryan Rakvic, Noppanunt
Utamaphethai, and John Paul Shen. Load execution latency reduction.
In Proceedings of the 12th International Conference on Supercomputing,

pages 29-36, July 1998.

Eric Borch, Eric Tune, Srilatha Manne, and Joel Emer. Loose loops
sink chips. In Proceedings of the 8th International Symposium on High-

Performance Computer Architecture, pages 299-310, 2002 February.

Mary D. Brown and Yale N. Patt. Using internal redundant represen-
tations and limited bypass to support pipelined adders and register files.
In Proceedings of the 8th International Symposium on High-Performance

Computer Architecture, pages 289-298, February 2002.

Mary D. Brown and Yale N. Patt. Demand-only broadcast: Reducing
register file and bypass power in clustered execution cores. Technical
Report TR-HPS-2004-001, Department of Electrical and Computer En-

gineering, The University of Texas at Austin, May 2004.

197

[12]

[13]

[14]

[15]

[16]

[17]

Mary D. Brown, Jared Stark, and Yale N. Patt. Select-free instruction
scheduling logic. In Proceedings of the 34rd International Symposium on

Microarchitecture, pages 204—213, December 2001.

J. Adam Butts and Gurindar S. Sohi. Characterizing and predicting value
degree of use. In Proceedings of the 35th annual international symposium

on Microarchitecture, pages 15-26, 2002.

Ramon Canal, Joan Manuel Parcerisa, and Antonio Gonzéalez. Dynamic
cluster assignment mechanisms. In Proceedings of the 6th International
Symposium on High-Performance Computer Architecture, pages 132-142,

January 2000.

Anantha Chandrakasan, William J. Bowhill, and Frank Fox ,editors. De-
sign of High-Performance Microprocessor Circuits. IEEE Press, Piscat-

away, NJ, 2001.

Robert S. Chappell, Francis Tseng, Adi Yoaz, and Yale N. Patt. Difficult-
path branch prediction using subordinate microthreads. In Proceedings

of the 29th Annual International Symposium on Computer Architecture,

pages 307-317, May 2002.

Tien-Fu Chen and Jean-Loup Baer. Reducing memory latency via non-
blocking and prefetching caches. In Proceedings of the 5th international
conference on Architectural support for programming languages and oper-

ating systems, pages 51-61, October 1992.

198

18]

[19]

[20]

[21]

[22]

23]

Tien-Fu Chen and Jean-Loup Baer. Effective hardware-based data pre-
fetching for high-performance processors. IEEE Transactions on Com-

puters, 44(5):609-623, May 1995.

José-Lorenzo Cruz, Antonio Gonzalez, Mateo Valero, and Nigel P. Topham.
Multiple-banked register file architectures. In Proceedings of the 27th An-
nual International Symposium on Computer Architecture, pages 316-325,

June 2000.

Rajagopalan Desikan, Doug Burger, and Stephen W. Keckler. Measuring
experimental error in microprocessor simulation. In Proceedings of the

28th Annual International Symposium on Computer Architecture, pages

266277, July 2001.

Pradeep K. Dubey and Michael J. Flynn. Optimal pipelining. J. Parallel
Distrib. Comput., 8(1):10-19, 1990.

Keith I. Farkas, Paul Chow, Norman P. Jouppi, and Zvonko Vranesic.
The multicluster architecture: Reducing cycle time through partitioning.

In Proceedings of the 30th International Symposium on Microarchitecture,

pages 149-159, December 1997.

Brian Fields, Rastislav Bodik, and Mark D. Hill. Slack: Maximizing
performance under technological constraints. In Proceedings of the 29th

Annual International Symposium on Computer Architecture, pages 47-58,

May 2002.

199

[24]

[25]

[26]

[27]

28]

[29]

Brian Fields, Shai Rubin, and Rastislav Bodik. Focusing processor poli-
cies via critical-path prediction. In Proceedings of the 28th Annual Inter-

national Symposium on Computer Architecture, pages 74-85, June 2001.

Marco Fillo, Stephen W. Keckler, William J. Dally, Nicholas P. Carter,
Andrew Chang, Yevgeny Gurevich, and Whay S. Lee. The M-machine
multicomputer. In Proceedings of the 28th International Symposium on

Microarchitecture, pages 146-156, December 1995.

Joseph Fisher. Very long instruction word architectures and the eli-
512. In Proceedings of the 10th International Symposium on Computer
Architecture, pages 140-150, June 1983.

Manoj Franklin and Gurindar S. Sohi. Arb: A hardware mechanism

for dynamic reordering of memory references. IEEE Trans. Comput.,

45(5):552-571, 1996.

Daniel H. Friendly, Sanjay J. Patel, and Yale N. Patt. Alternative fetch
and issue policies for the trace cache fetch mechanism. In Proceedings

of the 30th annual international symposium on Microarchitecture, pages

24-33, December 1997.

Heather Hanson, M. S. Hrishikesh, Vikas Agarwal, Stephen W. Keckler,
and Doug Burger. Static energy reduction techniques for microprocessor
caches. In Proceedings of the International Conference on Computer

Design, pages 276-283, September 2001.

200

[30]

[31]

[32]

[33]

[34]

[35]

[36]

A. Hartstein and Thomas R. Puzak. The optimum pipeline depth for a
microprocessor. In Proceedings of the 29th Annual International Sympo-

stum on Computer Architecture, pages 7-13, May 2002.

A. Hartstein and Thomas R. Puzak. Optimum power/performance pipe-
line depth. In Proceedings of the 36th Annual International Symposium

on Muicroarchitecture, pages 117-126, December 2003.

Seongmoo Heo, Ronny Krashinsky, and Krste Asanovi¢. Activity-sensitive
flip-flop and latch selection for reduced energy. In Conference on Ad-

vanced Research in VLSI pages 59-74, March 2001.

Glenn Hinton, Dave Sager, Mike Upton, Darrell Boggs, Doug Carmean,
Alan Kyker, and Patrice Roussel. The microarchitecture of the pentium

4 processor. Intel Technology Journal, February 2001.

Ron Ho, Kenneth W. Mai, and Mark A. Horowitz. The future of wires.
Proceedings of the IEEE, 89(4):490-504, April 2001.

M. S. Hrishikesh, Norman P. Jouppi, Keith I. Farkas, Doug Burger,
Stephen W. Keckler, and Premkishore Shivakumar. The optimal logic
depth per pipeline stage is 6 to 8 FO4 inverter delays. In Proceedings
of the 29th Annual International Symposium on Computer Architecture,

pages 14-24, May 2002.

Quinn Jacobson, Steve Bennett, Nikhil Sharma, and James E. Smith.

Control flow speculation in multiscalar processors. In Proceedings of

201

[37]

[38]

[39]

[40]

[41]

the 3rd Symposium on High-Performance Computer Architecture, pages

218-229, February 1997.

Daniel A. Jiménez, Heather L. Hanson, and Calvin Lin. Boolean formula-
based branch prediction for future technologies. In Proceedings of the In-
ternational Conference on Parallel Architectures and Compilation Tech-

nologies, pages 97-106, September 2001.

Norman P. Jouppi. Improving direct-mapped cache performance by the
addition of a small fully-associative cache prefetch buffers. In Proceedings
of the 24th international symposium on computer architecture, pages 364—

373, June 1990.

Norman P. Jouppi and Steven J. E. Wilton. An enhanced access and
cycle time model for on-chip caches. Technical Report 93.5, Compaq

Computer Corporation, July 1994.

Stefanos Kaxiras, Zhigang Hu, and Margaret Martonosi. Cache-line de-
cay: Exploiting generational behavior to reduce leakage power. In The
28th Annual International Symposium on Computer Architecture, pages

240-251, July 2001.

R. E. Kessler, E. J. McLellan, and D.A. Webb. The Alpha 21264 micro-
processor architecture. In Proceedings of the International Conference on

Computer Design, pages 90-105, October 1998.

202

[42]

[43]

[44]

[45]

[46]

[47]

Steven R. Kunkel and James E. Smith. Optimal pipelining in supercom-
puters. In Proceedings of the 13th Annual International Symposium on

Computer Architecture, pages 404-411, June 1986.

Nasser A. Kurd, Javed S. Barkatullah, Rommel O. Dizon, Thomas D.
Fletcher, and Paul D. Madland. Multi-GHz clocking scheme for Intel
Pentium 4 microprocessor. In Proceedings of the International Solid-state

Circuits Conference, pages 404-405, February 2001.

Alvin R. Lebeck, Jinson Koppanalil, Tong Li, Jaidev Patwardhan, and
Eric Rotenberg. A large, fast instruction window for tolerating cache
misses. In Proceedings of the 29th annual international symposium on

Computer architecture, pages 59-70, May 2002.

P. Geoffrey Lowney, Stefan M. Freudenberger, Thomas J. Karzes, W. D.
Lichtenstein, Robert P. Nix, John S. O’Donnell, and John C. Ruttenberg.

The multiflow trace scheduling compiler. The Journal of Supercomputing,

7(1-2):51-142, 1993.

Scott McFarling. Combining branch predictors. Technical Report TN-
36, DEC Western Research Lab, June 1993.

Ramadass Nagarajan, Karthikeyan Sankaralingam, Doug Burger, and
Stephen W. Keckler. A design space evaluation of grid processor ar-
chitectures. In Proceedings of the 34th International Symposium on Mi-

croarchitecture, pages 40-51, December 2001.

203

48]

[49]

[50]

[51]

[52]

[53]

Mario Daniel Nemirovsky, Forrest Brewer, and Roger C. Wood. DISC:
Dynamic instruction stream computer. In Proceedings of the 24th In-

ternational Symposium on Microarchitecture, pages 163-171, November

1991.

Koji Nii, Hiroshi Makino, Yoshiki Tujihashi, Chikayoshi Morishima, Ya-
suhi Hayakawa, Hiroyuki Nunogami, Takahiko Arakawa, and Hisanori
Hamano. A low power SRAM using auto-backgate-controlled MT-CMOS.

In International Symposium on Low Power Electronics and Design, pages

293-298, 1998.

Subbarao Palacharla, Norman P. Jouppi, and J.E. Smith. Complexity-
effective superscalar processors. In Proceedings of the 2/th Annual In-
ternational Symposium on Computer Architecture, pages 206-218, June

1997.

Joan-Manuel Parcerisa, Julio Sahuquillo, Antonio Gonzélez, and José Du-
ato. Efficient interconnects for clustered microarchitectures. In Proceed-
ings of the International Conference on Parallel Architectures and Com-

pilation Techniques, pages 291-300, September 2002.

Sanjay J. Patel, Daniel H. Friendly, , and Yale N. Patt. Critical issues
regarding the trace cache fetch mechanism. Technical Report CSE-TR-
335-97, The University of Michigan, May 1997.

Matthew A. Postiff, David A. Greene, Gary S. Tyson, and Trevor N.

204

[54]

[55]

[56]

[57]

[58]

Mudge. The limits of instruction level parallelism in SPEC95 applica-
tions. Computer Architecture News, 217(1):31-34, 1999.

Michael Powell, Se-Hyun Yang, Babak Falsafi, Kaushik Roy, and T.N.
Vijaykumar. Gated-Vy;: A circuit technique to reduce leakage in deep-
submicron cache memories. In International Symposium on Low Power

Electronics and Design, pages 90-95, 2000.

Steven E. Raasch, Nathan L. Binkert, and Steven K. Reinhardt. A
scalable instruction queue design using dependence chains. In Proceedings

of the 29th annual international symposium on Computer architecture,

pages 318-329, May 2002.

Paul Racunas and Yale N. Patt. Partitioned first-level cache design for
clustered microarchitectures. In Proceedings of the 17th annual interna-

tional conference on Supercomputing, pages 22 — 31, June 2003.

Eric Rotenberg, Steve Bennett, and James E. Smith. Trace cache: a low
latency approach to high bandwidth instruction fetching. In Proceedings
of the 29th annual international symposium on Microarchitecture, pages

24-35, December 1996.

S. Subramanya Sastry, Subbarao Palacharla, and J.E. Smith. Exploit-
ing idle floating-point resources for integer execution. In Conference on
Programming Language Design and Implementation, pages 118-129, June

1998.

205

[59]

[60]

[61]

[62]

[63]

[64]

The international technology roadmap for semiconductors. Semiconduc-

tor Industry Association, 2001.

André Seznec, Stephen Felix, Venkata Krishnan, and Yiannakis Sazei-
des. Design tradeoffs for the alpha ev8 conditional branch predictor. In
Proceedings of the 29th Annual International Symposium on Computer

Architecture, pages 295-306, May 2002.

Timothy Sherwood, Erez Perelman, and Brad Calder. Basic block distri-
bution analysis to find periodic behavior and simulation points in appli-
cations. In Proceedings of the 2001 International Conference on Parallel

Architectures and Compilation Techniques, pages 3—14, September 2001.

Burton J. Smith. Architecture and applications of the hep multiprocessor
computer system. In Proceedings, SPIE Real Time Signal Processing

Architecture, pages 241-248, August 1981.

Gurindar S. Sohi, Scott E. Breach, and T. N. Vijaykumar. Multiscalar
processors. In Proceedings of the 22nd International Symposium on Com-

puter Architecture, pages 414-425, June 1995.

Eric Sprangle and Doug Carmean. Increasing processor performance
by implementing deeper pipelines. In Proceedings of the 29th Annual
International Symposium on Computer Architecture, pages 25-34, May

2002.

206

[65]

[66]

[67]

[68]

[69]

[70]

Viji Srinivasan, David Brooks, Michael Gschwind, Pradip Bose, Victor
Zyuban, Philip N. Strenski, and Philip G. Emma. Optimizing pipelines
for power and performance. In Proceedings of the 35th annual interna-

tional symposium on Microarchitecture, pages 333-344, November 2002.

Jared Stark, Mary D. Brown, and Yale N. Patt. On pipelining dynamic
instruction scheduling logic. In Proceedings of the 33rd International

Symposium on Microarchitecture, pages 57-66, December 2000.

Vladimir Stojanovi¢ and Vojin G. Oklobdzija. Comparative analysis
of master-slave latches and flip-flops for high-performance and low-power

systems. IEEE Journal of Solid-state Circuits, 34(4):536-548, April 1999.

John A. Swensen and Yale N. Patt. Hierarchical registers for scientific
computers. In Proceedings of the 2nd International Conference on Su-

percomputing, pages 346-354, November 1988.

Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff, Fae
Ghodrat, Ben Greenwald, Henry Hoffman, Paul Johnson, Walter Lee,
Arvind Saraf, Nathan Shnidman, Volker Strumpen, Saman Amarasinghe,
and Anant Agarwal. A 16-issue multiple-program-counter microproces-
sor with point-to-point scalar operand network. In Proceedings of the

International Solid-state Circuits Conference, February 2003.

Dean Tullsen, Susan Eggers, and Henry Levy. Simultaneous multithread-
ing: Maximizing on-chip parallelism. In Proceedings of the 22nd Interna-

tional Symposium on Computer Architecture, pages 392—-403, June 1995.

207

[71]

[72]

73]

[74]

[75]

[76]

T. N. Vijaykumar and Gurindar S. Sohi. Task selection for a multiscalar
processor. In Proceedings of the 31st annual ACM/IEEE international

symposium on Microarchitecture, pages 81-92, November 1998.

Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar,
Walter Lee, Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev
Barua, Jonathan Babb, Saman Amarsinghe, and Anant Agarwal. Bar-
ing it all to software: RAW machines. IEEE Computer, 30(9):86-93,
September 1997.

Zhenlin Wang, Doug Burger, Kathryn S. McKinley, Steven K. Reinhardt,
and Charles C. Weems. Guided region prefetching: a cooperative hard-
ware/software approach. In Proceedings of the 30th Annual International

Symposium on Computer Architecture, pages 388-398, June 2003.

Se-Hyun Yang, Michael D. Powell, Babak Falsafi, Kaushik Roy, and T.N.
Vijaykumar. An integrated circuit/architecture approach to reducing
leakage in deep-submicron high-performance caches. In International
Symposium on High-Performance Computer Architecture, pages 147-157,
2001.

Tse-Yu Yeh and Yale N. Patt. Two-level adaptive branch prediction. In
Proceedings of the 24th Annual International Symposium on Microarchi-

tecture, November 1991.

A. Yoaz, M. Erez, R. Ronen, and S. Jourdan. Speculation techniques

for improving load related instruction scheduling. In Proceedings of the

208

26th Annual International Symposium on Computer Architecture, pages

42-53, May 1999.

[77] Huiyang Zhou, Mark C. Toburen, Eric Rotenberg, and Thomas M. Conte.
Adaptive mode-control: A static-power-efficient cache design. In Interna-
tional Conference on Parallel Architectures and Compilation Techniques,

2001.

209

Index

A Segmented Instruction Window De-
sign, 31

Abstract, vii

Acknowledgments, v

Appendices, 159

Baseline Clustered Architecture, 56

Bibliography, 209

Bottlenecks in Clustered Architectures,
63

Cluster Resource Limitations, 81
Clustered Processors, 8
Conclusions, 151
Consumer-requested Forwarding, 98
Critical Operand Steering, 137

Dedication, iv

Discussion, 156

Dissertation Contributions, 9
Dissertation Summary, 153

Effect of Pipelining on IPC, 28
Estimating Overhead, 14

Hot-register Based Forwarding, 110

Ideal Memory Instruction Steering,
126

Implications For Processor Design,
6

Instruction Level Parallelism in Pro-
grams, 44

Instruction Steering, 122

210

Inter-cluster Communication Delay,
74

Inter-cluster Operand Forwarding, 97

Introduction, 1

Issue-width Balance Steering, 141

Memory Steering with Last-cluster
Prediction, 130
Memory Instruction Steering, 123

Optimal Pipeline Depth, 20
Organization, 11

Partitioned Architectures, 50
Pipeline Scaling Methodology, 18
Pipeline Scaling Trends, 2
Pipelining Instruction Select, 35
Pipelining Instruction Wakeup, 32
Process Technology Trends, 4
Processor Pipeline Scaling, 13

Quantifying the Effect of Bottlenecks,
63

Quantifying the Effect of Individual
Bottlenecks, 69

Reducing Transfer Instructions, 91
Register Caching, 91

Related Work, 27, 38, 116

Related Work, 144

SenSitivity Of ¢logic to ¢overhead; 26
Summary, 40, 87, 119

Summary, 149

Thesis Statement, 9
Transfer instructions, 69

Wide Issue Processors, 43
Wire Delay Scaling, 5

211

Vita

Hrishikesh Sathyavasu Murukkathampoondi was born in Coimbatore,
India on 15 February 1976 to Sathyavasu Arunachalam and Seshambal Sun-
dareswaran. He received a Bachelor of Engineering degree in Electronics and
Communication Engineering from the University of Madras in May 1997. The
following fall he entered the graduate program in Computer Engineering at
the University of Texas at Austin. In August 1999 he received a Master of
Science degree and subsequently joined the Ph.D. program in Computer En-
gineering at the University of Texas at Austin. Part of his graduate research

was supported by an Intel Foundation Ph.D. fellowship (2002-03).

Permanent address: Flat No. 4, 87 Greenways Road
Chennai, India 600028

This dissertation was typeset with ITEX' by the author.

'IATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

212

